Expressing a Cytosolic Pyruvate Dehydrogenase Complex To

Total Page:16

File Type:pdf, Size:1020Kb

Expressing a Cytosolic Pyruvate Dehydrogenase Complex To Zhang et al. Microb Cell Fact (2020) 19:226 https://doi.org/10.1186/s12934-020-01493-z Microbial Cell Factories RESEARCH Open Access Expressing a cytosolic pyruvate dehydrogenase complex to increase free fatty acid production in Saccharomyces cerevisiae Yiming Zhang1†, Mo Su1†, Ning Qin1, Jens Nielsen1,2,3 and Zihe Liu1* Abstract Background: Saccharomyces cerevisiae is being exploited as a cell factory to produce fatty acids and their derivatives as biofuels. Previous studies found that both precursor supply and fatty acid metabolism deregulation are essential for enhanced fatty acid synthesis. A bacterial pyruvate dehydrogenase (PDH) complex expressed in the yeast cytosol was reported to enable production of cytosolic acetyl-CoA with lower energy cost and no toxic intermediate. Results: Overexpression of the PDH complex signifcantly increased cell growth, ethanol consumption and reduced glycerol accumulation. Furthermore, to optimize the redox imbalance in production of fatty acids from glucose, two endogenous NAD+-dependent glycerol-3-phosphate dehydrogenases were deleted, and a heterologous NADP+-dependent glyceraldehyde-3-phosphate dehydrogenase was introduced. The best fatty acid producing strain PDH7 with engineering of precursor and co-factor metabolism could produce 840.5 mg/L free fatty acids (FFAs) in shake fask, which was 83.2% higher than the control strain YJZ08. Profle analysis of free fatty acid suggested the cyto- solic PDH complex mainly resulted in the increases of unsaturated fatty acids (C16:1 and C18:1). Conclusions: We demonstrated that cytosolic PDH pathway enabled more efcient acetyl-CoA provision with the lower ATP cost, and improved FFA production. Together with engineering of the redox factor rebalance, the cyto- solic PDH pathway could achieve high level of FFA production at similar levels of other best acetyl-CoA producing pathways. Keywords: The pyruvate dehydrogenase complex, Free fatty acids, Redox factor, Saccharomyces cerevisiae Background modifcation, and their levels are therefore tightly regu- Bioproduction of fatty acids and their derivatives serves lated to ensure in vivo homeostasis [1]. Intensive eforts as a sustainable route to alleviate the dilemma between have been carried out to improve the titer, rate and yield the growing demands of high-energy–density fuels and (TRY) of fatty acid-derived biofuels, focusing mainly on concerns on their environmental impacts. However, fatty the deregulation of fatty acid metabolism and redirection acids are involved in several essential cellular processes, of carbon fux [2–4]. such as membrane synthesis, energy storage, and protein Regarding deregulation of fatty acid metabolism, dele- tions of dominant acyl-CoA synthetases (FAA1, FAA4), *Correspondence: [email protected] and fatty acyl-CoA oxidase (POX1) catalyzing the frst †Yiming Zhang and Mo Su contributed equally to this work step in β-oxidation, could signifcantly accumulate free 1 Beijing Advanced Innovation Center for Soft Matter Science fatty acids (FFAs) [5–7]. Moreover, deletions of main and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, No.15 North Third Ring Road East, sterol ester formation genes (ARE1, ARE2), and phos- Chaoyang District, Beijing 100029, People’s Republic of China phatidate phosphatase genes (PAH1, DPP1, LPP1) could Full list of author information is available at the end of the article also deregulate fatty acid synthesis and increase the © The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/publi cdoma in/ zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Zhang et al. Microb Cell Fact (2020) 19:226 Page 2 of 9 production of total fatty acids [8]. Combining deletion of Previous studies showed that high glycerol produc- several lipid regulation mechanisms resulted in a reduced tion was often observed in FFA production strains, indi- complexity of the fatty acid metabolic network, leading to cating a high NADH pressure [7]. Glycerol synthesis enhanced FFA accumulation [8, 9]. from dihydroxyacetone phosphate consists of two steps, Besides engineering lipid metabolic network, engineer- catalyzed by NAD+-dependent glycerol-3-phosphate ing of precursor supply and redox cofactor regeneration dehydrogenase (encoded by GPD1 and GPD2) and glyc- was also essential for carbon fux redirection towards erol-3-phosphate phosphatase (encoded by GPP1 and FFA production. Each elongation cycle in fatty acid syn- GPP2), respectively (Fig. 1). Glycerol accumulation is also thesis extends the backbone with a C2 unit and requires 2 an issue in bioethanol production and has therefore been molecules of NADPH as cofactor. Endogenous synthesis studied for years. Several studies found that glycerol for- of cytosolic acetyl-CoA, the main C2 metabolite, is often mation could be decreased with altered redox-cofactor limited and several heterologous enzymes have therefore specifcity [11, 19–22], and could be eliminated through been expressed to increase acetyl-CoA supply for FFA inactivation of both GPD1 and GPD2 with the expense synthesis, including NAD +-dependent alcohol dehydro- of a dramatic reduction in cell growth [23]. As alterna- genase (AdhE), NAD+-dependent acylating acetaldehyde tives, an NADP+-dependent glyceraldehyde-3-phosphate dehydrogenase (EutE) [10], ATP citrate lyases (ACLs) [6, dehydrogenase (GapN) was demonstrated to enable res- 7, 11–13], xylulose-5-phosphate phosphoketolase (XpkA) cuing the negative efects and improve ethanol yield [24, and phosphotransacetylase (Pta) [14]. Compared to these 25]. Moreover, since GapN irreversibly converts glycer- strategies, expression of cytosolic pyruvate dehydro- aldehyde-3-phosphate to 3-phosphoglycerate and pro- genase (PDH) is attractive because of its lower energy duces NADPH (Fig. 1), it was reported to increase the cost [15]. Te PDH complex consists of three catalytic synthesis of NADPH demanding bioproducts, including subunits, including pyruvate dehydrogenase (E1), dihy- 3-hydroxypropionic acid (3-HP) and polyhydroxybu- drolipoyl transacetylase (E2), and dihydrolipoyl dehy- tyrate (PHB) [26, 27]. Terefore, it could potentially elim- drogenase (E3), and requires four kinds of cofactors TPP, inate glycerol accumulation and increase FFA production lipoate, FAD and NAD+. Among three PDH complexes by interruption of glycerol synthesis and expression of that have been expressed in the cytosol of yeast, PDH GapN. from Enterococcus faecalis was demonstrated to enable Te goal of this study is to investigate the efect of complete replacement of the native pathway for cyto- expressing the cytosolic PDH complex on FFA produc- solic acetyl-CoA synthesis, and was less sensitive to high tion in yeast strains with deregulated fatty acid metabo- NADH/NAD+ ratios compared with other PDH com- lism and optimized cytosolic redox balance (Fig. 1). Te plexes [16–18]. However, one concern with PDH expres- strategies reported here may shed lights for production sion for FFA production is the redox imbalance between of other acetyl-CoA and NADPH demanding chemicals redox couples of NAD+/NADH and NADP+/NADPH. as well. Glucose AMP ATP Redox balance Faa1,4 Hfd1 G3P Fay acyl-CoA Fay acid Fay aldehyde + Gpd1, NADH NAD+ NADP+ NADP Gpd2 GapN Fas1,2 Pah1, NAD+ NADH NADPH NADPH Lpp1, Glycerol 3PG Malonyl-CoA Dpp1, ADP Are1 - HCO3 , Acc1 NAD+ NADH ATP cPDH Pox1 Triacylglycerol Precursor PyruvateAcetyl-CoA FFA supply PDH bypass β-oxidaon Sterol ester Synthesis Fig. 1 Schematic representation of engineering strategies for FFA production in S. cerevisiae. G3P glyceraldehyde-3-phosphate, 3PG 3-phospho-glycerate, cPDH cytosolic pyruvate dehydrogenase. A cytosolic PDH complex was evaluated in a faa1Δ faa4Δ pox1Δ hfd1Δ mutant YJZ08 for free fatty acid production, in combination with fatty acid metabolism engineering via pah1Δ lpp1Δ dpp1Δ are1Δ and redox cofactor engineering via GPD deletion and GapN expression Zhang et al. Microb Cell Fact (2020) 19:226 Page 3 of 9 Results and discussion 1.90 g/L glycerol with YJZ08 (Fig. 2a), suggesting that Expression of a bacterial PDH complex to increase cytosolic PDH did not cause an NADH burden in YJZ08. the acetyl‑CoA supply Teoretically, a combination of the PDH route with A FFA producing strain YJZ08 with four gene deletions the phosphoketolase (PK) pathway can result in a higher (faa1Δ faa4Δ pox1Δ hfd1Δ) was used as the background maximum FFA yield [15], since the PDH route could strain for cytosolic PDH evaluation [6]. Te three subu- produce acetyl-CoA with low energy cost and the PK nits of PDH complex, encoded by pdhA, pdhB,
Recommended publications
  • Regulation of ATP Levels in Escherichia Coli Using CRISPR
    Tao et al. Microb Cell Fact (2018) 17:147 https://doi.org/10.1186/s12934-018-0995-7 Microbial Cell Factories RESEARCH Open Access Regulation of ATP levels in Escherichia coli using CRISPR interference for enhanced pinocembrin production Sha Tao, Ying Qian, Xin Wang, Weijia Cao, Weichao Ma, Kequan Chen* and Pingkai Ouyang Abstract Background: Microbial biosynthesis of natural products holds promise for preclinical studies and treating diseases. For instance, pinocembrin is a natural favonoid with important pharmacologic characteristics and is widely used in preclinical studies. However, high yield of natural products production is often limited by the intracellular cofactor level, including adenosine triphosphate (ATP). To address this challenge, tailored modifcation of ATP concentration in Escherichia coli was applied in efcient pinocembrin production. Results: In the present study, a clustered regularly interspaced short palindromic repeats (CRISPR) interference sys- tem was performed for screening several ATP-related candidate genes, where metK and proB showed its potential to improve ATP level and increased pinocembrin production. Subsequently, the repression efciency of metK and proB were optimized to achieve the appropriate levels of ATP and enhancing the pinocembrin production, which allowed the pinocembrin titer increased to 102.02 mg/L. Coupled with the malonyl-CoA engineering and optimization of culture and induction condition, a fnal pinocembrin titer of 165.31 mg/L was achieved, which is 10.2-fold higher than control strains. Conclusions: Our results introduce a strategy to approach the efcient biosynthesis of pinocembrin via ATP level strengthen using CRISPR interference. Furthermore coupled with the malonyl-CoA engineering and induction condi- tion have been optimized for pinocembrin production.
    [Show full text]
  • Engineering Approaches to Control Activity and Selectivity of Enzymes for Multi- Step Catalysis
    Engineering Approaches to Control Activity and Selectivity of Enzymes for Multi- Step Catalysis Walaa K. Abdallah Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2019 © 2018 Walaa K. Abdallah All rights reserved Abstract Engineering Approaches to Control Activity and Selectivity of Enzymes for Multi-Step Catalysis Walaa K. Abdallah Enzymes are desirable catalysts as they may exhibit high activity, high selectivity, and may be easily engineered. Additionally, enzymes can be mass-produced recombinantly making them a potentially less expensive option than their organic or inorganic counterparts. As a result, they are being used more in industrial applications making their relevance ubiquitous. In this work, various engineering approaches were developed to control the activity and selectivity of enzymes for multi-step catalysis. Unlike nature, many industrial processes require multiple steps to produce the desired product, which is both timely and expensive. Through the use of enzymes, biosynthesis can be used to develop efficient multi-step catalytic cascades. The majority of this work focused on engineering a hyperthermophilic enzyme from the aldo-keto reductase (AKR) superfamily, alcohol dehydrogenase D (AdhD) from Pyrococcus furiosus, to develop approaches to control activity and selectivity. As the AKR superfamily contains many unifying characteristics, such as a conserved catalytic tetrad, (α/β)8-barrel quaternary fold, conserved cofactor binding pocket, and varying substrate loops, the approaches developed here can be applied to many enzymes. AKR members participate in a broad range of redox reactions, such as those involving aldehydes, hydrocarbons, xenobiotics, and many more, and are necessary in physiological processes in all living systems, making these enzymes industrially relevant.
    [Show full text]
  • Multidimensional Engineering for the Production of Fatty Acid Derivatives in Saccharomyces Cerevisiae
    THESIS FOR DEGREE OF DOCTOR OF PHILOSOPHY Multidimensional engineering for the production of fatty acid derivatives in Saccharomyces cerevisiae YATING HU Department of Biology and Biological Engineering CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden 2019 Multidimensional engineering for the production of fatty acid derivatives in Saccharomyces cerevisiae YATING HU ISBN 978-91-7905-174-7 © YATING HU, 2019. Doktorsavhandlingar vid Chalmers tekniska högskola Ny serie nr 4641 ISSN 0346-718X Department of Biology and Biological Engineering Chalmers University of Technology SE-412 96 Gothenburg Sweden Telephone + 46 (0)31-772 1000 Cover: Multidimensional engineering strategies enable yeast as the cell factory for the production of diverse products. Printed by Chalmers Reproservice Gothenburg, Sweden 2019 Multidimensional engineering for the production of fatty acid derivatives in Saccharomyces cerevisiae YATING HU Department of Biology and Biological Engineering Chalmers University of Technology Abstract Saccharomyces cerevisiae, also known as budding yeast, has been important for human society since ancient time due to its use during bread making and beer brewing, but it has also made important contribution to scientific studies as model eukaryote. The ease of genetic modification and the robustness and tolerance towards harsh conditions have established yeast as one of the most popular chassis in industrial-scale production of various compounds. The synthesis of oleochemicals derived from fatty acids (FAs), such as fatty alcohols and alka(e)nes, has been extensively studied in S. cerevisiae, which is due to their key roles as substitutes for fossil fuels as well as their wide applications in other manufacturing processes. Aiming to meet the commercial requirements, efforts in different engineering approaches were made to optimize the TRY (titer, rate and yield) metrics in yeast.
    [Show full text]
  • Cofactor Engineering Through Heterologous Expression of an NADH Oxidase and Its Impact on Metabolic Flux Redistribution in Klebs
    Ji et al. Biotechnology for Biofuels 2013, 6:7 http://www.biotechnologyforbiofuels.com/content/6/1/7 RESEARCH Open Access Cofactor engineering through heterologous expression of an NADH oxidase and its impact on metabolic flux redistribution in Klebsiella pneumoniae Xiao-Jun Ji†, Zhi-Fang Xia†, Ning-Hua Fu, Zhi-Kui Nie, Meng-Qiu Shen, Qian-Qian Tian and He Huang* Abstract Background: Acetoin is an important bio-based platform chemical. However, it is usually existed as a minor byproduct of 2,3-butanediol fermentation in bacteria. Results: The present study reports introducing an exogenous NAD+ regeneration sysytem into a 2,3-butanediol producing strain Klebsiella pneumoniae to increse the accumulation of acetoin. Batch fermentation suggested that heterologous expression of the NADH oxidase in K. pneumoniae resulted in large decreases in the intracellular NADH concentration (1.4 fold) and NADH/NAD+ ratio (2.0 fold). Metabolic flux analysis revealed that fluxes to acetoin and acetic acid were enhanced, whereas, production of lactic acid and ethanol were decreased, with the accumualation of 2,3-butanediol nearly unaltered. By fed-batch culture of the recombinant, the highest reported acetoin production level (25.9 g/L) by Klebsiella species was obtained. Conclusions: The present study indicates that microbial production of acetoin could be improved by decreasing the intracellular NADH/NAD+ ratio in K. pneumoniae. It demonstrated that the cofactor engineering method, which is by manipulating the level of intracellular cofactors to redirect cellular metabolism, could be employed to achieve a high efficiency of producing the NAD+-dependent microbial metabolite. Keywords: Acetoin, 2,3-Butanediol, Cofactor engineering, Klebsiella pneumoniae, NADH oxidase Background which is considered as a new branch of metabolic engneer- Metabolic engineering has been widely applied in modi- ing, has attracted increasing attention.
    [Show full text]
  • University of Groningen Exploring the Cofactor-Binding and Biocatalytic
    University of Groningen Exploring the cofactor-binding and biocatalytic properties of flavin-containing enzymes Kopacz, Malgorzata IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2014 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Kopacz, M. (2014). Exploring the cofactor-binding and biocatalytic properties of flavin-containing enzymes. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 29-09-2021 Exploring the cofactor-binding and biocatalytic properties of flavin-containing enzymes Małgorzata M. Kopacz The research described in this thesis was carried out in the research group Molecular Enzymology of the Groningen Biomolecular Sciences and Biotechnology Institute (GBB), according to the requirements of the Graduate School of Science, Faculty of Mathematics and Natural Sciences.
    [Show full text]
  • Engineering, Predicting, and Understanding Nicotinamide Cofactor Specificity
    Engineering, Predicting, and Understanding Nicotinamide Cofactor Specificity Thesis by Jackson Kenai Blender Cahn In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2016 (Defended January 19, 2016) ii © 2016 Jackson Kenai Blender Cahn All rights reserved except where otherwise noted. iii ACKNOWLEDGEMENTS First, I’d like to thank my advisors Frances Arnold and Steve Mayo for their support and guidance over the last four years. In their labs, I’ve had a great deal of freedom to pursue this work down the various twists and turns it has taken, but Frances and Steve have channeled my natural urge to dabble down the most productive avenues. A particular thank-you to Frances for her guidance in taking my ideas and data and turning them into the narratives that follow. Sabine Brinkmann-Chen brought me into the Arnold Lab, introduced me to cofactor- switching, and taught me nearly everything I know about experimental biochemistry. She has been my main collaborator on everything in this thesis, and none of this would have been possible without her constant assistance and valuable suggestions. I have also been so lucky to have had a number of excellent students who have assisted me. Ruchi Jahagirdar, Lisa Mears, Armin Baumschlager, Nelson Chou, and Caroline Werlang: thank you. Without your observations, your pipetting prowess, and your knowledge of HTML I would still be far from graduating. There are too many members of the Arnold and Mayo Labs for me to adequately thank all of them for their assistance. Devin Trudeau and Martin Engqvist deserve particular gratitude for their experimental wisdom; Bernardo Sosa Padilla Araujo, Emzo de los Santos, and Alex Nisthal gave me valuable python pointers; Sheel Dodani, Andy Buller, and Seth Leiblich have been incredibly valuable for helping me work through ideas.
    [Show full text]
  • Evaluation of Precursor and Cofactor Engineering Strategies Influencing Fatty Acid Metabolism in Saccharomyces Cerevisiae
    THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Evaluation of precursor and cofactor engineering strategies influencing fatty acid metabolism in Saccharomyces cerevisiae ALEXANDRA BERGMAN Department of Biology and Biological Engineering CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden 2019 Evaluation of precursor and cofactor engineering strategies influencing fatty acid metabolism in Saccharomyces cerevisiae Alexandra Bergman Gothenburg, Sweden 2019 ISBN 978-91-7597-868-0 © Alexandra Bergman, 2019 Doktorsavhandlingar vid Chalmers tekniska högskola Ny serie nr 4549 ISSN 0346-718X Department of Biology and Biological Engineering Chalmers University of Technology SE-412 96 Gothenburg Sweden Telephone + 46 (0)31-772 1000 Cover: “Watercolor budding yeast”, illustrated by Elin Bergman. Printed by Chalmers Reproservice Gothenburg, Sweden 2019 II Evaluation of precursor and cofactor engineering strategies influencing fatty acid metabolism in Saccharomyces cerevisiae ALEXANDRA BERGMAN Department of Biology and Biological Engineering CHALMERS UNIVERSITY OF TECHNOLOGY Abstract If humanity is to reduce the rate of climate change, it is essential that our societies switch to a more sustainable production of fuels and chemicals, which in turn depends on technological development. Oleochemical production via microbial catalysts – such as the yeast Saccharomyces cerevisiae – can use a considerably broader range of renewable substrates compared to the conventional production processes. Additionally, it enables optimization of the catalytical properties of the chosen host via metabolic engineering. Oleochemicals are derived from fatty acids (FAs), whose biosynthesis depends on the conversion of a substrate to cytosolic acetyl-CoA – the precursor for FA synthesis. FA synthesis additionally requires large amounts of the reducing cofactor NADPH. The primary aim of this thesis was to develop and evaluate metabolic engineering strategies with potential to positively influence FA production of S.
    [Show full text]
  • Engineering Cofactor Metabolism for Improved Protein and Glucoamylase Production in Aspergillus Niger
    Engineering cofactor metabolism for improved protein and glucoamylase production in Aspergillus niger 1 Yu-fei Sui1, 2, Tabea Schütze2, Li-ming Ouyang1, Hongzhong Lu3, Peng Liu1, Xianzun Xiao1, 2 Jie Qi1, Ying-Ping Zhuang1, * and Vera Meyer2, * 3 1 State Key Laboratory of Bioreactor Engineering, East China University of Science and 4 Technology, Shanghai 200237, P. R. China 5 2 Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität 6 Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany 7 3 Department of Biology and Biological Engineering, Chalmers University of Technology, 8 Kemivägen 10, SE412 96 Gothenburg, Sweden 9 * Corresponding authors: 10 Vera Meyer:[email protected] 11 Yingping Zhuang:[email protected] 12 Abstract 13 Background: Nicotinamide adenine dinucleotide phosphate (NADPH) is an important cofactor 14 ensuring intracellular redox balance, anabolism and cell growth in all living systems. Our recent 15 multi-omics analyses of glucoamylase (GlaA) biosynthesis in the filamentous fungal cell factory 16 Aspergillus niger indicated that low availability of NADPH might be a limiting factor for GlaA 17 overproduction. 18 Results: We thus employed the Design-Build-Test-Learn cycle for metabolic engineering to 19 identify and prioritize effective cofactor engineering strategies for GlaA overproduction. Based on 20 available metabolomics and 13C metabolic flux analysis data, we individually overexpressed seven 21 predicted genes encoding NADPH generation enzymes under the control of Tet-on gene switch in 22 two A. niger recipient strains, one carrying a single and one carrying seven glaA gene copies, 23 respectively, to test their individual effects on GlaA and total protein overproduction.
    [Show full text]
  • Cofactor Engineering for Advancing Chemical Biotechnology. Yipeng
    Cofactor engineering for advancing chemical biotechnology. Yipeng Wanga, Ka-Yiu Sanb,c and George N. Bennetta a. Department of Biochemistry and Cell Biology, Rice University, Houston, TX USA 77005 b. Department of Bioengineering, Rice University, Houston, TX USA 77005 c. Department of Chemical and Biomolecular Engineering, Rice University, Houston, USA TX 77251 Corresponding author George N. Bennett Telephone:713 348 4920 e-mail: [email protected] fax: 713 348 5154 Abstract Cofactors provide redox carriers for biosynthetic reactions, catabolic reactions and act as important agents in transfer of energy for the cell. Recent advances in manipulating cofactors include culture conditions or additive alterations, genetic modification of host pathways for increased availability of desired cofactor, changes in enzyme cofactor specificity, and introduction of novel redox partners to form effective circuits for biochemical processes and biocatalysts. Genetic strategies to employ ferredoxin, NADH and NADPH most effectively in natural or novel pathways have improved yield and efficiency of large-scale processes for fuels and chemicals and have been demonstrated with a variety of microbial organisms. Introduction Cofactors provide redox carriers for biosynthetic reactions, catabolic reactions and act as important agents in transfer of energy for the cell. Some examples illustrating the requirement for cofactor balance and availability include: the conversion of biomass feedstocks containing xylose to ethanol where the formation of xylitol is a problem [1-7]; as a driving force for more effective production of reduced compounds such as biofuels [8]; in using cytochrome P450s in specific oxidation reactions where the recycling of active enzyme is required [9-11]; and the production of chiral pharmaceutical intermediates where specific reductions require a certain cofactor [12,13].
    [Show full text]
  • Altered Cofactor Preference of Thermostable Stdapdh by a Single Mutation at K159
    International Journal of Molecular Sciences Article Altered Cofactor Preference of Thermostable StDAPDH by a Single Mutation at K159 1, , 2, 1 1 1 Xiuzhen Gao * y , Qinyuan Ma y, Huihui Song , Xinming Sun , Zhiyun Li and Mingfei Liu 1 1 School of Life Science, Shandong University of Technology, Zibo 255000, China; [email protected] (H.S.); [email protected] (X.S.); [email protected] (Z.L.); [email protected] (M.L.) 2 Key Laboratory of Industrial Fermentation, Ministry of Education; Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; [email protected] * Correspondence: [email protected] These authors contributed equally to this work. y Received: 18 February 2020; Accepted: 4 March 2020; Published: 5 March 2020 Abstract: D-amino acid production from 2-keto acid by reductive amination is an attractive pathway because of its high yield and environmental safety. StDAPDH, a meso-diaminopimelate dehydrogenase (meso-DAPDH) from Symbiobacterium thermophilum, was the first meso-DAPDH to show amination of 2-keto acids. Furthermore, StDAPDH shows excellent thermostability compared to other meso-DAPDHs. However, the cofactor of StDAPDH is NADP(H), which is less common than NAD(H) in industrial applications. Therefore, cofactor engineering for StDAPDH is needed. In this study, the highly conserved cofactor binding sites around the adenosine moiety of NADPH were targeted to determine cofactor specificity. Lysine residues within a loop were found to be critical for the cofactor specificity of StDAPDH. Replacement of lysine with arginine resulted in the activity of pyruvic acid with NADH as the cofactor.
    [Show full text]
  • Engineering Microbial Fatty Acid Metabolism for Biofuels and Biochemicals
    Downloaded from orbit.dtu.dk on: Sep 27, 2021 Engineering microbial fatty acid metabolism for biofuels and biochemicals Marella, Eko Roy; Holkenbrink, Carina; Siewers, Verena; Borodina, Irina Published in: Current Opinion in Biotechnology Link to article, DOI: 10.1016/j.copbio.2017.10.002 Publication date: 2017 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Marella, E. R., Holkenbrink, C., Siewers, V., & Borodina, I. (2017). Engineering microbial fatty acid metabolism for biofuels and biochemicals. Current Opinion in Biotechnology, 50, 39-46. https://doi.org/10.1016/j.copbio.2017.10.002 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Available online at www.sciencedirect.com ScienceDirect Engineering microbial fatty acid metabolism for biofuels and biochemicals 1 1 Eko Roy Marella , Carina Holkenbrink , 2 1 Verena Siewers and Irina Borodina Traditional oleochemical industry chemically processes animal abundant lignocellulosic biomass [5] and its conversion fats and plant oils to produce detergents, lubricants, biodiesel, via chemical and microbial.
    [Show full text]
  • Cofactor Engineering for Enhancing the Flux of Metabolic Pathways
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE PERSPECTIVE ARTICLE published: 28provided August by 2014 Frontiers - Publisher Connector BIOENGINEERING AND BIOTECHNOLOGY doi: 10.3389/fbioe.2014.00030 Cofactor engineering for enhancing the flux of metabolic pathways M. Kalim Akhtar 1* and Patrik R. Jones 2* 1 Department of Biochemical Engineering, University College London, London, UK 2 Department of Life Sciences, Imperial College London, London, UK Edited by: The manufacture of a diverse array of chemicals is now possible with biologically engineered Pablo Carbonell, University of Evry, strains, an approach that is greatly facilitated by the emergence of synthetic biology. This France is principally achieved through pathway engineering in which enzyme activities are coordi- Reviewed by: Juan Manuel Pedraza, Universidad de nated within a genetically amenable host to generate the product of interest. A great deal los Andes, Colombia of attention is typically given to the quantitative levels of the enzymes with little regard to Gary Sawers, Martin-Luther their overall qualitative states. This highly constrained approach fails to consider other fac- University Halle-Wittenberg, Germany tors that may be necessary for enzyme functionality. In particular, enzymes with physically *Correspondence: bound cofactors, otherwise known as holoenzymes, require careful evaluation. Herein, we M. Kalim Akhtar, Department of Biochemical Engineering, University discuss the importance of cofactors for biocatalytic processes and show with empirical College London, Torrington Place, examples why the synthesis and integration of cofactors for the formation of holoenzymes London, WC1E 7JE, UK warrant a great deal of attention within the context of pathway engineering.
    [Show full text]