Characterization of the Hox Patterning Genes in Acoel Flatworms

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of the Hox Patterning Genes in Acoel Flatworms Characterization of the Hox patterning genes in acoel flatworms Eduardo Moreno González ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tesisenxarxa.net) ha estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX. No s’autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora. ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tesisenred.net) ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR. No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la persona autora. WARNING. On having consulted this thesis you’re accepting the following use conditions: Spreading this thesis by the TDX (www.tesisenxarxa.net) service has been authorized by the titular of the intellectual property rights only for private uses placed in investigation and teaching activities. Reproduction with lucrative aims is not authorized neither its spreading and availability from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the TDX service is not authorized (framing). This rights affect to the presentation summary of the thesis as well as to its contents. In the using or citation of parts of the thesis it’s obliged to indicate the name of the author. UNIVERSITY OF BARCELONA SCHOOL OF BIOLOGY DEPARTMENT OF GENETICS CHARACTERIZATION OF THE HOX PATTERNING GENES IN ACOEL FLATWORMS PhD THESIS Eduardo Moreno González THESIS DIRECTOR: THESIS CO-DIRECTOR: Dr. Pedro Martínez Serra Dr. Jaume Baguñà i Monjo ICREA Researcher Cathedratic Professor Department of Genetics Department of Genetics School of Biology School of Biology University of Barcelona University of Barcelona Barcelona, Spain Barcelona, Spain Memoria presentada por Eduardo Moreno González para acceder al título de Doctor por la Universidad de Barcelona, bajo la dirección de los Doctores Pedro Martínez Serra y Jaume Baguñà Monjo. Barcelona, a 10 de Marzo del 2010 Preface Preface This thesis is the result of a four-year PhD project carried out from January 2006 to December 2009. Most of my work has been carried out in the “Evolutionary Developmental Biology” Research Group of the Genetics Department, University of Barcelona, Spain. The Director of this thesis has been the ICREA Researcher Pedro Martinez and the Co-Director has been the Professor of Genetics Jaume Baguñà. The thesis has been possible thanks to the financial support of the Spanish Ministry of Education, which has provided me with a F.P.U. PhD scholarship. This thesis contains six sections. In the first place, I start with a general introduction to the topics relevant to my research project. Second, I describe the list of major aims of this work. In the third place I include a general discussion of the results obtained and emphasize its scientific relevance. Next, I list the major conclusions from this project. This section is followed by a complete list of references. At the end I include some appendices with the publications derived from this thesis plus supplementary information. Eduardo Moreno González Barcelona, March 2010 i Acknoledgments Acknowledgments To my family; for the support, affection, understanding, patience, advice and encouragement. To my friends; to everybody who has accompanied me along this way, to the ones who arrived and stayed, to the ones who arrived and went but left me with their imprint, to the ones that will come. To mi advisor Pedro Martínez; for his attention, interest, energy and support, and for having done so rewarding this stage of my life and training. To my co-advisor Jaume Baguñà; for his contribution to the birth and maturation on this thesis. To the people who have collaborated with me and made this thesis possible; to Marga, Katrien, Andi and Peter, for their help, enthusiasm and encouragement. To my lab mates; for having always been ready to help me, and for having created a really enriching multicultural environment. To Barcelona. iii Table of Contents Table of Contents Preface i Acknowledgments iii Table of Contents v List of Figures and Tables viii List of Abbreviations xi Informe del Director sobre los Artículos Publicados xv General Introduction 1 1. On the origins of Bilateria 3 1.1. Radiata and Bilateria 3 1.1.1. The Bilateria 3 1.1.2. The Radiata 4 1.2. Radial or bilateral ancestor? Hypothesis on the type of symmetry borne by the last common ancestor of cnidarians and bilaterians 6 1.2.1. The Radial-Bilateral Transition hypothesis 6 1.2.2. The Turbellarian theory 7 1.3. How did the Urbilateria look like? Hypotheses on the nature and evolution of the last common bilaterian ancestor 8 1.3.1. The Planuloid-Acoeloid hypothesis 9 1.3.2. The Archicoelomate hypothesis 11 2. The approach from the Evolutionary Developmental Biology to the origin of the bilateral animals 13 2.1. Hox and ParaHox genes 15 2.1.1. Hox and ParaHox genes in bilaterians 16 2.1.2. Hox and ParaHox genes in non-bilaterians 20 v Table of Contents 3. The phylogenetic position of the acoelomorph flatworms within the Platyhelminthes and within the Bilateria as seen from morphological/embryological data and phylogenetic analyses 23 3.1. Morphological and developmental features that separate Acoelomorpha from the rest of the Platyhelminthes 25 3.2. The advent of molecular phylogenies. Are the Platyhelminthes basal bilaterians and monophyletic? 27 3.3. Phylogenetic, genomic and phylogenomic data support the polyphyly of the Platyhelminthes and the basal position of Acoelomorpha within the Bilateria 28 3.4. A cautionary note from phylogenomics and other molecular data 30 4. The acoel species Symsagittifera roscoffensis and Isodiametra pulchra, new animal models in Evolution and Development 31 4.1. Symsagittifera roscoffensis Kostenko and Mamkaev, 1990 (Graff, 1891) 32 4.2. Isodiametra pulchra Hooge and Tyler, 2005 (Smith and Bush, 1991) 35 Aims of This Study 37 General Discussion 41 1. The Hox-ParaHox complement in acoel flatworms, and its genomic arrangement and structure in the acoel Symsagittifera roscoffensis 43 1.1. The Hox-ParaHox complement in acoels 43 1.2. The arrangement of the genomic Hox gene containing regions in S. roscoffensis 45 1.3. The structure of the genomic regions containing Hox genes in S. roscoffensis 46 2. Hox gene expression patterns in juvenile specimens of Symsagittifera roscoffensis 54 3. Nucleotide sequence and expression pattern of the Cdx ParaHox gene in Symsagittifera roscoffensis 56 vi Table of Contents 4. Number, types, arrangement, and expression of Hox and ParaHox gene complements in Cnidaria 59 5. Scenarios for HOX and ParaHox cluster origin and evolution within the Metazoa 67 6. Functional analysis of the IpHoxPost gene in the acoel Isodiametra pulchra and the ancestral function of the posterior Hox gene in the LCBA 72 7. Axial body pattern mechanism before the advent of Hox genes: the Wnt genes and the co-option of Hox genes 77 8. On the LCBA and the Cambrian “explosion”. A speculative scenario 79 9. Perspectives 84 Conclusions 85 References 89 Appendices 113 Appendix A. Publications 115 Appendix B. Primers used for RACE 117 Appendix C. Sequences 119 Appendix D. Papers not included in this thesis 129 vii List of Figures and Tables List of Figures and Tables FIGURES Cover General anatomy of an acoel (dorsal view). Scheme extracted from http://devbio.umesci.maine.edu/styler/globalworming General Introduction 1. Representation of a bilaterally symmetrical animal. 4 2. Representation of a radially symmetrical animal. 5 3. Hypotheses on the origin of bilateral symmetry in metazoans. 8 4. Diagrammatic representation of the Planuloid–Acoeloid hypothesis. 9 5. Two possible models for the origin of the Bilateria according to the Planuloid-Acoeloid hypothesis. 10 6. Diagrammatic representation of the Archicoelomate hypothesis. 11 7. Origin of the Bilateria from a cnidarian polyp ancestor according to the Archicoelomate hypotheses. 12 8. Hox homeodomain consensus sequence represented as a sequence logo. 16 9. Three dimensional structure of the homeodomain with the three alpha helices binding to the major groove of the DNA chain. 16 10. Diagrammatic representation of HOX clusters and their corresponding expression patterns in deuterostomes and protostomes plotted onto a consensus phylogeny of the represented taxa. 18 11. Morphology of the Acoela. 26 12. Phylogenetic position of the phylum Acoelomorpha as a sister group to the Nephrozoa (protostomes + deuterostomes) bilaterians. 30 13. Dorsal view of an adult specimen of Symsagittifera roscoffensis. 33 14. Dorsal view of an adult specimen of Isodiametra pulchra. 35 viii List of Figures and Tables General Discussion 1. Structure of the coding regions of SrHox5 and SrHoxPost genes. 48 2. Sequence alignment of anterior Hox orthologues. 50 3. Sequence alignment of central Hox orthologues.
Recommended publications
  • Assembly of the Cnidarian Camera-Type Eye from Vertebrate-Like Components
    Assembly of the cnidarian camera-type eye from vertebrate-like components Zbynek Kozmik*†, Jana Ruzickova*‡, Kristyna Jonasova*‡, Yoshifumi Matsumoto§, Pavel Vopalensky*, Iryna Kozmikova*, Hynek Strnad*, Shoji Kawamura§, Joram Piatigorsky†¶, Vaclav Paces*, and Cestmir Vlcek*† *Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic; §Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan; and ¶National Eye Institute, National Institutes of Health, Bethesda, MD 20892-3655 Edited by Eviatar Nevo, University of Haifa, Haifa, Israel, and approved April 11, 2008 (received for review January 14, 2008) Animal eyes are morphologically diverse. Their assembly, however, containing Tripedalia eyes have sophisticated visual optics as do always relies on the same basic principle, i.e., photoreceptors advanced bilaterian phyla (11). located in the vicinity of dark shielding pigment. Cnidaria as the In the present work, we characterize genes required for the likely sister group to the Bilateria are the earliest branching phylum assembly of camera-type eyes in Tripedalia. We show that the with a well developed visual system. Here, we show that camera- genetic building blocks typical of vertebrate eyes, namely ciliary type eyes of the cubozoan jellyfish, Tripedalia cystophora, use opsin and the melanogenic pathway, are used by the cubozoan genetic building blocks typical of vertebrate eyes, namely, a ciliary eyes. Although our findings of unsuspected parallelism are phototransduction cascade and melanogenic pathway. Our find- consistent with either an independent origin or common ances- ings indicative of parallelism provide an insight into eye evolution. try of cubozoan and vertebrate eyes, we believe the present data Combined, the available data favor the possibility that vertebrate favor the former alternative.
    [Show full text]
  • 1 Eric Davidson and Deep Time Douglas H. Erwin Department Of
    Eric Davidson and Deep Time Douglas H. Erwin Department of Paleobiology, MRC-121 National Museum of Natural History Washington, DC 20013-7012 E-mail: [email protected] Abstract Eric Davidson had a deep and abiding interest in the role developmental mechanisms played in the generating evolutionary patterns documented in deep time, from the origin of the euechinoids to the processes responsible for the morphological architectures of major animal clades. Although not an evolutionary biologist, Davidson’s interests long preceded the current excitement over comparative evolutionary developmental biology. Here I discuss three aspects at the intersection between his research and evolutionary patterns in deep time: First, understanding the mechanisms of body plan formation, particularly those associated with the early diversification of major metazoan clades. Second, a critique of early claims about ancestral metazoans based on the discoveries of highly conserved genes across bilaterian animals. Third, Davidson’s own involvement in paleontology through a collaborative study of the fossil embryos from the Ediacaran Doushantuo Formation in south China. Keywords Eric Davidson – Evolution – Gene regulatory networks – Bodyplan – Cambrian Radiation – Echinoderms 1 Introduction Eric Davidson was a developmental biologist, not an evolutionary biologist or paleobiologist. He was driven to understand the mechanisms of gene regulatory control and how they controlled development, but this focus was deeply embedded within concerns about the relationship between development and evolution. Questions about the origin of major metazoan architectures or body plans were central to Eric’s concerns since at least the late 1960s. His 1971 paper with Roy Britten includes a section on “The Evolutionary Growth of the Genome” illustrated with a figure depicting variations in genome size in major animal groups and a metazoan phylogeny (Britten and Davidson 1971).
    [Show full text]
  • Xenacoelomorpha's Significance for Understanding Bilaterian Evolution
    Available online at www.sciencedirect.com ScienceDirect Xenacoelomorpha’s significance for understanding bilaterian evolution Andreas Hejnol and Kevin Pang The Xenacoelomorpha, with its phylogenetic position as sister biology models are the fruitfly Drosophila melanogaster and group of the Nephrozoa (Protostomia + Deuterostomia), plays the nematode Caenorhabditis elegans, in which basic prin- a key-role in understanding the evolution of bilaterian cell types ciples of developmental processes have been studied in and organ systems. Current studies of the morphological and great detail. It might be because the field of evolutionary developmental diversity of this group allow us to trace the developmental biology — EvoDevo — has its origin in evolution of different organ systems within the group and to developmental biology and not evolutionary biology that reconstruct characters of the most recent common ancestor of species under investigation are often called ‘model spe- Xenacoelomorpha. The disparity of the clade shows that there cies’. Criteria for selected representative species are cannot be a single xenacoelomorph ‘model’ species and primarily the ease of access to collected material and strategic sampling is essential for understanding the evolution their ability to be cultivated in the lab [1]. In some cases, of major traits. With this strategy, fundamental insights into the a supposedly larger number of ancestral characters or a evolution of molecular mechanisms and their role in shaping dominant role in ecosystems have played an additional animal organ systems can be expected in the near future. role in selecting model species. These arguments were Address used to attract sufficient funding for genome sequencing Sars International Centre for Marine Molecular Biology, University of and developmental studies that are cost-intensive inves- Bergen, Thormøhlensgate 55, 5008 Bergen, Norway tigations.
    [Show full text]
  • Zootaxa, Platyhelminthes, Acoela, Acoelomorpha, Convolutidae
    Zootaxa 1008: 1–11 (2005) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 1008 Copyright © 2005 Magnolia Press ISSN 1175-5334 (online edition) Waminoa brickneri n. sp. (Acoela: Acoelomorpha) associated with corals in the Red Sea MAXINA V. OGUNLANA1, MATTHEW D. HOOGE1,4, YONAS I. TEKLE3, YEHUDA BENAYAHU2, ORIT BARNEAH2 & SETH TYLER1 1Department of Biological sciences, The University of Maine, 5751 Murray Hall, Orono, ME 04469-5751, USA., e-mail: [email protected], [email protected], [email protected] 2 Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel., e-mail: [email protected] 3 Department of Systematic Zoology, Evolutionary Biology Centre, Upsala University, Norbyvägen 18D, SE- 752 36 Uppsala, Sweden., e-Mail: [email protected] 4 Author of correspondence Abstract While the majority of acoels live in marine sediments, some, usually identified as Waminoa sp., have been found associated with corals, living closely appressed to their external surfaces. We describe a new species collected from the stony coral Plesiastrea laxa in the Red Sea. Waminoa brickneri n. sp. can infest corals in high numbers, often forming clusters in non-overlapping arrays. It is bronze-colored, owing to the presence of two types of dinoflagellate endosymbionts, and speckled white with small scattered pigment spots. Its body is disc-shaped, highly flattened and cir- cular in profile except for a small notch at the posterior margin where the reproductive organs lie. The male copulatory organ is poorly differentiated, but comprises a seminal vesicle weakly walled by concentrically layered muscles, and a small penis papilla with serous glands at its juncture with the male pore.
    [Show full text]
  • Molecular Homology & the Ancient Genetic Toolkit: How Evolutionary
    Regis University ePublications at Regis University All Regis University Theses Spring 2019 Molecular Homology & the Ancient Genetic Toolkit: How Evolutionary Development Could Shape Your Next Doctor's Appointment Elizabeth G. Plender Follow this and additional works at: https://epublications.regis.edu/theses Part of the Cell Biology Commons, Developmental Biology Commons, Evolution Commons, Molecular Biology Commons, and the Molecular Genetics Commons Recommended Citation Plender, Elizabeth G., "Molecular Homology & the Ancient Genetic Toolkit: How Evolutionary Development Could Shape Your Next Doctor's Appointment" (2019). All Regis University Theses. 905. https://epublications.regis.edu/theses/905 This Thesis - Open Access is brought to you for free and open access by ePublications at Regis University. It has been accepted for inclusion in All Regis University Theses by an authorized administrator of ePublications at Regis University. For more information, please contact [email protected]. MOLECULAR HOMOLOGY AND THE ANCIENT GENETIC TOOLKIT: HOW EVOLUTIONARY DEVELOPMENT COULD SHAPE YOUR NEXT DOCTOR’S APPOINTMENT A thesis submitted to Regis College The Honors Program In partial fulfillment of the requirements For Graduation with Honors By Elizabeth G. Plender May 2019 Thesis written by Elizabeth Plender Approved by Thesis Advisor Thesis Reader Accepted by Director, University Honors Program ii iii TABLE OF CONTENTS List of Figures ...............................................................................................................................................
    [Show full text]
  • The Palaeoscolecida and the Evolution of the Ecdysozoa Andrey Yu
    The Palaeoscolecida and the evolution of the Ecdysozoa Andrey Yu. Zhuravlev1, José Antonio Gámez Vintaned2 and Eladio Liñán1 1Área y Museo de Paleontología, Departamento de Ciencias de la Tierra, Facultad de Ciencias, Universidad de Zaragoza, C/ Pedro Cerbuna, 12, E-50009 Zaragoza, Spain 2Área de Paleontología, Departamento de Geologica, Facultad de Ciencias Biológicas, Univeristat de València, C/ Doctor Moliner, 50, E-46100 Burjassot, Spain Email: [email protected] AbstrAct rÉsUMÉ Palaeoscolecidans are a key group for understanding the ear- Les Paléoscolécides sont un groupe clé pour la compréhen- ly evolution of the Ecdysozoa. The Palaeoscolecida possess sion des débuts de l’évolution des Ecdysozoa. Les Pal- a terminal mouth and an anus, an invertible proboscis with aeoscolecida possèdent une bouche terminale et un anus, pointed scalids, a thick integument of diverse plates, sensory un proboscis inversible aux scalides pointues, un tégument papillae and caudal hooks. These are features that draw a épais de plaques diverses, des papilles sensorielles et des secret out of these worms, indicating palaeoscolecidan af- crochets caudaux. Ceux-ci sont des traits qui tirent un secret finities with the phylum Cephalorhyncha, which embraces de ces vers, ce qui indique des affinités paléoscolecides avec priapulids, kinorhynchs, loriciferans and nematomorphs. At le phylum des Cephalorhyncha qui inclut les priapulides, les the same time, the Palaeoscolecida share a number of char- kinorhynches, les loricifères et les nématomorphes. Cepen- acters with the lobopod-bearing Cambrian ecdysozoans, the dant, les Palaeoscolecida ont aussi quelques-uns des mêmes Xenusia. Xenusians commonly possess a terminal mouth, caractères que les Xenusia, ces écdysozaires cambriens qui a proboscis (although not retractable), and a thick integu- portaient des lobopodes.
    [Show full text]
  • Can Molecular Clocks and the Fossil Record Be Reconciled?
    Prospects & Overviews Review essays The origin of animals: Can molecular clocks and the fossil record be reconciled? John A. Cunningham1)2)Ã, Alexander G. Liu1)†, Stefan Bengtson2) and Philip C. J. Donoghue1) The evolutionary emergence of animals is one of the most Introduction significant episodes in the history of life, but its timing remains poorly constrained. Molecular clocks estimate that The apparent absence of a fossil record prior to the appearance of trilobites in the Cambrian famously troubled Darwin. He animals originated and began diversifying over 100 million wrote in On the origin of species that if his theory of evolution years before the first definitive metazoan fossil evidence in were true “it is indisputable that before the lowest [Cambrian] the Cambrian. However, closer inspection reveals that clock stratum was deposited ... the world swarmed with living estimates and the fossil record are less divergent than is creatures.” Furthermore, he could give “no satisfactory answer” often claimed. Modern clock analyses do not predict the as to why older fossiliferous deposits had not been found [1]. In the intervening century and a half, a record of Precambrian presence of the crown-representatives of most animal phyla fossils has been discovered extending back over three billion in the Neoproterozoic. Furthermore, despite challenges years (popularly summarized in [2]). Nevertheless, “Darwin’s provided by incomplete preservation, a paucity of phylo- dilemma” regarding the origin and early evolution of Metazoa genetically informative characters, and uncertain expecta- arguably persists, because incontrovertible fossil evidence for tions of the anatomy of early animals, a number of animals remains largely, or some might say completely, absent Neoproterozoic fossils can reasonably be interpreted as from Neoproterozoic rocks [3].
    [Show full text]
  • Comparative Analysis of Acoel Embryonic Development
    Comparative analysis of acoel embryonic development Viviana Cetrangolo Thesis for the degree of Philosophiae Doctor (PhD) University of Bergen, Norway 2020 Comparative analysis of acoel embryonic development Viviana Cetrangolo ThesisAvhandling for the for degree graden of philosophiaePhilosophiae doctorDoctor (ph.d (PhD). ) atved the Universitetet University of i BergenBergen Date of defense:2017 02.10.2020 Dato for disputas: 1111 © Copyright Viviana Cetrangolo The material in this publication is covered by the provisions of the Copyright Act. Year: 2020 Title: Comparative analysis of acoel embryonic development Name: Viviana Cetrangolo Print: Skipnes Kommunikasjon / University of Bergen ! ! ! ! ! ! ! ! ! ! ! ! ! !!!!"##!$%&$!'()!$()*%!! +()!,%&-./0! !"##!$%&$!'()!,%&-./! !!!!!!!!!!!!!!!!,%&-./1!'()0! !!!!!!!!!!!!!2%/!(-#'!#&1$3-.!$4)$%! !!!!!!!!!!!!51!,%&-./0! !!!!!!!!!!!!"#$%&'%!()$*+,! ! ! ! ! ""! "#$%&'$($#!%&)$*+&,%&'! #$%!&'()!*(%+%,-%.!",!-$"+!-$%+"+!&/+!0',.10-%.!",!-$%!2/3'(/-'(4!'5!-$%!6('57!8(!9%:,'2;!/-! </(+!=,-%(,/-"',/2!>%,-(%!5'(!?/(",%!?'2%012/(!@"'2'A4;!B,"C%(+"-4!'5!@%(A%,;!D'(&/47!#$%! -$%+"+!"+!*/(-!'5!-$%!6$8!*('A(/E!'5!-$%!8%*/(-E%,-!'5!@"'2'A"0/2!<0"%,0%+!'5!-$%!B,"C%(+"-4! '5!@%(A%,7! ! ! """! -#.&+/0%12%,%&'3! =!&'12.!2")%!-'!+-/(-!-'!-$/,)!E4!+1*%(C"+'(!6('57!8(!F,.(%/+!9%:,'27!G"(+-24;!5'(!A"C",A!E%! -$%!'**'(-1,"-4!-'!0'E%!-'!$"+!2/3!&$%,!=!&/+!/!5(%+$24!A(/.1/-%.!/,.!,/HC%!+-1.%,-;!/,.! +%0',./("24!5'(!-%/0$",A!E%!-$/-!-$%!6$8!0/,!3%!/!(%/224!$/(.!-"E%!'5!4'1(!2"5%;!31-!"5!4'1!/(%! E'-"C/-%.!%,'1A$!/,.!*1+$!4'1(+%25!-$('1A$!-$%!."55"012-"%+;!"-!5",/224!0'E%+!-'!/,!%,.I!<';!
    [Show full text]
  • Metazoan Evolution: Some Animals Are More Equal Than Others Dispatch
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Current Biology, Vol. 14, R106–R108, February 3, 2004, ©2004 Elsevier Science Ltd. All rights reserved. DOI 10.1016/j.cub.2004.01.015 Metazoan Evolution: Some Animals Dispatch are More Equal than Others 1,2 1 Florian Raible and Detlev Arendt the vertebrate lineage, we have been misled by the rapid rate of molecular evolution, with large gene losses, of the invertebrate model species. Comparison of newly available sequence data Kortschak et al. [4] analysed 1400 EST clusters from facilitates reconstruction of the gene inventory of the a basal metazoan, the coral Acropora millepora —a Urbilateria, the last common ancestors of flies, nema- cnidarian of the Anthozoa — which they compared to todes and humans. The most surprising outcome is the gene inventories of man, Drosophila and C. that human genes seem to be closer to the bilaterian elegans. The advantage of choosing Acropora is that roots than previously assumed. it represents an ‘evolutionary outgroup’ to the Bilateria — that is, the evolutionary line leading to corals branched off the metazoan tree before the Urbilateria It is a truism that the plausibility of an evolutionary infer- came into existence (Figure 1). But corals are still fairly ence increases with the amount of data on which it is complex Metazoa, much closer to the bilaterian roots based, and the ever-quickening provision of full genome than another frequently used evolutionary outgroup sequences is providing a huge amount of grist for the for genome comparisons, the budding yeast Saccha- evolutionary biologist’s mill.
    [Show full text]
  • The Origin of Animal Body Plans: a View from Fossil Evidence and the Regulatory Genome Douglas H
    © 2020. Published by The Company of Biologists Ltd | Development (2020) 147, dev182899. doi:10.1242/dev.182899 REVIEW The origin of animal body plans: a view from fossil evidence and the regulatory genome Douglas H. Erwin1,2,* ABSTRACT constraints on the interpretation of genomic and developmental The origins and the early evolution of multicellular animals required data. In this Review, I argue that genomic and developmental the exploitation of holozoan genomic regulatory elements and the studies suggest that the most plausible scenario for regulatory acquisition of new regulatory tools. Comparative studies of evolution is that highly conserved genes were initially associated metazoans and their relatives now allow reconstruction of the with cell-type specification and only later became co-opted (see evolution of the metazoan regulatory genome, but the deep Glossary, Box 1) for spatial patterning functions. conservation of many genes has led to varied hypotheses about Networks of regulatory interactions control gene expression and the morphology of early animals and the extent of developmental co- are essential for the formation and organization of cell types and option. In this Review, I assess the emerging view that the early patterning during animal development (Levine and Tjian, 2003) diversification of animals involved small organisms with diverse cell (Fig. 2). Gene regulatory networks (GRNs) (see Glossary, Box 1) types, but largely lacking complex developmental patterning, which determine cell fates by controlling spatial expression
    [Show full text]
  • The Origin of Animals: Can Molecular Clocks and the Fossil Record Be Reconciled?
    Prospects & Overviews Review essays The origin of animals: Can molecular clocks and the fossil record be reconciled? John A. Cunningham1)2)Ã, Alexander G. Liu1)†, Stefan Bengtson2) and Philip C. J. Donoghue1) The evolutionary emergence of animals is one of the most Introduction significant episodes in the history of life, but its timing remains poorly constrained. Molecular clocks estimate that The apparent absence of a fossil record prior to the appearance of trilobites in the Cambrian famously troubled Darwin. He animals originated and began diversifying over 100 million wrote in On the origin of species that if his theory of evolution years before the first definitive metazoan fossil evidence in were true “it is indisputable that before the lowest [Cambrian] the Cambrian. However, closer inspection reveals that clock stratum was deposited ... the world swarmed with living estimates and the fossil record are less divergent than is creatures.” Furthermore, he could give “no satisfactory answer” often claimed. Modern clock analyses do not predict the as to why older fossiliferous deposits had not been found [1]. In the intervening century and a half, a record of Precambrian presence of the crown-representatives of most animal phyla fossils has been discovered extending back over three billion in the Neoproterozoic. Furthermore, despite challenges years (popularly summarized in [2]). Nevertheless, “Darwin’s provided by incomplete preservation, a paucity of phylo- dilemma” regarding the origin and early evolution of Metazoa genetically informative characters, and uncertain expecta- arguably persists, because incontrovertible fossil evidence for tions of the anatomy of early animals, a number of animals remains largely, or some might say completely, absent Neoproterozoic fossils can reasonably be interpreted as from Neoproterozoic rocks [3].
    [Show full text]
  • Urbilaterian Origin of Paralogous Gnrh and Corazonin Neuropeptide
    1 2 3 Urbilaterian origin of paralogous GnRH and 4 corazonin neuropeptide signalling pathways 5 6 7 8 Shi Tian1#, Meet Zandawala1#, Isabel Beets2, Esra Baytemur2, 9 Susan E. Slade3, James H. Scrivens3, Maurice R. Elphick1* 10 11 1. Queen Mary University of London, School of Biological & Chemical Sciences, Mile End 12 Road, London, E1 4NS, UK 13 2. Functional Genomics and Proteomics Group, Department of Biology, 14 KU Leuven, Leuven, Belgium 15 3. Waters/Warwick Centre for BioMedical Mass Spectrometry and Proteomics, School of 16 Life Sciences, University of Warwick, Coventry, CV4 7AL, UK 17 18 # These authors contributed equally. 19 20 * Corresponding author: [email protected] 21 Tel: +44(0) 20 7882 6664 22 Fax: +44(0) 20 7882 7732 23 Gonadotropin-releasing hormone (GnRH) is a key regulator of reproductive maturation in 24 humans and other vertebrates. Homologs of GnRH and its cognate receptor have been 25 identified in invertebrates – for example, the adipokinetic hormone (AKH) and corazonin 26 (CRZ) neuropeptide pathways in arthropods. However, the precise evolutionary relationships 27 and origins of these signalling systems remain unknown. Here we have addressed this issue 28 with the first identification of both GnRH-type and CRZ-type signalling systems in a 29 deuterostome - the echinoderm (starfish) Asterias rubens. We have identified a GnRH-like 30 neuropeptide (pQIHYKNPGWGPG-NH2) that specifically activates an A. rubens GnRH-type 31 receptor and a novel neuropeptide (HNTFTMGGQNRWKAG-NH2) that specifically 32 activates an A. rubens CRZ-type receptor. With the discovery of these ligand-receptor pairs, 33 we demonstrate that the vertebrate/deuterostomian GnRH-type and the protostomian AKH 34 systems are orthologous and the origin of a paralogous CRZ-type signalling system can be 35 traced to the common ancestor of the Bilateria (Urbilateria).
    [Show full text]