Biogeosciences Discuss., doi:10.5194/bg-2016-34, 2016 Manuscript under review for journal Biogeosciences Published: 11 March 2016 c Author(s) 2016. CC-BY 3.0 License. Upwelling and isolation in oxygen-depleted anticyclonic modewater eddies and implications for nitrate cycling Johannes Karstensen1, Florian Schütte1, Alice Pietri2, Gerd Krahmann1, Björn Fiedler1, Damian Grundle1, Helena Hauss1, Arne Körtzinger1,3, Carolin R. Löscher1, Pierre Testor2, Nuno Viera4, Martin 5 Visbeck1,3 1GEOMAR, Helmholtz Zentrum für Ozeanforschung Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany 2LOCEAN, UMPC; Paris, France 3Kiel University, Kiel Germany 4Instituto Nacional de Desenvolvimento das Pescas (INDP), Cova de Inglesa, Mindelo, São Vicente, Cabo Verde 10 Correspondence to: Johannes Karstensen (
[email protected]) Abstract. The physical (temperature, salinity, velocity) and biogeochemical (oxygen, nitrate) structure of an oxygen depleted coherent, baroclinic, anticyclonic mode-water eddy (ACME) is investigated using high-resolution autonomous glider and ship data. A distinct core with a diameter of about 70 km is found in the eddy, extending from about 60 to 200 m depth and. The core is occupied by fresh and 15 cold water with low oxygen and high nitrate concentrations, and bordered by local maxima in buoyancy frequency. Velocity and property gradient sections show vertical layering at the flanks and underneath the eddy characteristic for vertical propagation (to several hundred-meters depth) of near inertial internal waves (NIW) and confirmed by direct current measurements. A narrow region exists at the outer edge of the eddy where NIW can propagate downward. NIW phase speed and mean flow are of 20 similar magnitude and critical layer formation is expected to occur.