An Introduction to Sterile Manufacturing

Total Page:16

File Type:pdf, Size:1020Kb

Load more

THE VOICE OF MICROBIOLOGY FOR 30 YEARS: 1991 - 2021 Is this your first time receiving Pharmig info? Would you like to continue to be updated on our meetings & webinars etc? If yes, please click here An Introduction to to send your details. Sterile Manufacturing WEDNESDAY 21ST & THURSDAY 22ND OF APRIL 2021 A VIRTUAL ZOOM EVENT SPLIT OVER TWO DATES Topics covered include: • Introduction to sterile manufacturing • Process manufacturing • Introduction to microbiology • Sterility assurance • Introduction to cleanrooms • Sterile manufacturing and the regulations and • Methods of sterilisation compliance to GMP Do also take a look at Pharmig current publications outlined on pages 6 - 8 AND our interactive on-line training module on Cleaning & Disinfection of Cleanrooms On page 9 you can view additional upcoming meetings & webinars Pharmig ‘Virtual’ Testimonials: “ Thank you for all the work in preparing the “ Excellent presentations & organisation – really presentations and presenting over the last two enjoyed it” - MML days. It has been valuable learning and the feedback is very positive” - HPRA “ This was one of the most engaging virtual events I have attended so far. Loved the variety of topics” “Keep up the good work” - Sartorius - AstraZeneca For more information please contact Pharmig: T: + 44 (0) 1920 871 999 F: +44 (0) 1920 871 156 E: [email protected] W: www.pharmig.org.uk An Introduction to About Pharmig www.pharmig.org.uk Pharmig is a non-profit making professional organisation, Sterile Manufacturing established in 1991, that represents the interests of individuals who work in, have responsibility for, or work Description alongside microbiology within pharmaceutical, healthcare, cosmetics & NHS Industries. It provides a focus for Designed for those people who are new to industry this continuing professional development and serves as a virtual training course will help you understand what sterile manufacturing is and will cover topics which unique network for the exchange of microbiological include: microbiology, clean room design, sterilisation information through training courses, conferences, processes, sterility assurance, manufacturing methods and publications and its website forum. The Group has grown regulatory oversight. significantly since 1991 expanding the portfolio of products it now offers to the Membership whilst remaining true to Target audience (those new to industry): Microbiologists, the initial needs of microbiologists which include: cleanroom operators, production, quality, engineers, and • Organising meetings, training courses, conferences and sales & marketing producing publications that provide topical information and views on microbiologically related topics It is designed to: • Advancing the science of microbiology and its practical • Get you to think about the risks associated with sterile application manufacturing • Understand the basic elements of sterility assurance • Influencing the development of regulations and guidelines surrounding microbiology The course will support: • Acting as a confidential forum for the dissemination of • Building greater people capability and consistency in your information concerning all aspects of microbiology sterile operations • Reducing quality issues, waste, defects and accidents At the end of this virtual training programme you will: • Being better able to meet your regulators expectations • Have an underpinning awareness of sterile manufacturing • Releasing batches more consistently v get products to the and associated risks. patient more reliably • Attain an introductory understanding and knowledge of • Better management of individual performance key sterile processes and controls Your Presenter: David Keen, Director Pharmaceutical Microbiology & Consulting - Ecolab & Pharmig Chair David is a microbiologist working for investigating significant microbial contamination events Ecolab as Director, Pharmaceutical with suppliers and products. He was lucky enough to be Microbiology in their Lifesciences sent across the world investigating microbiological issues on division. With reference to Pharmig – behalf of the company. If you get caught by him at the bar, David became a Committee member he can bore you to death on the wonders of seaweed. in 2007 and in November 2013 he had the honor of being elected as In 2012 David moved back to GSK at the Ulverston site in the Pharmig Chair. Lake District. This is a large-scale primary API manufacturing site makes bulk sterile antibiotics. It uses isolator technology in a David started life at GSK Barnard Castle. Here he performed primary environment, which was a bit of a steep learning curve. environmental monitoring and clean room qualification David started a new role as a microbiological consultant before moving on to sterile finished product testing. He for Ecolab in March 2018. In this role David utilizes his then moved to a small startup company called SCM Pharma. experience to help Ecolab’s clients with microbiological and Here he set up a new microbiology lab and developed a new manufacturing issues, across the globe. microbiology team. He helped design and qualify the new clean rooms. He then moved from microbiology to project He is experienced in most drug dose forms from sterile management and became the technical manager. needless injection systems, explosive aseptic ampoules to inhalation devices, oral doses of microbial sensitive David then moved to Reckitt Benckiser at their Hull site products and sticky capsules. Plus, a great deal of primary where he discovered the magic and pain of working in an manufacturing to boot. He is now dipping his toe into FMCG environment. His role was to improve microbiological the world of disinfectants and contamination control – a awareness on the site and a large amount of time was spent microbiologist’s best friend. An Introduction to Sterile Manufacturing 21ST AND 22ND APRIL 2021 An Introduction to Sterile Manufacturing (via Zoom) Programme outline running as 2 half-day virtual meetings WEDNESDAY 21st April THURSDAY 22nd April 13.00 – 13.10 13.00 – 13.10 08.00 – 08.10 Welcome: David Keen, Director 08.00 – 08.10 Welcome back Pharmaceutical Microbiology & Consulting - Ecolab & Pharmig Chair 13.10 – 13.55 08.10 – 08.55 Methods of sterilisation 13.10 – 13.55 • Moist and dry heat 08.10 – 08.55 Introduction to sterile manufacturing • Filtration • What does sterile mean? • Irradiation and e-beam • Why do we need sterile products? • Chemical • Sterile vs aseptic – are they the same? 13.55 – 14.00 13.55 – 14.00 08.55 – 09.00 Q&A session 08.55 – 09.00 Q&A session 14.00 – 14.45 14.00 – 14.45 09.00 – 09.45 Process manufacturing 09.00 – 09.45 Introduction to microbiology • Common product dose forms • What is microbiology? • How to manufacture these dose forms • The bacteria, moulds and yeasts, virology, • Isolators RABS and open filling parasites and TSEs • Blow fill seal, freeze drying • Controlling and understanding microbial • Process simulations, media fills and broth growth trials 14.45 – 15.00 14.45 – 15.00 09.45 – 10.00 Q&A session and virtual break 09.45 – 10.00 Q&A session and virtual break 15.00 – 15.45 15.00 – 15.45 10.00 – 10.45 Introduction to cleanrooms 10.00 – 10.45 Sterility assurance • What is a cleanroom • What is sterility assurance? • Cleanroom grades and controls • Risk based manufacturing • Design and equipment • Determination of sterility • Cleanrooms as a contamination control system 15.45 – 15.50 • Cleanroom behaviours 10.45 – 10.50 Q&A session 15.45 – 16.00 15.50 – 16.30 10.45 – 11.00 Q&A session and close of virtual 10.50 – 11.30 Sterile manufacturing and the day one regulations and compliance to GMP • Why is there a need for regulations? • Who regulates the pharmaceutical industry? • Are you inspection ready? KEY RE: TIMES BLUE – BST (British Summer Time) 16.30 – 16.45 GREEN – EST (Eastern Standard Time) 11.30 – 11.45 Q&A session and closing remarks of virtual day two Please note: all information addressed by the speakers are of their own/ their company opinions and viewpoints. Pharmig is not responsible for any content presented at the meeting. Pharmig also has the right to change the programme at any time due to unforeseen circumstances. An Introduction to Sterile Manufacturing 21ST AND 22ND APRIL 2021 BOOKING FORM: AN INTRODUCTION TO STERILE MANUFACTURING (VIA ZOOM) SPLIT OVER 2 DATES: 21ST & 22ND APRIL 2021 Company: Address: Contact Name (if different from those attending) Email: Tel: DELEGATE ONE DELEGATE TWO Name: Name: Job Title: Job Title: Email: Email: Fee (£/€/$) : Fee (£/€/$) : INFORMATION ON FEES & PAYMENTS • The fees advertised cover 2 half-days on the 21st & 22nd April 2021. • Pharmig cannot reduce this fee if you can only attend one of the morning sessions. • Fees must be paid in advance in order to attend the virtual conference. This can be done via credit card payment OR by an approved company purchase order number FEES - VIRTUAL INTRODUCTION TO STERILE MANUFACTURING (which covers 2 half-day events on the 21st & 22nd April) PHARMIG MEMBER FEES Euro / Dollar NON MEMBER FEES Euro / Dollar Delegate £200 / *€245/ *$284 Delegate £400 / *€470/ *$560 *Fee is higher to cover conversion rates *Fee is higher to cover conversion rates NHS PHARMIG MEMBER FEES NHS NON MEMBER FEES Delegate £100 Delegate £200 For more information contact T: + 44 (0) 1920 871 999 F: +44 (0) 1920 871 156 E: [email protected] W: www.pharmig.org.uk PAYMENT: AN INTRODUCTION TO STERILE MANUFACTURING (VIA ZOOM) SPLIT OVER 2 DATES: 21ST & 22ND APRIL 2021 Please
Recommended publications
  • A Basic Design Approach to Clean Room

    A Basic Design Approach to Clean Room

    www.PDHcenter.com PDH Course M143 www.PDHonline.org A Basic Design Guide for Clean Room Applications Course Content PART – I OVERVIEW Clean rooms are defined as specially constructed, environmentally controlled enclosed spaces with respect to airborne particulates, temperature, humidity, air pressure, airflow patterns, air motion, vibration, noise, viable (living) organisms, and lighting. Particulate control includes: !" Particulate and microbial contamination !" Particulate concentration and dispersion “Federal Standard 209E” defines a clean room as a room in which the concentration of airborne particles is controlled to specified limits. “British Standard 5295” defines a clean room as a room with control of particulate contamination, constructed and used in such a way as to minimize the introduction, generation and retention of particles inside the room and in which the temperature, humidity, airflow patterns, air motion and pressure are controlled. Today, many manufacturing processes require that spaces be designed to control particulate and microbial contamination while maintaining reasonable installation and operating costs. Clean rooms are typically used in manufacturing, packaging, and research facilities associated with these industries: 1. Semiconductor: This industry drives the state of the art clean room design, and this industry accounts for a significant number of all operating clean rooms. 2. Pharmaceutical: Clean rooms control living particles that would produce undesirable bacterial growth in the preparation of biological, pharmaceutical, and other medical products as well as in genetic engineering research. Page 1 of 61 www.PDHcenter.com PDH Course M143 www.PDHonline.org 3. Aerospace: The manufacturing and assembling of aerospace electronics, missiles and satellites were the first application of clean rooms.
  • Personal Computing

    Personal Computing

    Recent History of Computers: Machines for Mass Communication Waseda University, SILS, Science, Technology and Society (LE202) The communication revolution ‚ In the first period of the history of computers, we see that almost all development is driven by the needs and the financial backing of large organizations: government, military, space R&D, large corporations. ‚ In the second period, we will notice that the focus is now shifting to small companies, individual programers, hobbyists and mass consumers. ‚ The focus in the first period was on computation and control. In the second period, it is on usability and communication. ‚ A mass market for computers was created, through the development of a user-friendly personal computer. Four generations of computers 1st 2nd 3rd 4th 5th Period 1940s–1955 1956–1963 1964–1967 1971–present ? Tech- vacuum transistors integrated micro- ? nology tubes circuits processors Size full room large desk sized desk-top, ? (huge) machine hand-held Software machine assembly operating GUI ? language language systems interface The microprocessor ‚ In 1968, the “traitorous seven” left Fairchild Semiconductor to found Intel. ‚ In 1969, Busicom, a Japanese firm, commissioned Intel to make a microprocessor for a handheld calculator. ‚ This lead to the Intel 4004. Intel bought the rights to sell the chip to other companies. ‚ Intel immediately began the process of designing more and more powerful microchips. Schematic: The Intel 4004 ‚ This has lead to computers small enough to fit in our hands. Consumer electronics ‚ The microprocessor made it possible to create more affordable consumer electronics. ‚ The Walkman came out in 1979. Through the 1980s video players, recorders and stereos were marketed.
  • Cleanroom Design

    Cleanroom Design

    CLEANROOM DESIGN by Douglas H Erickson Bachelor of Architecture Bachelor of Science in Architectural Studies Washington State University Pullman, Washington 1975 SUBMITTED TO THE DEPARTMENT OF ARCHITECTURE IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE MASTER OF SCIENCE IN ARCHITECTURE STUDIES at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June, 1987 © Douglas H Erickson 1987 The author hereby grants to M.I.T. permission to reproduce and to distribute publicly copies of this thesis document in whole or in part Signature of Author Douglas H Erickson Department of Architecture May 8, 1987 Certified by Dr. Leon Glicksman Senior Research Scientist Thesis Advisor Accepted by t bJulian Beinart Chairman MAzSSAOsmTS INSr~iDpartment Committee for Graduate Students F TECHNOLOGY tlr 1 UmgAES Room 14-0551 77 Massachusetts Avenue Cambridge, MA 02139 Ph: 617.253.2800 MITLib Email: [email protected] Document Services http://Ilibraries.mitedu/docs DISCLAIMER OF QUALITY Due to the condition of the original material, there are unavoidable flaws in this reproduction, We have made every effort possible to provide you with the best copy available. If you are dissatisfied with this product and find it unusable, please contact Document Services as soon as possible. Thank you. Some pages in the original document contain pictures, graphics, or text that is illegible. Pages 96 - 131 CLEANROOM DESIGN by Douglas H Erickson Submitted to the Department of Architecture on May 8, 1987 in partial fulfinent of the requirements for the Degree of Master of Science in Architecture Studies ABSTRACT The development of the integrated circuit which replaced the vacuum tube, started the size reduction process for computer components.
  • Breaking Manufacturers' Aftermarket Monopoly and Restoring

    Breaking Manufacturers' Aftermarket Monopoly and Restoring

    APRIL 2020 Fixing America: Breaking Manufacturers’ Aftermarket Monopoly and Restoring Consumers’ Right to Repair DANIEL A. HANLEY CLAIRE KELLOWAY SANDEEP VAHEESAN 1 1 Contents Executive Summary ................................................................................. 2 I. Introduction ........................................................................................... 3 II. History of Restricting Repair .............................................................. 4 The History of Open Aftermarkets ............................................................. 4 Early Efforts to Close Afternarkets ............................................................. 6 III. Methods of Restricting Repair .......................................................... 9 Tying of Aftermarket Parts and Service ...................................................... 9 Exclusive Dealing of Aftermarket Parts and Service ................................ 10 Refusal to Sell Essential Tools, Parts, Diagnostics, Manuals, and Software 10 Predatory and Exclusionary Design ........................................................ 11 Leveraging Copyright Law to Lock Software and Hardware .................... 12 Restrictive End User License Agreements ................................................ 13 IV. The Effects and Consequences of Restricted Repair ...................... 15 Increased Costs to Consumers ................................................................ 15 Stifling the Repair Economy and Local Resiliency ..................................
  • Michel Sotura, PE March 18 at Rock Bottom

    Michel Sotura, PE March 18 at Rock Bottom

    Shaping Tomorrow’s Built Environment Today Volume 50, No. 7 March 2015 Punch List President’s Message Dear Chapter Members & Friends, energy efficiency and greenhouse gas emissions and outlines a Spring has arrived in Seattle with range of near-term (by 2015) and the prospect of extended daylight long-term (by 2030) actions to put Contents and so many options for outdoor Seattle on the path to achieving activities. Traditionally attendance • President’s Message ..........................1 those goals. to our meetings decrease in the • January Chapter Meeting ................2 second part of the year but I Several representative of the • Upcoming Meetings .........................3 chapter will meet in the coming • TAC Awards Winners..........................4 believe the upcoming chapter weeks with the city. Please • TAC Award Info & RP Thanks ...........5 programs should encourage you contact the board of governors • ASHRAE Winter Conference.. ..........6 to participate actively till May. if you would like your ideas to be • Outstanding Items .............................7 This month our chapter meeting expressed regarding this initiative. technical topic will be Clean Room design. The presentation will To conclude I would like to provide an overview of clean room encourage our members and standards, clean room theory and friends in participating to our Chapter Officers ventilation strategies. So please annual ASHRAE Golf Field Day that join us for our lunch meeting on benefit ASHRAE Research. President Michel Sotura, PE March 18 at Rock Bottom. The event takes place on Friday President-Elect Tamas Besnik, PE On March 25, the young ASHRAE June 5 at the Harbour Pointe Golf VP/Secretary Kathi Shoemake, PE engineers (YEA) will tour the Club in Mukilteo.
  • ABSTRACT: This Paper Mainly Reviews About the Legal Aspects Of

    ABSTRACT: This Paper Mainly Reviews About the Legal Aspects Of

    ABSTRACT: This paper mainly reviews about the legal aspects of reverse engineering while taking into consideration of its definitions and types of reverse engineering. It mainly concentrates on legal aspects of patent, copyright issues of reverse engineering like design copyrights and also discuss the laws according to some countries. While taking into consideration of its definition and types of reverse engineering and the tools used. DEFENITION OF REVERSE ENGINEERING: The process of systematically taking apart a chip or application program to discover how it works, with the aim of imitating or duplicating some or all of its functions. For example removing the body parts of a car to understand the mechanism of the car and refitting it. Or making another car that doesn’t resemble the model without copying anything from the original. Reverse engineering, as the name implies, in other words, the attempt to recapture the top level specification by analysing the product - "attempt" because it is not possible in practice, or even in theory, to recover everything in the original specification purely by studying the product. Reverse engineering is difficult and time consuming, but it is getting easier all the time thanks to IT, for two reasons: Firstly, as engineering techniques themselves become more computerised, more of the design is due to the computer. Thus, recognisable blocks of code, or groups of circuit elements on a substrate, often occur in many different designs produced by the same computer program. These are easier to recognise and interpret than a customised product would be. Secondly, artificial intelligence techniques for pattern recognition, and for parsing and interpretation, have advanced to the point where these and other structures within a product can be recognised automatically.
  • United States Patent 19 11 Patent Number: 5,626,820 Kinkead Et Al

    United States Patent 19 11 Patent Number: 5,626,820 Kinkead Et Al

    US005626820A United States Patent 19 11 Patent Number: 5,626,820 Kinkead et al. 45 Date of Patent: May 6, 1997 54 CLEAN ROOMAIR FILTERING 3,912,567 10/1975 Schwartz. ................................. 156/167 3,925,021 12/1975 Yoshino et al. ........................... 96/118 76 Inventors: Devon A. Kinkead, 10 Hector Ave., 3,956,458 5/1976 Anderson ................................ 423/210 Cumberland, R.I. 02864; Robert W. 3,995,005 11/1976 Teller ...................................... 423/210 Rezuke, 127 Worcester Rd., North (List continued on next page.) Grafton, Mass. 01536; John K. Higley, 14 Saddlebrook Rd., Sherborn, Mass. FOREIGN PATENT DOCUMENTS 01770 4221592A1 1/1994 Germany. 0034475 3/1979 Japan. 21 Appl. No.: 161,931 0262537 11/1986 Japan. 2-126912 5/1990 Japan. 22 Filed: Dec. 2, 1993 433186 9/1935 United Kingdom. 203102A 8/1978 United Kingdom. Related U.S. Application Data 2077141A 12/1981 United Kingdom. WO90/05549 5/1990 WTPO. 63 Continuation-in-part of Ser. No. 807,151, Dec. 13, 1991, abandoned, which is a continuation-in-part of Ser. No. OTHER PUBLICATIONS 283,318, Dec. 12, 1988, abandoned. 6 Muller et al., “Measurement of Airborne Concentrations and 51) Int. Cl. ............................ A62B 7/08; B05B 15/12; Surface Arrival Rates of Organic Contaminants in Clean B01D 46/00 Rooms,” viewgraphs from 1993 IES Meeting, Las Vegas, 52 U.S. Cl. ........................... 422/122; 454/53; 45.4/187; NV (MAy 2–7, 1993). 95/285; 95/287; 55/279; 55/318; 55/327; s 55/385.255/485 (List continued on next page.) 58 Field of Search .......................... 422/122; 427/180, Primary Examiner-Nina Bhat 427/185,244, 346,366,557, 559; 454/187, Attorney, Agent, or Firm-Fish & Richardson PC.
  • Software Reverse Engineering COMP 293A | Spring 2020 | University of the Pacific | Jeff Shafer 2

    Software Reverse Engineering COMP 293A | Spring 2020 | University of the Pacific | Jeff Shafer 2

    ì Software Reverse Engineering COMP 293A | Spring 2020 | University of the Pacific | Jeff Shafer 2 “Disintegrating” by Fabian Oefner http://fabianoefner.com/ Software Reverse Engineering Spring 2020 3 “Disintegrating” by Fabian Oefner http://fabianoefner.com/ Software Reverse Engineering Spring 2020 4 Software Reverse Engineering Spring 2020 5 Software Reverse Engineering Spring 2020 6 Software Engineering Classic Waterfall Model Requirements → Project Requirements Document Design → Software Architecture Implementation → Software Implementation Verification Maintenance Software Reverse Engineering Spring 2020 7 Software Reverse Engineering Requirements → Project Requirements Document Design → Software Architecture Implementation → Software Implementation Software Reverse Engineering Spring 2020 8 Software Reverse Engineering Binary Code 0100110011… � Specifications • Algorithms? + • Design/Architecture? • File I/O formats? • Network protocols? � • Usage Instructions? • Any available public documentation? • Any available source code? (even if incomplete) Software Reverse Engineering Spring 2020 9 Why Reverse Engineer Software? ì Produce a competing product ì Phoenix Technologies Ltd ì Reverse engineered IBM PC BIOS in 1980’s and sold IBM-compatible BIOS to PC clone manufacturers ì “Clean Room Design” method ì Avoids copyright law (but not patent law) ì The original IBM implementation was copyrighted – can’t copy! ì Team A examines original software and writes detailed specification ì Lawyers review specification – any copyrighted material
  • Studio E Sviluppo Di Un Progetto Per La Portabilitá Multipiattaforma Di Un

    Studio E Sviluppo Di Un Progetto Per La Portabilitá Multipiattaforma Di Un

    STUDIOESVILUPPODIUNPROGETTOPERLA PORTABILITÁMULTIPIATTAFORMADIUN SISTEMAPERLAVISUALIZZAZIONEDIAMBIENTI VIRTUALITRIDIMENSIONALIINTERATTIVI ilario sanseverino Giugno 2014 Ilario Sanseverino: Studio e sviluppo di un progetto per la portabili- tá multipiattaforma di un sistema per la visualizzazione di ambienti virtuali tridimensionali interattivi, © Giugno 2014 ABSTRACT Object of this thesis is to investigate the existing solutions avail- able for cross-platforming, analysing in particular the specific case study of the conversion of a large project, related to a com- plex multimedia application native to the Microsoft (MS) Win- dows environment, into a multi-platform project, discussing the problems encountered and the solutions adopted. SOMMARIO Lo scopo di questa tesi è di investigare le soluzioni esistenti per la portabilità multipiattaforma, in particolare analizzando lo specifico caso di studio della conversione di un grande proget- to, relativo ad una complessa applicazione multimediale nativa per l’ambiente MS Windows, in un progetto multipiattaforma, discutendo dei problemi incontrati e delle soluzioni adottate. iii INDICE 1 introduzione1 2 stato dell’arte5 2.1 Macchine Virtuali 5 2.1.1 ScummVM 7 2.1.2 Mupen64+ 8 2.2 Linguaggi interpretati 8 2.2.1 Java 10 2.2.2 Web apps 11 2.3 Sorgenti ad hoc 12 2.4 Portabilità per libreria 14 2.4.1 Cocos2d 15 2.4.2 Unity 16 2.4.3 Marmalade 18 2.5 Wine 20 2.6 Considerazioni 21 3 architettura 24 3.1 Struttura originale 25 3.1.1 Parser 26 3.1.2 Engine 31 3.1.3 Procedural 35 3.1.4 VR 36 3.1.5 Avatar 37 3.1.6 Multimedia 38 3.1.7 Audio 39 3.2 Librerie utilizzate 39 3.2.1 Boost 40 3.2.2 SDL 41 3.2.3 FFmpeg 43 3.2.4 LibFFI 44 3.2.5 Libarchive 46 3.3 Modifiche apportate 46 3.3.1 Message passing 48 3.3.2 Embedded Resources 49 3.3.3 Video 51 4 implementazione 54 4.1 Building..
  • Concept of Linearity

    Concept of Linearity

    1 www.onlineeducation.bharatsevaksamaj.net www.bssskillmission.in “Mechanical Systems and Software”. In Section 1 of this course you will cover these topics: Mechatronics Tasks State Transition Logic Direct Realization Of System Control Software Topic : Mechatronics Topic Objective: At the end of this topic student would be able to: Learn the concept of Mechatronics Learn the concept of Amplifier Learn the concept of Bandwidth Learn the concept of Efficiency Learn theWWW.BSSVE.IN concept of Linearity Definition/Overview: Mechatronics: Mechatronics (or Mechanical and Electronics Engineering) is the synergistic combination of mechanical engineering, electronic engineering, controls engineering and computer engineering to create useful products. The purpose of this interdisciplinary engineering field is the study of automata from an engineering perspective and serves the purposes of www.bsscommunitycollege.in www.bssnewgeneration.in www.bsslifeskillscollege.in 2 www.onlineeducation.bharatsevaksamaj.net www.bssskillmission.in controlling advanced hybrid systems. The word itself is a combination of 'Mechanics' and 'Electronics'. Key Points: 1. Description Engineering cybernetics deals with the question of control engineering of mechatronic systems. It is used to control or regulate such a system (see control theory). Through collaboration the mechatronic modules perform the production goals and inherit flexible and agile manufacturing properties in the production scheme. Modern production equipment consists of mechatronic modules that
  • Tuning IBM System X Servers for Performance

    Tuning IBM System X Servers for Performance

    Front cover Tuning IBM System x Servers for Performance Identify and eliminate performance bottlenecks in key subsystems Expert knowledge from inside the IBM performance labs Covers Windows, Linux, and VMware ESX David Watts Alexandre Chabrol Phillip Dundas Dustin Fredrickson Marius Kalmantas Mario Marroquin Rajeev Puri Jose Rodriguez Ruibal David Zheng ibm.com/redbooks International Technical Support Organization Tuning IBM System x Servers for Performance August 2009 SG24-5287-05 Note: Before using this information and the product it supports, read the information in “Notices” on page xvii. Sixth Edition (August 2009) This edition applies to IBM System x servers running Windows Server 2008, Windows Server 2003, Red Hat Enterprise Linux, SUSE Linux Enterprise Server, and VMware ESX. © Copyright International Business Machines Corporation 1998, 2000, 2002, 2004, 2007, 2009. All rights reserved. Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Contents Notices . xvii Trademarks . xviii Foreword . xxi Preface . xxiii The team who wrote this book . xxiv Become a published author . xxix Comments welcome. xxix Part 1. Introduction . 1 Chapter 1. Introduction to this book . 3 1.1 Operating an efficient server - four phases . 4 1.2 Performance tuning guidelines . 5 1.3 The System x Performance Lab . 5 1.4 IBM Center for Microsoft Technologies . 7 1.5 Linux Technology Center . 7 1.6 IBM Client Benchmark Centers . 8 1.7 Understanding the organization of this book . 10 Chapter 2. Understanding server types . 13 2.1 Server scalability . 14 2.2 Authentication services . 15 2.2.1 Windows Server 2008 Active Directory domain controllers .
  • Reverse Engineering - Wikipedia, the Free Encyclopedia

    Reverse Engineering - Wikipedia, the Free Encyclopedia

    Reverse engineering - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Reverse_engineering Reverse engineering From Wikipedia, the free encyclopedia Reverse engineering (RE) is the process of discovering the technological principles of a device, object or system through analysis of its structure, function and operation. It often involves taking something (e.g., a mechanical device, electronic component, or software program) apart and analyzing its workings in detail to be used in maintenance, or to try to make a new device or program that does the same thing without copying anything from the original. Reverse engineering has its origins in the analysis of hardware for commercial or military advantage [1]. The purpose is to deduce design decisions from end products with little or no additional knowledge about the procedures involved in the original production. The same techniques are currently being researched for application to legacy software systems, not for industrial or defense ends, but rather to replace incorrect, incomplete, or otherwise unavailable documentation [2]. Contents 1 Motivation 2 Reverse engineering of mechanical devices 3 Reverse engineering of software 3.1 Binary software 3.1.1 Binary software techniques 4 Source code 5 Reverse engineering of integrated circuits/smart cards 6 Reverse engineering for military applications 7 Legality 8 See also 9 Further reading 10 References 11 External links Motivation Reasons for reverse engineering: Interoperability. Lost documentation: Reverse engineering often is done because the documentation of a particular device has been lost (or was never written), and the person who built it is no longer available. Integrated circuits often seem to have been designed on obsolete, proprietary systems, which means that the only way to incorporate the functionality into new technology is to reverse-engineer the existing chip and then re-design it.