Quantum Field Theory in a Nutshell Free
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Physics 616 Quantum Field Theory I(3 Credits)
Physics 616 Quantum Field Theory I (3 credits) Fall 2011 Instructor: Prof. Michael Eides 279 Chem.-Phys. Bldg. Phone 257-3997 E-mail: [email protected] Office hours: Tuesday, 2:00-4:00 pm, or by appointment. Class meets Tuesday, Thursday, 9:30-10:45 am (CP 183). There will be no classes on Thursday, November 24 (Thanksgiving). Grading: I will give you home assignments approximately every 10 days. Your homework will be graded (40 points). Solutions to all problems will be placed in the library. I advice you to read my solutions with great care. If you have any questions about my solutions (as I expect you would), you are welcome in my office for discussion. I encourage you to discuss the homework together, and even to work on it together. However, you should write up your homework separately. Identical solutions would not earn any points. There will be no midterm exam. There will be a take-home final exam due Friday, December 12 (60 points). It could happen that I will change my mind and ask each of you to prepare a short talk (20-25 min) instead of the final exam. Student Evaluations: Course evaluations are an important (and mandatory!) component of our De- partment’s instructional program. The evaluation window for Fall 2011 will open on Wednesday, November 16, and close on Wednesday, Wednesday, December 7th. To access the system during this time, simply go to ”Courses” on the A&S Departmental Website page, and click on the link for Course Evaluations; then follow the instructions. -
Thesis Reference
Thesis On Testing Modified Gravity : with Solar System Experiments and Gravitational Radiation SANCTUARY, Hillary Adrienne Abstract Three theories of gravitation – general relativity, the chameleon and Horava gravity - are confronted with experiment, using standard and adapted post-Newtonian (PN) tools. The laboratory is provided by the Solar System, binary pulsars and future detections at gravitational wave observatories. We test Horava gravity by studying emission of gravitational radiation in the weak-field limit for PN sources using techniques that take full advantage of the parametrized post-Newtonian (PPN) formalism. In particular, we provide a generalization of Einstein’s quadrupole formula and show that a monopole persists even in the limit in which the PPN parameters are identical to those of General Relativity. Based on a technique called non-relativistic General Relativity, we propose a phenomenological way to measure deviations from General Relativity coming from an unknown UV completion. Finally, we systematically show that the self-interacting chameleon at orders three and higher do not jeopardize the chameleon theory for Solar System type objects. Reference SANCTUARY, Hillary Adrienne. On Testing Modified Gravity : with Solar System Experiments and Gravitational Radiation. Thèse de doctorat : Univ. Genève, 2012, no. Sc. 4524 Available at: http://archive-ouverte.unige.ch/unige:28935 Disclaimer: layout of this document may differ from the published version. [ Downloaded 07/04/2015 at 08:06:08 ] 1 / 1 UNIVERSITÉ DE GENÈVE FACULTÉ DES SCIENCES Département de physique théorique Professeur Michele Maggiore On Testing Modified Gravity with Solar System Experiments and Gravitational Radiation THÈSE présentée à la Faculté des Sciences de l’Université de Genève pour obtenir le grade de Docteur ès Sciences, mention Physique par Hillary Sanctuary de Montréal, Canada Thèse No 4524 Genève, juillet 2012 Reprographie EPFL Publications D. -
Advanced Information on the Nobel Prize in Physics, 5 October 2004
Advanced information on the Nobel Prize in Physics, 5 October 2004 Information Department, P.O. Box 50005, SE-104 05 Stockholm, Sweden Phone: +46 8 673 95 00, Fax: +46 8 15 56 70, E-mail: [email protected], Website: www.kva.se Asymptotic Freedom and Quantum ChromoDynamics: the Key to the Understanding of the Strong Nuclear Forces The Basic Forces in Nature We know of two fundamental forces on the macroscopic scale that we experience in daily life: the gravitational force that binds our solar system together and keeps us on earth, and the electromagnetic force between electrically charged objects. Both are mediated over a distance and the force is proportional to the inverse square of the distance between the objects. Isaac Newton described the gravitational force in his Principia in 1687, and in 1915 Albert Einstein (Nobel Prize, 1921 for the photoelectric effect) presented his General Theory of Relativity for the gravitational force, which generalized Newton’s theory. Einstein’s theory is perhaps the greatest achievement in the history of science and the most celebrated one. The laws for the electromagnetic force were formulated by James Clark Maxwell in 1873, also a great leap forward in human endeavour. With the advent of quantum mechanics in the first decades of the 20th century it was realized that the electromagnetic field, including light, is quantized and can be seen as a stream of particles, photons. In this picture, the electromagnetic force can be thought of as a bombardment of photons, as when one object is thrown to another to transmit a force. -
Lecture Notes in Physics
Lecture Notes in Physics Editorial Board H. Araki, Kyoto, Japan E. Br~zin, Paris, France J. Ehlers, Potsdam, Germany U. Frisch, Nice, France K. Hepp, Ziirich, Switzerland R. L. Jaffe, Cambridge, MA, USA R. Kippenhahn, G6ttingen, Germany H. A. Weidenmtiller, Heidelberg, Germany J. Wess, Mtinchen, Germany J. Zittartz, K61n, Germany Managing Editor W. Beiglb6ck Assisted by Mrs. Sabine Landgraf c/o Springer-Verlag, Physics Editorial Department II Tiergartenstrasse 17, D-69121 Heidelberg, Germany Springer Berlin Heidelberg New York Barcelona Budapest Hong Kong London Milan Paris Tokyo The Editorial Policy for Proceedings The series Lecture Notes in Physics reports new developments in physical research and teaching - quickly, informally, and at a high level. The proceedings to be considered for publication in this series should be limited to only a few areas of research, and these should be closely related to each other. The contributions should be of a high standard and should avoid lengthy redraftings of papers already published or about to be published elsewhere. As a whole, the proceedings should aim for a balanced presentation of the theme of the conference including a description of the techniques used and enough motivation for a broad readership. It should not be assumed that the published proceedings must reflect the conference in its entirety. (A listing or abstracts of papers presented at the meeting but not included in the proceedings could be added as an appendix.) When applying for publication in the series Lecture Notes in Physics the volume's editor(s) should submit sufficient material to enable the series editors and their referees to make a fairly accurate evaluation (e.g. -
When China Rules the World
When China Rules the World 803P_pre.indd i 5/5/09 16:50:52 803P_pre.indd ii 5/5/09 16:50:52 martin jacques When China Rules the World The Rise of the Middle Kingdom and the End of the Western World ALLEN LANE an imprint of penguin books 803P_pre.indd iii 5/5/09 16:50:52 ALLEN LANE Published by the Penguin Group Penguin Books Ltd, 80 Strand, London wc2r orl, England Penguin Group (USA) Inc., 375 Hudson Street, New York, New York 10014, USA Penguin Group (Canada), 90 Eglinton Avenue East, Suite 700, Toronto, Ontario, Canada m4p 2y3 (a division of Pearson Canada Inc.) Penguin Ireland, 25 St Stephen’s Green, Dublin 2, Ireland (a division of Penguin Books Ltd) Penguin Group (Australia), 250 Camberwell Road, Camberwell, Victoria 3124, Australia (a division of Pearson Australia Group Pty Ltd) Penguin Books India Pvt Ltd, 11 Community Centre, Panchsheel Park, New Delhi – 110 017, India Penguin Group (NZ), 67 Apollo Drive, North Shore 0632, New Zealand (a division of Pearson New Zealand Ltd) Penguin Books (South Africa) (Pty) Ltd, 24 Sturdee Avenue, Rosebank 2196, South Africa Penguin Books Ltd, Registered Offi ces: 80 Strand, London wc2r orl, England www.penguin.com First published 2009 1 Copyright © Martin Jacques, 2009 The moral right of the author has been asserted All rights reserved. Without limiting the rights under copyright reserved above, no part of this publication may be reproduced, stored in or introduced into a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photocopying, recording or otherwise) without the prior written permission of both the copyright owner and the above publisher of this book Typeset in 10.5/14pt Sabon by Palimpsest Book Production Limited, Grangemouth, Stirlingshire Printed in England by XXX ISBN: 978–0–713–99254–0 www.greenpenguin.co.uk Penguin Books is committed to a sustainable future for our business, our readers and our planet. -
Quantum Field Theory of Many-Body Systems
Quantum Field Theory of Many-body Systems This page intentionally left blank Quantum Field Theory of Many-body Systems From the Origin of Sound to an Origin of Light and Electrons Xiao-Gang Wen Department of Physics, MIT OXPORD UNIVERSITY PRESS OXFORD UNIVERSITY PRESS Great Clarendon Street, Oxford OX2 6DP Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in rcsearch, scholarship, and education by publishing worldwide in Oxford New York Auckland Bangkok Buenos Aires Cape Town Chennai Dar es Salaam Delhi Hong Kong Istanbul Karachi Kolkata Kuala Lumpur Madrid Melbourne Mexico City Mumbai Nairobi Sao Paulo Shanghai Taipei Tokyo Toronto Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries Published in the United States by Oxford University Press Inc., New York © Oxford University Press, 2004 The moral rights of the author have been asserted Database right Oxford University Press (maker) First published 2004 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above You must not circulate this book in any other binding or cover and you must impose this same condition on any acquirer A catalogue record for this title is available from the British Library Library of Congress Cataloging in Publication Data (Data available) ISBNO 19 853094 3 (Hbk) 10 987654321 Printed in Great Britain on acid-free paper by Biddies Ltd. -
How Dirac's Seminal Contributions Pave The
How Dirac’s Seminal Contributions Pave the Way for Comprehending Nature’s Deeper Designs Mani L. Bhaumik Department of Physics, University of California, Los Angeles. E-mail: [email protected] Editors: Zvi Bern & Danko Georgiev Article history: Submitted on October 27, 2019; Accepted on December 6, 2019; Published on December 17, 2019. redible reasons are presented to reveal that was the totally unexpected existence of anti-particles, many of the lingering century old enigmas, sur- culminating in the eventual development of the quan- Crounding the behavior of at least an individual tum field theory of the Standard Model that reveals quantum particle, can be comprehended in terms of the deepest secrets of the universe known to date. an objectively real specific wave function. This wave Quanta 2019; 8: 88–100. function is gleaned from the single particle energy- momentum eigenstate offered by the theory of space filling universal quantum fields that is an inevitable 1 Introduction outcome of Dirac’s pioneering masterpiece. Exam- ples of these well-known enigmas are wave particle Just after getting his Ph.D. in 1926, the same year in duality, the de Broglie hypothesis, the uncertainty which physics started to advance at breakneck speed fol- principle, wave function collapse, and predictions of lowing the successful formulation of quantum physics measurement outcomes in terms of probability in- to resolve the perplexities of the atomic domain, Paul stead of certainty. Paul Dirac successfully incorpo- Dirac entered the field of research as a freshly minted rated special theory of relativity into quantum me- scientific prodigy. Within a mere couple of years, he chanics for the first time. -
Quantum Field Theory C (Physics 215C) Spring 2013
Quantum Field Theory C (Physics 215C) Spring 2013 Lectures: TTh 11:00-12:30 in Center Hall 224A. Lecturer: John McGreevy Mayer Hall 5222; email: mcgreevy at physics.ucsd.edu Office Hours: Thursdays 2:30-3:55pm, or by appointment. Use of the Web: The course web page is http://physics.ucsd.edu/∼mcgreevy/s13/. Problem sets, solutions, lecture notes, handouts, announcements, etc will be distributed via this page. You should check it regularly (e.g. before each lecture) for new material. It will help to look at the relevant lecture notes before the lecture happens. Content: Theory of renormalization, effective field theory, effects of topology in QFT, anomalies, solitons and defects, lattice models of QFT, CFT in d = 1 + 1 and in d > 1 + 1. The choice of subject matter will evolve in response to the needs of the class membership. Texts: I do not plan to follow any textbook very closely. My posted lecture notes will be the main text. The textbook by Zee is wonderful and you should all keep it by your bedside. I will attempt to refer you to some relevant sections of the following books, most of which have been placed on reserve at S&E Library (or are available electronically): Quantum Field Theory in a Nutshell, by Anthony Zee. Quantum Field Theory of Many-Body Systems, by Xiao-Gang Wen. Aspects of Symmetry, by Sidney Coleman. Gauge Fields and Strings, by Alexander Polyakov. Field Theories of Condensed Matter Systems, by Eduardo Fradkin. The Physics of Quantum Fields, by Mike Stone. Grading: Grades will be determined by problem sets, class participation, and a brief final paper. -
Renormalization Group - Wikipedia, the Free Encyclopedia 3/17/12 5:27 PM Renormalization Group from Wikipedia, the Free Encyclopedia
Renormalization group - Wikipedia, the free encyclopedia 3/17/12 5:27 PM Renormalization group From Wikipedia, the free encyclopedia In theoretical physics, the renormalization group (RG) refers to a mathematical apparatus that allows systematic investigation of the changes of a physical system as viewed at different distance scales. In particle physics, it reflects the changes in the underlying force laws (codified in a quantum field theory) as the energy scale at which physical processes occur varies, energy/momentum and resolution distance scales being effectively conjugate under the uncertainty principle (cf. Compton wavelength). A change in scale is called a "scale transformation". The renormalization group is intimately related to "scale invariance" and "conformal invariance", symmetries in which a system appears the same at all scales (so-called self-similarity). (However, note that scale transformations are included in conformal transformations, in general: the latter including additional symmetry generators associated with special conformal transformations.) As the scale varies, it is as if one is changing the magnifying power of a notional microscope viewing the system. In so- called renormalizable theories, the system at one scale will generally be seen to consist of self-similar copies of itself when viewed at a smaller scale, with different parameters describing the components of the system. The components, or fundamental variables, may relate to atoms, elementary particles, atomic spins, etc. The parameters of the theory typically describe the interactions of the components. These may be variable "couplings" which measure the strength of various forces, or mass parameters themselves. The components themselves may appear to be composed of more of the self-same components as one goes to shorter distances. -
Lecture 9 CPT Theorem and CP Violation
Lecture 9 CPT theorem and CP violation Emmy Noether's theorem (proved 1915, published 1918) •Any differentiable symmetry of the action of a physical system has a corresponding conservation law. The action of a physical system is the integral over time of a Lagrangian function (which may or may not be an integral over space of a Lagrangian density function), from which the system’s behavior can be determined by the principle of least action. •Energy, momentum and angular momentum conservation laws are consequences of symmetries of space. eg, if a physical system behaves the same regardless of how it is oriented in space -> Lagrangian is rotationally symmetric -> angular momentum of the system must be conserved •We have seen that although both charge conjugation and parity are violated in weak interactions, the combination of the two CP turns left-handed antimuon onto right-handed muon, that is exactly observed in nature. •There is another symmetry in nature – time reversal T (winding the film backward). •Charge conjugation, C, together with parity inversion, P, and time reversal, T, are connected into the famous CPT theorem. •CPT theorem is one of the basic principles of quantum field theory. It states that all interactions are invariant under sequential application of C, P and T operations in any order. Any Lorentz invariant local quantum field theory with a Hermitian Hamiltonian must have CPT symmetry. •It is closely related to the interpretation that antiparticles can be treated mathematically as particles moving backward in time. Ernst Stueckelberg (1905-1984) Should have received several Noble prizes • 1934 - First developer of fully Lorentz-covariant theory for quantum field • 1935 - Developed vector boson exchange as theoretical explanation for nuclear forces. -
Arxiv:1403.5164V1 [Physics.Hist-Ph] 20 Mar 2014
The education of Walter Kohn and the creation of density functional theory Andrew Zangwill∗ School of Physics Georgia Institute of Technology Atlanta, GA 30332 The theoretical solid-state physicist Walter Kohn was awarded one-half of the 1998 Nobel Prize in Chemistry for his mid-1960’s creation of an approach to the many-particle problem in quantum mechanics called density functional theory (DFT). In its exact form, DFT establishes that the total charge density of any system of electrons and nuclei provides all the information needed for a complete description of that system. This was a breakthrough for the study of atoms, molecules, gases, liquids, and solids. Before DFT, it was thought that only the vastly more complicated many-electron wave function was needed for a complete description of such systems. Today, fifty years after its introduction, DFT (in one of its approximate forms) is the method of choice used by most scientists to calculate the physical properties of materials of all kinds. In this paper, I present a biographical essay of Kohn’s educational experiences and professional career up to and including the creation of DFT. My account begins with Kohn’s student years in Austria, England, and Canada during World War II and continues with his graduate and post-graduate training at Harvard University and Niels Bohr’s Institute for Theoretical Physics in Copenhagen. I then study the research choices he made during the first ten years of his career (when he was a faculty member at the Carnegie Institute of Technology and a frequent visitor to the Bell Telephone Laboratories) in the context of the theoretical solid-state physics agenda of the late 1950’s and early 1960’s. -
Constructive Quantum Field Theory : Goals, Methods, Results
Constructive quantum field theory : goals, methods, results Autor(en): Osterwalder, K. Objekttyp: Article Zeitschrift: Helvetica Physica Acta Band (Jahr): 59 (1986) Heft 2 PDF erstellt am: 09.10.2021 Persistenter Link: http://doi.org/10.5169/seals-115691 Nutzungsbedingungen Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber. Haftungsausschluss Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind. Ein Dienst der ETH-Bibliothek ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch http://www.e-periodica.ch Helvetica Physica Acta, Vol.