Metarhizium Anisopliae
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Endophytes, Pest Resistence and Pasture Persistence
Endophytes, Pest Resistence and Pasture Persistence What are endophytes? Endophytes are naturally occurring fungi that live between the cell walls of perennial, long rotation and hybrid ryegrass (Neotyphodium lolii) as well as some tall fescue cultivars (Neotyphodium coenophialum). An example can be seen in Figure 1. Most modern cultivars or older ryegrass based pastures will likely contain a high frequency of endophyte infected plants. Figure 2: The endophyte lifecycle. Sourced from Heritage Seeds. The main alkaloids The natural purposes of the alkaloids produced are to control pest attack to the plant, with an outcome of better plant persistence. However, not all the alkaloids produced are harmless for grazing stock. Symptoms are normally seen in summer/autumn, when stock graze hard into the base of pasture. Figure 1: A cross section of a leaf blade treated with radioactive dye. There are five alkaloids or alkaloid groups that are produced The green dots are endophyte hyphae. Sourced from AgResearch Limited. by endophytes which are of interest to graziers. These are: Ergovaline, Lolitrem B, Peramine, Janthitrems and Lolines. What is their purpose? The alkaloids are unique to either or both perennial ryegrass or tall fescue. Details of each main alkaloid are described The host plant supplies the fungus with nutrition. In return below (effects on both insects and animals are subject to the fungus produces unique protective alkaloids which are ongoing research and this knowledge may change in future). absorbed by the surrounding plant cells. This type of relationship is known as a symbiotic relationship. In the wild, Ergovaline: this relationship and the alkaloids produced give the plant Black beetle (adult only) increased pest, grazing, and drought resistance, leading to Insect protection improved plant persistence. -
Gorton (2000) – Australian Black Beetle
Distribution and potential for spread of Adoryphorus couloni (Burmeister) in Canterbury, New Zealand. M.J. Gorton Ecology and Entomology Group Soil, Plant and Ecological Sciences Division Lincoln University ABSTRACT A survey was conducted on Banks Peninsula and the Port Hills in Canterbury, to detennine the present distribution and the potential for further spread of the subterranean pasture pest Adoryphorus couloni. It was found that A. couloni had spread from previous known infestations and that further spread was likely. In particular, it was found that several sites in Gebbies Valley and near McQueens Pass had been colonized by A. couloni and that invasion of the Canterbury Plains in the future is a distinct possibility. The rate of spread of A. couloni on Banks Peninsula and the Port Hills was estimated using a simple dispersal model. Natural dispersal was predicted to occur at a rate of 1.136 km/year and it is possible that human-assisted dispersal could have aided this species' spread. A review of the relevant literature identified environmental conditions preferred by the species and potential methods of control. INTRODUCTION Australian black beetle, Adoryphorus couloni, is a native scarab of Australia that has become a serious pest of improved pastures in parts of Victoria, Tasmania, New South Wales, South Australia and is also causing concern on Banks Peninsula, New Zealand (Hardy and Tandy, 1971; Roberts and Stufkens, 1981). Most pasture damage is caused by the third instar larvae, which weaken the pasture by severing the plant roots just below the soil surface (Goodyer, 1977; Hardy, 1981; Hardy and Tandy, 1971). -
SUSCEPTIBILITY of SOME MELOLONTHINE SCARAB SPECIES to ENTOMOPATHOGENIC FUNGUS Beauveria Brongniartii (Sacc.) Petch and Metarhizium Anisopliae (Metsch.)
Scientific Bulletin. Series F. Biotechnologies, Vol. XXII, 2018 ISSN 2285-1364, CD-ROM ISSN 2285-5521, ISSN Online 2285-1372, ISSN-L 2285-1364 SUSCEPTIBILITY OF SOME MELOLONTHINE SCARAB SPECIES TO ENTOMOPATHOGENIC FUNGUS Beauveria brongniartii (Sacc.) Petch AND Metarhizium anisopliae (Metsch.) Ana-Cristina FĂTU1, 2, Mihaela-Monica DINU1, Ana-Maria ANDREI1 1Research - Development Institute for Plant Protection, 8 Ion Ionescu de la Brad Blvd., District 1, 013813, Bucharest, Romania 2University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Mărăşti Blvd., District 1, 011464, Bucharest, Romania Corresponding author email: [email protected] Abstract The melolonthine scarabs, Melolontha melolontha L., Amphimallon solstitiale L. and Anoxia villosa F. are well known as serious pest in orchards, vineyards, forests and fruit tree nurseries. The susceptibility of third instars larvae of M. melolontha, A. solstitiale and A. villosa to entomopathogenic fungus Beauveria brongniartii (three isolates) and Metarhizium anisopliae (three isolates) was evaluated in laboratory conditions by dipping the insects in aqueous suspensions of 1x107 conidia/ml, respectively. The greatest mortality rates were observed to be caused by B. brongniartii isolates: 100% when M. melolontha larvae were treated and 60% mortality for A. villosa after 60 days of incubation. The most susceptible larvae species to M. anisopliae was A. villosa (35.5% mortality). The most resistant larvae species to all the fungal treatments was A. solstitiale at which mortality rate never exceeded 23.6% after 76 days of incubation. Key words: Melolontha melolontha, Amphimallon solstitiale, Anoxia villosa, Beauveria brongniartii, Metarhizium anisopliae, entomopathogenic fungus. INTRODUCTION nematodes have been investigated as potential insecticidal agents, entomopathogenic fungi The melolonthine scarabs, Melolontha were most often used in classical biological melolontha L, Amphimallon solstitiale L. -
The Potential of Entomopathogens in Biological Control of White Grubs
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/328655437 The potential of entomopathogens in biological control of white grubs Article · November 2018 CITATIONS READS 0 558 7 authors, including: Saurbh Soni Sumit Vashisth CSK HPKV Palampur Dr. Yashwant Singh Parmar University of Horticulture and Forestry 6 PUBLICATIONS 3 CITATIONS 38 PUBLICATIONS 39 CITATIONS SEE PROFILE SEE PROFILE Mandeep Pathania Pawan K Mehta Punjab Agricultural University CSK HPKV Palampur 38 PUBLICATIONS 56 CITATIONS 101 PUBLICATIONS 274 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Insect Pest Management of Citrus View project Doctoral Research View project All content following this page was uploaded by Mandeep Pathania on 17 January 2019. The user has requested enhancement of the downloaded file. International Journal of Pest Management ISSN: 0967-0874 (Print) 1366-5863 (Online) Journal homepage: http://www.tandfonline.com/loi/ttpm20 The potential of entomopathogens in biological control of white grubs Ravinder S. Chandel, Saurbh Soni, Sumit Vashisth, Mandeep Pathania, Pawan K. Mehta, Abhishek Rana, Ashok Bhatnagar & V. K. Agrawal To cite this article: Ravinder S. Chandel, Saurbh Soni, Sumit Vashisth, Mandeep Pathania, Pawan K. Mehta, Abhishek Rana, Ashok Bhatnagar & V. K. Agrawal (2018): The potential of entomopathogens in biological control of white grubs, International Journal of Pest Management, DOI: 10.1080/09670874.2018.1524183 To link to this article: https://doi.org/10.1080/09670874.2018.1524183 Published online: 10 Oct 2018. Submit your article to this journal Article views: 109 View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=ttpm20 INTERNATIONAL JOURNAL OF PEST MANAGEMENT https://doi.org/10.1080/09670874.2018.1524183 The potential of entomopathogens in biological control of white grubs Ravinder S. -
Australian Truffle Orchards Integrated Pest and Disease Management Manual
Australian Truffle Orchards Integrated Pest and Disease Management Manual Australian Truffle Orchards IPDM Manual Acknowledgements and contributors Funding This Manual is based on research undertaken in the AgriFutures™ Emerging Industries Program project PRJ-009832 Pests and Diseases of truffles and their host trees in Australia, 2015-2019. This project was jointly funded by AgriFutures™ Emerging Industries Program, Department of Primary Industries and Regional Development (DPIRD) Western Australia, Australian Truffle Growers Association (ATGA), Truffle Producers Western Australia (TPWA), the Australian National University (ANU) and Department of Primary Industries New South Wales (NSW DPI). Truffle growers of Australia are acknowledged for providing access to their truffle orchards during that project. Coordinating author Alison Mathews Contributing authors Stewart Learmonth, Alison Mathews and Alec Mccarthy (DPIRD); Celeste Linde (ANU); Anne Mitchell (Manjimup Underground), Ainsley Seago (DPI NSW), Alan Davey (Advyron). Project team and contributors Helen Collie (DPIRD), Peter dal Danto (AgAware Consulting Pty Ltd), Alan Davey (Advyron R. S.), John de Majnik (AgriFutures Australia), Harry Eslick (Truffle and Wine Co.), Duncan Farquhar (AgriFutures Australia), Diana Fisher (DPIRD), Heather Gustin (DPIRD), Alan Jacob (DPIRD), Stewart Learmonth (DPIRD), Celeste Linde (ANU), Alison Mathews (DPIRD), Anne Mitchell (Manjimup Underground), Janet Paterson (Truffle and Wine Co.), Ainsley Seago (DPI NSW), Peter Stahle (ATGA), Paul Webb (Truffle and Wine Co.). Images Where photos and images used in this Manual were not provided by contributing authors, acknowledgement of the source is included in the image credit list at the end of the document. ISBN: 978-0-6482627-6-3 Important disclaimer The Chief Executive Officer of the Department of Primary Industries and Regional Development and the State of Western Australia accept no liability whatsoever by reason of negligence or otherwise arising from the use or release of this information or any part of it.