Australian Truffle Orchards Integrated Pest and Disease Management Manual

Total Page:16

File Type:pdf, Size:1020Kb

Australian Truffle Orchards Integrated Pest and Disease Management Manual Australian Truffle Orchards Integrated Pest and Disease Management Manual Australian Truffle Orchards IPDM Manual Acknowledgements and contributors Funding This Manual is based on research undertaken in the AgriFutures™ Emerging Industries Program project PRJ-009832 Pests and Diseases of truffles and their host trees in Australia, 2015-2019. This project was jointly funded by AgriFutures™ Emerging Industries Program, Department of Primary Industries and Regional Development (DPIRD) Western Australia, Australian Truffle Growers Association (ATGA), Truffle Producers Western Australia (TPWA), the Australian National University (ANU) and Department of Primary Industries New South Wales (NSW DPI). Truffle growers of Australia are acknowledged for providing access to their truffle orchards during that project. Coordinating author Alison Mathews Contributing authors Stewart Learmonth, Alison Mathews and Alec Mccarthy (DPIRD); Celeste Linde (ANU); Anne Mitchell (Manjimup Underground), Ainsley Seago (DPI NSW), Alan Davey (Advyron). Project team and contributors Helen Collie (DPIRD), Peter dal Danto (AgAware Consulting Pty Ltd), Alan Davey (Advyron R. S.), John de Majnik (AgriFutures Australia), Harry Eslick (Truffle and Wine Co.), Duncan Farquhar (AgriFutures Australia), Diana Fisher (DPIRD), Heather Gustin (DPIRD), Alan Jacob (DPIRD), Stewart Learmonth (DPIRD), Celeste Linde (ANU), Alison Mathews (DPIRD), Anne Mitchell (Manjimup Underground), Janet Paterson (Truffle and Wine Co.), Ainsley Seago (DPI NSW), Peter Stahle (ATGA), Paul Webb (Truffle and Wine Co.). Images Where photos and images used in this Manual were not provided by contributing authors, acknowledgement of the source is included in the image credit list at the end of the document. ISBN: 978-0-6482627-6-3 Important disclaimer The Chief Executive Officer of the Department of Primary Industries and Regional Development and the State of Western Australia accept no liability whatsoever by reason of negligence or otherwise arising from the use or release of this information or any part of it. Copyright © Department of Primary Industries and Regional Development, 2019 2 CONTENTS About this manual ..................................................................................................................... 5 What is IPDM? .......................................................................................................................... 5 Steps involved ....................................................................................................................... 6 IPDM in truffle orchards ......................................................................................................... 7 Establishing and maintaining a healthy orchard......................................................................... 8 Tree health ............................................................................................................................ 8 On farm biosecurity................................................................................................................ 9 Invertebrate pests and non-pests and Diseases ...................................................................... 15 Invertebrates........................................................................................................................ 15 Diseases .............................................................................................................................. 18 Pest and Disease factsheets ............................................................................................... 19 Ants .................................................................................................................................. 20 Aphids .............................................................................................................................. 21 African black beetle .......................................................................................................... 23 Other cockchafer beetles ................................................................................................. 26 Australian truffle beetle..................................................................................................... 28 Predatory beetles ............................................................................................................. 33 Spring beetle .................................................................................................................... 35 Stinking longicorn ............................................................................................................. 37 Wireworm ......................................................................................................................... 39 False wireworms and bronzed field beetle........................................................................ 41 Centipedes - Garden ........................................................................................................ 43 Earwigs ............................................................................................................................ 44 Flatworms ........................................................................................................................ 47 Fungus gnats and other flies ............................................................................................ 48 Grasshoppers - wingless .................................................................................................. 51 Millipedes ......................................................................................................................... 53 Mites - General ................................................................................................................ 57 Hazelnut gall mite ............................................................................................................. 59 Hazelnut mite ................................................................................................................... 60 Fruit tree borer ................................................................................................................. 61 Heliothis ........................................................................................................................... 63 Lightbrown apple moth ..................................................................................................... 65 Oak leaf mine ................................................................................................................... 67 Painted apple moth and Western tussock moth ............................................................... 69 Potworms ......................................................................................................................... 71 Australian Truffle Orchards IPDM Manual Scales - soft ..................................................................................................................... 72 Slaters .............................................................................................................................. 75 Slugs ................................................................................................................................ 79 Garden snail ..................................................................................................................... 84 Small pointed snail ........................................................................................................... 86 Springtails ........................................................................................................................ 88 Thrips – greenhouse thrips ............................................................................................... 91 Apple weevil ..................................................................................................................... 93 Fuller’s rose weevil ........................................................................................................... 96 Garden weevil .................................................................................................................. 99 Hypsomus weevil ........................................................................................................... 102 Redlegged weevils ......................................................................................................... 103 Whitefringed weevil ........................................................................................................ 105 European truffle beetle ................................................................................................... 107 Truffle fly ........................................................................................................................ 108 Vertebrate pests - Birds and Mammals .......................................................................... 109 Australian honey fungus ................................................................................................. 110 Bacterial Blight ............................................................................................................... 111 Discula ........................................................................................................................... 113 Oak powdery mildew ...................................................................................................... 115 Root and root collar diseases ........................................................................................
Recommended publications
  • Heteronychus Arator
    Heteronychus arator Scientific Name Heteronychus arator (Fabricius) Synonyms: Heteronychus arator australis Endrödi, Heteronychus indenticulatus Endrodi, Heteronychus madagassus Endrodi, Heteronychus sanctaehelenae Blanchard, Heteronychus transvaalensis Peringuey, Scarabaeus arator Fabricius Common Name(s) Black maize beetle, African black beetle, black lawn beetle, black beetle Type of Pest Beetle Figure 1. Illustration of each stage of the life Taxonomic Position cycle of the black maize beetle, showing a close up view of each stage and a Insecta, Coleoptera, Class: Order: background view showing that the eggs, Family: Scarabaeidae larvae, and pupae are all underground stages with the adults being the only stage Reason for Inclusion appearing above ground. Illustration CAPS Target: AHP Prioritized Pest List- courtesy of NSW Agriculture. http://www.ricecrc.org/Hort/ascu/zecl/zeck11 2006 – 2009 3.htm Pest Description Life stages are shown in Figures 1 and 2. 1 Eggs: White, oval, and measuring approximately 1.8 mm (approx. /16 in) long at time of oviposition. Eggs grow larger through development and become more 3 round in shape. Eggs are laid singly at a soil depth of 1 to 5 cm (approx. /8 to 2 in). Females each lay between 12 to 20 eggs total. In the field, eggs hatch after approximately 20 days. Larvae can be seen clearly with the naked eye (CABI, 2007; Matthiessen and Learmoth, 2005). Larvae: There are three larval instars. Larvae are creamy-white except for the brown head capsule and hind segments, which appear dark where the contents of the gut show through the body wall. The head capsule is smooth textured, 1 1 measuring 1.5 mm (approx.
    [Show full text]
  • Early Warning System for the Black Maize Beetle (Heteronychus Arator Fabricius) in a Major Maize
    Early warning system for the black maize beetle (Heteronychus arator Fabricius) in a major maize producing region of South Africa by Nicolene de Klerk Submitted in fulfilment of the requirements for the degree of Magister Scientiae in Entomology Department of Zoology and Entomology Faculty of Natural and Agricultural Sciences University of the Free State Bloemfontein South Africa 2015 Supervisor: Prof. S.vd M. Louw Co-supervisor: Prof. J.B.J. van Rensburg Declaration I hereby declare that this dissertation submitted by me for the degree Magister Scientiae at the University of the Free State is my own independent work and that I have not previously submitted the same work at another University / Faculty. I furthermore concede copyright of the dissertation to the University of the Free State. ……………………………… Nicolene de Klerk 15 May 2015 i Acknowledgements During the course of this study people from various departments and institutions assisted which led to the completion of this study. Appreciation is expressed to all. Financial aid was provided by the ARC (Agricultural Research Council) and the Maize Trust. Assistance by ARC staff included Mabel du Toit and Mischack Moroladi. Special thanks to Dr. T.W. Drinkwater. Weather data were obtained from SA (South African) weather services as well as from ARC-ISCW (Agricultural Research Council – Institute for Soil, Climate and Water). Statistical support was provided by Nicolene Thiebaut, Frikkie Calitz and Wiltrud Durand. Thanks to all 99 maize producers that assisted with capturing the insect populations over the years. To my husband, Adriaan and my children, Angelene, Lee-Ann, Niané, Lichané and Adriaan thank you all for supporting me in the many struggles that faced us throughout the journey.
    [Show full text]
  • Endophytes, Pest Resistence and Pasture Persistence
    Endophytes, Pest Resistence and Pasture Persistence What are endophytes? Endophytes are naturally occurring fungi that live between the cell walls of perennial, long rotation and hybrid ryegrass (Neotyphodium lolii) as well as some tall fescue cultivars (Neotyphodium coenophialum). An example can be seen in Figure 1. Most modern cultivars or older ryegrass based pastures will likely contain a high frequency of endophyte infected plants. Figure 2: The endophyte lifecycle. Sourced from Heritage Seeds. The main alkaloids The natural purposes of the alkaloids produced are to control pest attack to the plant, with an outcome of better plant persistence. However, not all the alkaloids produced are harmless for grazing stock. Symptoms are normally seen in summer/autumn, when stock graze hard into the base of pasture. Figure 1: A cross section of a leaf blade treated with radioactive dye. There are five alkaloids or alkaloid groups that are produced The green dots are endophyte hyphae. Sourced from AgResearch Limited. by endophytes which are of interest to graziers. These are: Ergovaline, Lolitrem B, Peramine, Janthitrems and Lolines. What is their purpose? The alkaloids are unique to either or both perennial ryegrass or tall fescue. Details of each main alkaloid are described The host plant supplies the fungus with nutrition. In return below (effects on both insects and animals are subject to the fungus produces unique protective alkaloids which are ongoing research and this knowledge may change in future). absorbed by the surrounding plant cells. This type of relationship is known as a symbiotic relationship. In the wild, Ergovaline: this relationship and the alkaloids produced give the plant Black beetle (adult only) increased pest, grazing, and drought resistance, leading to Insect protection improved plant persistence.
    [Show full text]
  • Biological Control of Gonipterus Platensis
    BIOLOGICAL CONTROL OF GONIPTERUS PLATENSIS: CURRENT STATUS AND NEW POSSIBILITIES CARLOS MANUEL FERREIRA VALENTE ORIENTADORA: Doutora Manuela Rodrigues Branco Simões TESE ELABORADA PARA OBTENÇÃO DO GRAU DE DOUTOR EM ENGENHARIA FLORESTAL E DOS RECURSOS NATURAIS 2018 BIOLOGICAL CONTROL OF GONIPTERUS PLATENSIS: CURRENT STATUS AND NEW POSSIBILITIES CARLOS MANUEL FERREIRA VALENTE ORIENTADORA: Doutora Manuela Rodrigues Branco Simões TESE ELABORADA PARA OBTENÇÃO DO GRAU DE DOUTOR EM ENGENHARIA FLORESTAL E DOS RECURSOS NATURAIS JÚRI: Presidente: Doutora Maria Teresa Marques Ferreira Professora Catedrática Instituto Superior de Agronomia Universidade de Lisboa Vogais: Doutora Maria Rosa Santos de Paiva Professora Catedrática Faculdade de Ciências e Tecnologia Universidade Nova de Lisboa; Doutora Manuela Rodrigues Branco Simões Professora Auxiliar com Agregação Instituto Superior de Agronomia Universidade de Lisboa; Doutor José Carlos Franco Santos Silva Professor Auxiliar Instituto Superior de Agronomia Universidade de Lisboa; Doutor Edmundo Manuel Rodrigues de Sousa Investigador Auxiliar Instituto Nacional de Investigação Agrária e Veterinária. 2018 À Susana e à Leonor i Em memória da minha Avó, Maria dos Anjos Valente (1927-2017) ii Agradecimentos Agradeço, em primeiro lugar, à Professora Manuela Branco, pelo apoio incansável na orientação desta tese, a total disponibilidade e os inúmeros ensinamentos. Ao RAIZ, pelo financiamento do doutoramento, e à sua Direção, em particular ao Engenheiro Serafim Tavares, ao Engenheiro José Nordeste, ao Professor Carlos Pascoal Neto, à Engenheira Leonor Guedes, ao Gabriel Dehon e ao Nuno Borralho, pelo voto de confiança e incentivo que sempre me transmitiram. Deixo um especial agradecimento à Catarina Gonçalves e à Catarina Afonso, pela amizade, por terem ajudado a manter os projetos do RAIZ e a biofábrica a funcionar, pelas horas infindáveis passadas no laboratório e pelos excelentes contributos científicos que muito melhoraram a qualidade desta tese.
    [Show full text]
  • Fruit-Tree Borer (Maroga Melanostigma): Investigations on Its Biological Control in Prune Trees
    Fruit-tree borer (Maroga melanostigma): Investigations on its biological control in prune trees Susan Plantier Marte Masters of Science (Honours) University of Western Sydney 2007 DEDICATION In memory of Maddy and those lost along the way… ACKNOWLEDGEMENTS There are many people I would like to thank and acknowledge for the help and support they have shown me throughout this process. First and foremost are the co-operators in this trial. Without the generosity of Jeff Granger, Cheryl & Doug Heley, Mary Sticpewich and Malcolm Taylor I would not have been able to carry out my research so enjoyably. They gave of their time and their trees and I only wish they could take heart in knowing that no borers were harmed in this trial. Somehow, I think they wish it were otherwise. I would also like to thank my supervisors – Robert Spooner-Hart for his guidance in helping me think, and write, more like a research entomologist than an extension horticulturist; and especially W. Graham Thwaite for his effort and enthusiasm. If it weren’t for him, I would still be hiding from bugs and oblivious to their beauties and charms. Many thanks go to those who have financially supported this project – the Australian Prune Industry and Horticulture Australia Ltd through levies; and NSW Department of Primary Industries through their in-kind contribution to this project. My sincere thanks and appreciation to the following people and organisations. I would not have gotten over the many hurtles in this trial without them. In no particular order: • Remy van de Ven for his biometric support; • Patrick Berger and his team at Australian Produced Biologicals for providing the trial with two seasons of cultured Helicoverpa eggs; • QDPI for providing the trial with one season of cultured Helicoverpa eggs; • Craig Wilson at Ecogrow for his time, facilities and expertise; • Robert Fitzpatrick for keeping me in borer infested wood; and • Marion Eslick and Anne Mooney for their borer damage scouting expertise.
    [Show full text]
  • Xylorictid Wood Moths Common Name Xylorictid Wood Moth the Majority of the 275 Named Australian Species from More Than 52 Genera Genus Within This Family Are Borers
    Xylorictid Wood Moths Common Name Xylorictid Wood Moth The majority of the 275 named Australian species from more than 52 genera Genus within this family are borers. Two of the larger Genus are Xylorycta and Cryptophasa (meaning eating in private), Family Xyorictidae Order Lepidoptera Life cycle As with all Lepidoptera this family undergoes complete metamorphosis Damage is done by the larvae that feeds at night along the margins of the wound and retreats during the day to a frass covered “tunnel”. Host Most moths in this family are oligophagous. There is a large number of species that attack an even larger number of species of trees including, amongst others, Prunus spp., Acer palmatum, Ceratapetulum spp., Hakea spp., Acacia spp. Most species bore a tunnel for habitat and feed on the phloem surrounding the tunnel. Other species bore only in the outer bark of the tree. Identifying Most commonly feeding at branch junctions the caterpillar makes a covering features by webbing wood borings and frass together. The caterpillars have legs and prolegs, which easily distinguishes them from other xylophagous larvae. The colour of the larva varies considerably but generally not decorative. Symptoms Branches that die off usually at a branch junction as the result of ringbarking of the branch caused by the feeding habits of the larvae Signs Webbed frass usually located at branch junctions particularly at included junctions or at branch junctions on trees that are stressed. Large sections of phloem missing with the limb often becoming completely girdled over time. Chemical The easiest treatment involves brushing off or otherwise removing the control webbed frass and spraying the area of the damage and the surrounding 25 – 50 mm with a garden surface spray (I have use Mortein outdoor barrier spray with good results).
    [Show full text]
  • Chemical Defense and Sound Production in Australian
    CHEMICAL DEFENSE AND SOUND PRODUCTION IN AUSTRALIAN TENEBRIONID BEETLES (ADELIUAI SPP.) * BY THOMAS EISNER, DANIEL ANESHANSLEY, MARIA EISNER, RONALD RUTOWSKI, BERNI CHONG, AND JERROLD MEINWALD Section of Neurobiology and Behavior, and Department of Chemistry, Cornell University, Ithaca, N.Y. 485o INTRODUCTION Girdled eucalyptus trees, felled to make room for grazing pasture, are a common sight in rural Australia. In the dead and decaying stumps that are strewn through the countryside, many insects flourish. Two of these, the congeneric tenebrionid beetles d delium percatum and .4. pustulosum (subfamily Adeliinae) possess interesting defense mechanisms that we here describe. Both have eversible abdominal glands such as are commonly found in Tenebrionidae (Roth, I945), but some features of the chemistry and biology of the glands are anomalous. Moreover, .4. pustulosum has a stridulatory apparatus that may function for acoustical reinforcement of the. chemical de- fense. MATERIALS AND METHODS Both species of Adelium are black and, lacking hindwings, are flightless. Several dozen specimens were taken singly and in small groups in and under pieces of decaying eucalyptus wood in sheep pasture near Gudgenby, Australian Capital Territory, in mid-April, I973 (Fig. 2). They were maintained in plastic containers, and given water, sucrose, and a variety of cereal-based foods. Initial behavioral and electronmicroscopic studies were done at the laboratories of the Division of Entomology, C. S. I. R. O., Canberra, where T. E. and M. E. were guests. Secretion was shipped to B. C. and J. M. for chemical analysis at the University of California, San Diego. Some beetles survived travel to Cornell, where acoustical studies were.
    [Show full text]
  • Immature Stages of Beetles Representing the 'Opatrinoid' Clade
    Zoomorphology https://doi.org/10.1007/s00435-019-00443-7 ORIGINAL PAPER Immature stages of beetles representing the ‘Opatrinoid’ clade (Coleoptera: Tenebrionidae): an overview of current knowledge of the larval morphology and some resulting taxonomic notes on Blapstinina Marcin Jan Kamiński1,2 · Ryan Lumen2 · Magdalena Kubicz1 · Warren Steiner Jr.3 · Kojun Kanda2 · Dariusz Iwan1 Received: 8 February 2019 / Revised: 29 March 2019 / Accepted: 1 April 2019 © The Author(s) 2019 Abstract This paper summarizes currently available morphological data on larval stages of representatives of the ‘Opatrinoid’ clade (Tenebrionidae: Tenebrioninae). Literature research revealed that larval morphology of approximately 6% of described spe- cies representing this lineage is currently known (139 out of ~ 2325 spp.). Larvae of the fve following species are described and illustrated: Zadenos mulsanti (Dendarini: Melambiina; South Africa), Blapstinus histricus, Blapstinus longulus, Tri- choton sordidum (Opatrini: Blapstinina; North America), and Eurynotus rudebecki (Platynotini: Eurynotina; South Africa). The majority of studied larvae were associated with adults using molecular tools, resulting in an updated phylogeny of the ‘Opatrinoid’ clade. This revised phylogeny provides an evolutionary context for discussion of larval morphology. Based on the morphological and molecular evidence, the following synonym is proposed within Blapstinina: Trichoton Hope, 1841 (= Bycrea Pascoe, 1868 syn. nov.). Based on this decision, a new combination is introduced: Trichoton
    [Show full text]
  • Burkholderia As Bacterial Symbionts of Lagriinae Beetles
    Burkholderia as bacterial symbionts of Lagriinae beetles Symbiont transmission, prevalence and ecological significance in Lagria villosa and Lagria hirta (Coleoptera: Tenebrionidae) Dissertation To Fulfill the Requirements for the Degree of „doctor rerum naturalium“ (Dr. rer. nat.) Submitted to the Council of the Faculty of Biology and Pharmacy of the Friedrich Schiller University Jena by B.Sc. Laura Victoria Flórez born on 19.08.1986 in Bogotá, Colombia Gutachter: 1) Prof. Dr. Martin Kaltenpoth – Johannes-Gutenberg-Universität, Mainz 2) Prof. Dr. Martha S. Hunter – University of Arizona, U.S.A. 3) Prof. Dr. Christian Hertweck – Friedrich-Schiller-Universität, Jena Das Promotionskolloquium wurde abgelegt am: 11.11.2016 “It's life that matters, nothing but life—the process of discovering, the everlasting and perpetual process, not the discovery itself, at all.” Fyodor Dostoyevsky, The Idiot CONTENT List of publications ................................................................................................................ 1 CHAPTER 1: General Introduction ....................................................................................... 2 1.1. The significance of microorganisms in eukaryote biology ....................................................... 2 1.2. The versatile lifestyles of Burkholderia bacteria .................................................................... 4 1.3. Lagriinae beetles and their unexplored symbiosis with bacteria ................................................ 6 1.4. Thesis outline ..........................................................................................................
    [Show full text]
  • Natural Crop Protection
    An information center within the network for AGRECOL sustainable agriculture in third world countries NATURAL CROP PROTECTION based on Local Farm Resources in the Tropics and Subtropics ILEIA P.O. Box 64 r.ahv <%tnll 3830AB LEUSDEN VJttUy kJlUII The Netherlands Tel. 033 - 494 30 86 Title page: Leaf and fruits of a Neem tree Drawing by Wolfgang Lang Last page: Twig of a Neem tree Photo by Gustav Espig Preparation of herbal insecticides Photo by HEKS, Zürich Idea and text: Gaby Stoll Illustrations and layout: Katrin Geigenmüller Translation: John Coates Printing and binding: F. & T. Müllerbader Filderstadt, Germany © Margraf Verlag, 1986, 1987, 1988, 1992, 1995, 1996 P.O. Box 105 97985 Weikersheim Germany The book is also available in French, German, Spanish and Thai. ISBN 3-8236-1113-5 C O N T E N T Foreword 5 Introduction 7 How to use this book 10 Principles of preventive crop protection 14 Pests in field and store 23 Rice 25 Maize 34 Legumes 44 Vegetables 50 Fruits 64 Storage 69 Methods of crop and storage protection 80 FIELD CULTIVATIONS Insecticidal plants 81 Mixtures 122 Animal substances 124 Ashes 127 Baits and traps 129 Other methods 138 STORAGE PROTECTION Principles of preventive storage protection 141 Insecticidal plants 146 Vegetable oils 163 Mineral substances and ashes 165 Other methods 167 References 168 Index 179 Current activities 185 Request for information 188 ACKNOWLEDGEMENT I should like to express my grateful thanks to all those persons who made it possible to present this practical guide in its present form. Above all these are my colleagues Almut Hahn and Mathias Zimmermann, who were always ready to listen and talk things over, and who arranged the financial framework.
    [Show full text]
  • Trophic Ecology of Citrus Pests Based on Stable Isotope Analysis
    DOI: http://dx.doi.org/10.1590/1678-992X-2016-0496 ISSN 1678-992X Trophic ecology of citrus pests based on stable isotope analysis Adelino de Santi-Júnior, Victor Wilson Botteon*, Thiago Mastrangelo, Marcelo Zacharias Moreira Research Article Research University of São Paulo/CENA, Av. Centenário, 303 – 13416- ABSTRACT: Macrodactylus pumilio Burm. (Coleoptera: Scarabeidae) and Naupactus cervinus | 000 – Piracicaba, SP – Brazil. (Boh.) (Coleoptera: Curculionidae) are considered primary pests in citrus crops in Brazil, causing *Corresponding author <[email protected]> damage to plants and decreasing productivity. However, few studies investigate the ecology of these insects. In this context, the use of stable isotopes analysis (SIA) emerges as an alternative Edited by: Alberto Soares Corrêa technique to conventional studies of behavioral ecology because it is faster and may explain feeding behavior based on the food source for each species. Field sampling and laboratory Received December 15, 2016 experiments were carried out to examine the changes of carbon and nitrogen stable isotope 13 15 Accepted July 31, 2017 ratios (δ C and δ N) among pests and host plants (C3 citrus and C4 grasses), providing means Entomology to examine trophic interactions. Beetles were collected at the municipality of Gavião Peixoto, São Paulo State, identified and kept at 5 °C in saturated saline solution until the SIA. Two patterns for both species were found: δ13C value for N. cervinus was -23.6 ‰ and -13 ‰ for M. pumilio, indicating similarity between the results of δ13C of N. cervinus and citrus plants (-26 ‰) and dependence on grasses (-12 ‰) for M. pumilio individuals. The mean δ15N value was 4.3 and 5.8 ‰ for citrus plants and grass leaves, respectively, and the mean δ15N value was 4.4 ‰ for N.
    [Show full text]
  • Biogeography and the Evolution of ARTICLE flightlessness in a Radiation of Hawaiian Moths (Xyloryctidae: Thyrocopa) Matthew J
    Journal of Biogeography (J. Biogeogr.) (2011) 38, 101–111 ORIGINAL Biogeography and the evolution of ARTICLE flightlessness in a radiation of Hawaiian moths (Xyloryctidae: Thyrocopa) Matthew J. Medeiros1* and Rosemary G. Gillespie2 1Department of Integrative Biology, University ABSTRACT of California, Berkeley, CA 94720, USA, Aim Although the ability to fly confers benefits to most insects, some taxa have 2Department of Environmental Biology, University of California, Berkeley, CA 94720, become secondarily flightless. Insect flightlessness may be more likely to evolve in USA environments such as islands and other windswept and alpine areas, but this prediction has rarely been tested while controlling for phylogenetic effects. Here we present a phylogeny for the endemic Hawaiian Lepidoptera genus Thyrocopa, which has two flightless species that occur in alpine areas on Maui and Hawaii islands, in order to determine whether the flightless species are sister to each other or represent separate losses of flight. We also explore divergence times and biogeographic patterns of inter-island colonization in Thyrocopa, and present the first Hawaiian study to sample a genus from nine islands. Location The Hawaiian Islands. Methods The phylogeny is composed of 70 individuals (including 23 Thyrocopa species and 7 outgroup species) sequenced for portions of cytochrome c oxidase subunit I, elongation factor 1a and wingless genes, for a total of 1964 base pairs, and was estimated using both parsimony (paup*) and Bayesian inference (MrBayes). Divergence times were estimated using the beast software package. Results Our results indicate that two independent invasions of alpine habitats with concomitant loss of flight have occurred in Thyrocopa. Based on current taxon sampling, Thyrocopa colonized the Hawaiian Islands slightly before the formation of Kauai.
    [Show full text]