Genetically Engineered Aequorin for the Development of Novel Bioanalytical Systems

Total Page:16

File Type:pdf, Size:1020Kb

Genetically Engineered Aequorin for the Development of Novel Bioanalytical Systems University of Kentucky UKnowledge University of Kentucky Doctoral Dissertations Graduate School 2011 GENETICALLY ENGINEERED AEQUORIN FOR THE DEVELOPMENT OF NOVEL BIOANALYTICAL SYSTEMS Krystal Teasley Hamorksy University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Hamorksy, Krystal Teasley, "GENETICALLY ENGINEERED AEQUORIN FOR THE DEVELOPMENT OF NOVEL BIOANALYTICAL SYSTEMS" (2011). University of Kentucky Doctoral Dissertations. 182. https://uknowledge.uky.edu/gradschool_diss/182 This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF DISSERTATION Krystal Teasley Hamorsky The Graduate School University of Kentucky 2011 GENETICALLY ENGINEERED AEQUORIN FOR THE DEVELOPMENT OF NOVEL BIOANALYTICAL SYSTEMS ABSTRACT OF DISSERTATION A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Arts and Sciences at the University of Kentucky By Krystal Teasley Hamorsky Lexington, Kentucky Director: Dr. Sylvia Daunert, Professor of Chemistry Lexington, Kentucky 2011 Copyright © Krystal Teasley Hamorsky 2011 ABSTRACT OF DISSERTATION GENETICALLY ENGINEERED AEQUORIN FOR THE DEVELOPMENT OF NOVEL BIOANALYTICAL SYSTEMS The ability to rationally or randomly modify proteins has expanded their employment in various bioanalytical applications. The bioluminescent protein, aequorin, has been employed as a reporter for decades due to its simplistic, non-hazardous nature and its high sensitivity of detection. More recently aequorin has been subject to spectral tuning. Techniques such as random and site-directed mutagenesis, the incorporation of coelenterazine analogues and the incorporation of non-natural amino acids have expanded the palette of aequorin by altering their emission wavelengths and/or half-lifes. Due to the increased diversity of aequorin, it can be used in multianalyte detection. Although aequorin has been studied extensively and has been used as a reporter in a wide array of applications, it has never been employed as a reporter in systems that involve the splitting of aequorin. Herein we describe the splitting of aequorin in such a way where it becomes the reporter protein in the development of protein-based molecular switches. We have created two distinct protein switches by genetically inserting the glucose-binding protein and the sulfate-binding protein into the aequorin sequence, splitting it in such a manner that it allows for the selective detection of glucose and sulfate, respectively. In a separate investigation, we developed a bioluminescence inhibition binding assay for the detection of hydroxylated polychlorinated biphenyls. These systems have shown that they can be employed in the detection of the respective analyte in biological as well as in environmental samples, which demonstrated a sensitive, fast alternative approach to current methods for on-site screening. Furthermore, we propose the rational design, preparation and use of truncated aequorin fragments in bioanalytical platforms such as multi-analyte detection, protein complementation assays and protein tagging assays based on our discovery that truncated aequorin retains partial bioluminescence emission. One such truncated aequorin demonstrated a large red shift in the emission maximum. It is envisioned that this new red-shifted truncated aequorin will find applications in multi-analyte detection. We anticipate that this work will lead to the discovery of additional functional truncated aequorin fragments that can be employed in novel protein-protein interactions or protein folding systems. KEYWORDS: Photoprotein, Molecular Switch, Inhibition Assays, Binding Proteins, Truncated Proteins Krystal Teasley Hamorsky April, 23 2011 GENETICALLY ENGINEERED AEQUORIN FOR THE DEVELOPMENT OF NOVEL BIOANALYTICAL SYSTEMS By Krystal Teasley Hamorsky Sylvia Daunert Director of Dissertation John Anthony Director of Graduate Studies April, 23 2011 RULES FOR THE USE OF DISSERTATIONS Unpublished dissertations submitted for the Doctor’s degree and deposited in the University of Kentucky Library are as a rule open for inspection, but are to be used only with due regard to the rights of the authors. Bibliographical references may be noted, but quotations and summaries of parts may be published only with the permission of the author, and with the usual scholarly acknowledgments. Extensive copying or publication of the dissertation in while or in part also requires the consent of the Dean of the Graduate School of the University of Kentucky. A library that borrows this dissertation for use by its patrons is expected to secure the signature of each user. Name Date DISSERTATION Krystal Teasley Hamorsky The Graduate School University of Kentucky 2011 GENETICALLY ENGINEERED AEQUORIN FOR THE DEVELOPMENT OF NOVEL BIOANALYTICAL SYSTEMS DISSERTATION A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Arts and Sciences at the University of Kentucky By Krystal Teasley Hamorsky Lexington, Kentucky Director: Dr. Sylvia Daunert, Professor of Chemistry Lexington, Kentucky 2011 Copyright © Krystal Teasley Hamorsky 2011 For my nieces, Kallie, Jersey and Amaya ACKNOWLEDGMENTS This dissertation would not have been made possible without the support of several people. First and foremost, I would like to thank my advisor, Dr. Sylvia Daunert, for her outstanding encouragement and guidance throughout my graduate career. She has allowed me to working independently, supported my ideas and given me a great deal of assistance along the way. Without her, my dissertation would not be possible. I am particularly grateful to her for the funding she has provides me with grants from the National Institutes of Health and the National Institutes of Environmental Health. I am also thankful for a Superfund Research Fellowship as well as Gill Fellowship. Furthermore, I would like to thank my committee members, Dr. Leonidas Bachas, Dr. Kim Anderson, and Dr Mark Lovell, for their time and effort throughout my research. Special thanks go to Dr. Bachas for his helpful advice and suggestions during group meetings. I am forever grateful for Dr. Mark Ensor, who has been amazing in guiding me through molecular biology. He deserves many thanks for teaching me countless techniques in addition to editing my papers and dissertation. Moreover, he has been encouraging and I have enjoyed our early morning talks. Dr. Emre Dikici also deserves gratitude for all of our conversations about my research leading to many helpful suggestions. He also merits acknowledgement for revising my dissertation and assistance in making figures in chapters one and two. Additionally, I would like to thank Dr. Yinan Wei for aid in chapter two. She trained me to use the circular dichroism instrument which was influential to chapter two’s publication. Furthermore she assisted in interpretation of iii the data. Dr. Patrizia Pazini deserves thanks for her analytical insight in chapters three and four and I appreciate her help in revising all chapters of my disseration. I am very thankful for the group members, past and present, of Dr. Daunert’s and Dr. Bachas’ research groups. I am grateful for the scientific talks that I have share with them, especially Leslie Doleman Knecht and Kendrick Turner whom I trouble shoot with on regular basis. I have enjoyed getting to know the lab members and I am thankful for the friendships that have developed. I am especially grateful for my family for their endless love and support. Even though most of my family does not understand my research or anything about graduate school they have always been there when I have needed them. I want to thank my mom for being my best friend and for all of our phone conversation that have helped me tackle life. I also want to thank my grandparents for always being there for me and the encouragement they have given me. Moreover, I appreciate my nieces for being wonderful and keeping me motivated when my motivation seems lost. They do not know how special they are to me. Last but not least, I indebted to my husband, Kyle for his patience, love and support. He has stood by me through thick and thin, and I would not have made it without him. He has been there to encourage me and lift me up when I am down, research or life. I am thankful for all the stressful moments that he has made better. He has helped me keep my motivation and celebrate each successful step of my career. iv TABLE OF CONTENTS Acknowledgments.............................................................................................................. iii List of Tables .................................................................................................................... vii List of Figures .................................................................................................................. viii Chapter One: Introduction Bioluminescence ......................................................................................................1 Photoproteins ...........................................................................................................2 Aequorin ..................................................................................................................3
Recommended publications
  • Acidic Phospholipids,47, 58 Acidification Steps, 23 Adsorbent, 53
    Index acidic phospholipids,47, 58 ATPase, 22, 107 acidification steps, 23 auto-oxidation, 48,49 adsorbent, 53 aequorin, 95 aggregated mitochondria, 23 bacterial cells, 10 alcohols, 49 bacteriorhodopsin (BR), 218,232 alkaline hydrolysis, I bee venom, 121 alkyl esters, 57, 59 binders,53 amide bond, 129 silica gel, 53, 65, 176 amide linkage, 14 silica gel H, 176 amino alcohol, II bioactive phospholipids, 144 amino-group labelling reagents, 121 blanching, 50 aminopeptidase, 17 buoyant density, 16 aminophospholipid, 113, 118 butyl hydroxy toluene (BHT), 49,212 aminophospholipid pump, 119, 140 aminophospholipid translocase, 11 3 amphotericin B (AmB), 107 Cal+ -ATPases, 28, 107 N-(1-deoxyD-fructos-1-yl) AmB, 107 Cal+ -uptake, 27 anchored lipids, 38 campesterol, 104 angular amplitude, 89 calciferol, 78 anilino-8-naphthalene sulfonate (ANS), Candida albicans, 59, 60, 61, 76, 78, 102, 94, 103 104, 108 animal cells, 10 caproic acid, 129, 130 animal tissues, 9 carotenoids, 37 anion transporter, 135 cell debris, 33 anisotropy, 81 , 89, 95, 96, 97, 102, 104, cell disintegrator, 19 105 ceramide, 14, 129, 194 antagonists, 178 ceramide monohexosides ( CMH), 60 antioxidant, 49, 50 cerebroside, 14 apolar lipids, 56, 57, 69 chemical probes,112 arachidonic acid (AA), 144,153, 161 chloroplast, 32, 33 artificial membrane, 83 isolation, 32, 33 ascending chromatography, 54 purification, 33 asymmetric topology, 128 cholesterol, 14, 15,212 asymmetry, 112, 113,119 choline, 7, 9 atebrin, 95 chromatograms, 55 Index 249 chromatographic analyses, 52 ELISA, 146, 148
    [Show full text]
  • Bioluminescent Properties of Semi-Synthetic Obelin and Aequorin Activated by Coelenterazine Analogues with Modifications of C-2, C-6, and C-8 Substituents
    International Journal of Molecular Sciences Article Bioluminescent Properties of Semi-Synthetic Obelin and Aequorin Activated by Coelenterazine Analogues with Modifications of C-2, C-6, and C-8 Substituents 1, 2,3, 1 2, Elena V. Eremeeva y , Tianyu Jiang y , Natalia P. Malikova , Minyong Li * and Eugene S. Vysotski 1,* 1 Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk 660036, Russia; [email protected] (E.V.E.); [email protected] (N.P.M.) 2 Key Laboratory of Chemical Biology (MOE), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China; [email protected] 3 State Key Laboratory of Microbial Technology, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China * Correspondence: [email protected] (M.L.); [email protected] (E.S.V.); Tel.: +86-531-8838-2076 (M.L.); +7-(391)-249-44-30 (E.S.V.); Fax: +86-531-8838-2076 (M.L.); +7-(391)-290-54-90 (E.S.V.) These authors contributed equally to this work. y Received: 23 June 2020; Accepted: 27 July 2020; Published: 30 July 2020 Abstract: Ca2+-regulated photoproteins responsible for bioluminescence of a variety of marine organisms are single-chain globular proteins within the inner cavity of which the oxygenated coelenterazine, 2-hydroperoxycoelenterazine, is tightly bound. Alongside with native coelenterazine, photoproteins can also use its synthetic analogues as substrates to produce flash-type bioluminescence. However, information on the effect of modifications of various groups of coelenterazine and amino acid environment of the protein active site on the bioluminescent properties of the corresponding semi-synthetic photoproteins is fragmentary and often controversial.
    [Show full text]
  • Bioluminescence Is Produced by a Firefly-Like Luciferase but an Entirely
    www.nature.com/scientificreports OPEN New Zealand glowworm (Arachnocampa luminosa) bioluminescence is produced by a Received: 8 November 2017 Accepted: 1 February 2018 frefy-like luciferase but an entirely Published: xx xx xxxx new luciferin Oliver C. Watkins1,2, Miriam L. Sharpe 1, Nigel B. Perry 2 & Kurt L. Krause 1 The New Zealand glowworm, Arachnocampa luminosa, is well-known for displays of blue-green bioluminescence, but details of its bioluminescent chemistry have been elusive. The glowworm is evolutionarily distant from other bioluminescent creatures studied in detail, including the frefy. We have isolated and characterised the molecular components of the glowworm luciferase-luciferin system using chromatography, mass spectrometry and 1H NMR spectroscopy. The purifed luciferase enzyme is in the same protein family as frefy luciferase (31% sequence identity). However, the luciferin substrate of this enzyme is produced from xanthurenic acid and tyrosine, and is entirely diferent to that of the frefy and known luciferins of other glowing creatures. A candidate luciferin structure is proposed, which needs to be confrmed by chemical synthesis and bioluminescence assays. These fndings show that luciferases can evolve independently from the same family of enzymes to produce light using structurally diferent luciferins. Glowworms are found in New Zealand and Australia, and are a major tourist attraction at sites located across both countries. In contrast to luminescent beetles such as the frefy (Coleoptera), whose bioluminescence has been well characterised (reviewed by ref.1), the molecular details of glowworm bioluminescence have remained elusive. Tese glowworms are the larvae of fungus gnats of the genus Arachnocampa, with eight species endemic to Australia and a single species found only in New Zealand2.
    [Show full text]
  • Color-Tunable Bioluminescence Imaging Portfolio for Cell
    www.nature.com/scientificreports OPEN Color‑tunable bioluminescence imaging portfolio for cell imaging Shota Tamaki1,3, Nobuo Kitada1,3, Masahiro Kiyama1, Rika Fujii2, Takashi Hirano1, Sung Bae Kim2* & Shojiro Maki1* The present study describes a color‑tunable imaging portfolio together with twelve novel coelenterazine (CTZ) analogues. The three groups of CTZ analogues create diverse hues of bioluminescence (BL) ranging from blue to far red with marine luciferases. We found that the hue completes the whole color palette in the visible region and shows red‑shifted BL with a marine luciferase: for example, Renilla luciferase 8 (RLuc8) and Artifcial Luciferase 16 (ALuc16) show 187 nm‑ and 105 nm‑redshifted spectra, respectively, by simply replacing the substrate CTZ with 1d. The optical properties of the new CTZ analogues were investigated such as the kinetic parameters, dose dependency, and luciferase specifcity. The 2‑series CTZ analogues interestingly have specifcity to ALucs and are completely dark with RLuc derivatives, and 3d is highly specifc to only NanoLuc. We further determined the theoretical background of the red‑shifted BL maximum wavelengths (λBL) values according to the extended π conjugation of the CTZ backbone using Density Functional Theory (DFT) calculations. This color‑tunable BL imaging system provides a useful multicolor imaging portfolio that efciently images molecular events in mammalian cells. Cells provoke diverse intracellular signal transductions in response to a myriad of stimuli from the surround- ing environment1. As cellular systems are such dynamical entities, multiplex imaging is a plausible modality for spying and visualizing such molecular events in cells. To date, bioluminescence (BL) has been broadly utilized for imaging diverse molecular events in the complex context of living subjects2.
    [Show full text]
  • Bioluminescence Related Publications from JNC Corporation
    Bioluminescence related publications since 1985 110) Inouye, S. and Hojo, H. (2018) Revalidation of recombinant aequorin as a light emission standard: Estimation of specific activity of Gaussia luciferase. Biochem. Biophys. Res. Commun. 507: 242-245. 109) Yokawa, S., Suzuki, T., Hayashi, A., Inouye, S., Inoh, Y. and Furuno, T. (2018) Video-rate bioluminescence imaging of degranulation of mast cells attached to the extracellular matrix. Front. Cell Dev. Biol. 6: 74. 108) Inouye, S., Tomabechi, Y., Hosoya, T., Sekine, S. and Shirouzu, M. (2018) Slow luminescence kinetics of semi-synthetic aequorin:expression, purification and structure determination of cf3-aequorin. J. Biochem. 164(3): 247–255. 107) Inouye, S. (2018) Single-step purification of recombinant Gaussia luciferase from serum-containing culture medium of mammalian cells. Protein Expr. Purif. 141: 32-38. 106) Inouye, S. and Sahara-Miura, Y. (2017) A fusion protein of the synthetic IgG-binding domain and aequorin: Expression and purification from E. coli cells and its application. Protein Expr. Purif. 137: 58-63. 105) Suzuki, T., Kanamori, T. and Inouye, S. (2017) Quantitative visualization of synchronized insulin secretion from 3D-cultured cells. Biochem. Biophys. Res. Commun. 486: 886-892. 104) Yokawa, S., Suzuki, T., Inouye, S., Inoh, Y., Suzuki, R., Kanamori, T., Furuno, T. and Hirashima, N. (2017) Visualization of glucagon secretion from pancreatic α cells by bioluminescence video microscopy: Identification of secretion sites in the intercellular contact regions. Biochem. Biophys. Res. Commun. 485: 725-730. 103) Inouye, S. and Suzuki, T. (2016) Protein expression of preferred human codon-optimized Gaussia luciferase genes with an artificial open-reading frame in mammalian and bacterial cells.
    [Show full text]
  • BPS Complete Catalog
    BPSCATALOG ENZYMES KITS CELL LINES SCREENING SERVICES INNOVATIVE PRODUCTS TO FUEL YOUR EXPERIMENTS Unique, expert portfolio 2017 OUR MISSION: To provide the highest quality life science products and services worldwide in a timely manner to assist in accelerating drug discovery research and development for the treatment of human diseases. INNOVATION WE CONTINUOUSLY STRIVE TO BE FIRST TO MARKET BY PROVIDING EXPERTISE IN EXPRESSING HIGHLY ACTIVE ENZYMES MULTIPLE ASSAY DETECTION FORMATS HUMAN, MURINE AND MONKEY VERSIONS OF RECOMBINANT PROTEINS BIOTINYLATED VERSIONS OF MANY IMMUNE CHECKPOINT RECEPTORS 1ST AND MOST EXTENSIVE PARP ISOZYME PORTFOLIO 1ST AND MOST EXTENSIVE PDE ISOZYME PORTFOLIO 1ST COMPLETE SUITE OF HDAC AND SIRT ENZYMES 1ST AVAILABLE PARP AND TANKYRASE PROFILING SERVICES 1ST COMMERCIALLY AVAILABLE HISTONE DEMETHYLASES LARGEST OFFERING OF METHYLTRANSFERASES LARGEST OFFERING OF DEMETHYLASES OVER 200 PRODUCTS AND SERVICES EXCLUSIVE TO BPS RELIABILITY BPS IS CITED IN PEER-REVIEWED JOURNALS AND PUBLICATIONS AROUND THE WORLD NATURE GENETICS THE JOURNAL OF BIOLOGICAL CHEMISTRY JOURNAL OF CELL SCIENCE ANALYTICAL BIOCHEMISTRY BBRC NATURE CHEMICAL BIOLOGY ACS MEDICINAL CHEMISTRY LETTERS JOURNAL OF NATURAL PRODUCTS CHEMMEDCHEM MOLECULAR CANCER THERAPEUTICS & MANY MORE TABLE OF CONTENTS ACETYLTRANSFERASE 4 APOPTOSIS 4-5 ANTIBODIES 6-9 BIOTINYLATION 10-11 BROMODOMAINS 12-14 CELL BASED ASSAY KITS 15 CELL LINES 16-17 CELL SURFACE RECEPTORS 18-20 CYTOKINE(S) 21-24 DEACETYLASE(S) 25-27 DEMETHYLASE(S) 28-29 HEAT SHOCK PROTEINS 30 IMMUNOTHERAPY
    [Show full text]
  • Platelet-Neutrophil Interaction
    PLATELET-NEUTROPHIL INTERACTION: NEUTROPHILS MODULATE PLATELET FUNCTION Richard William FAINT 1992 A thesis submitted to the University of London for the degree of Ph.D The Department of Haematology University College and Middlesex School of Medicine University College London 98 Chenies Mews London WC1E 6HX ProQuest Number: U049250 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest U049250 Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 2 ABSTRACT Platelets are vital for the arrest of bleeding following tissue injury. Neutrophils play an important role in host defence against bacterial infection. In the milieu of the acute inflammatory response both cellular and non-cellular elements may interact to modify behaviour. Evidence suggests that leukocytes may play an active role in the modulation of platelet function. This interaction may be abnormal in certain pathological states. This study examined the effect of purified neutrophils upon both washed platelets and platelet-rich plasma, as well as in whole blood in vitro. Neutrophils were found to alter platelet behaviour by several mechanisms. These included transcellular metabolism of eicosanoids.
    [Show full text]
  • Antibody List
    產品編號 產品名稱 PA569955 1110059E24Rik Polyclonal Antibody PA569956 1110059E24Rik Polyclonal Antibody PA570131 1190002N15Rik Polyclonal Antibody 01-1234-42 123count eBeads Counting Beads MA512242 14.3.3 Pan Monoclonal Antibody (CG15) LFMA0074 14-3-3 beta Monoclonal Antibody (60C10) LFPA0077 14-3-3 beta Polyclonal Antibody PA137002 14-3-3 beta Polyclonal Antibody PA14647 14-3-3 beta Polyclonal Antibody PA515477 14-3-3 beta Polyclonal Antibody PA517425 14-3-3 beta Polyclonal Antibody PA522264 14-3-3 beta Polyclonal Antibody PA529689 14-3-3 beta Polyclonal Antibody MA134561 14-3-3 beta/epsilon/zeta Monoclonal Antibody (3C8) MA125492 14-3-3 beta/zeta Monoclonal Antibody (22-IID8B) MA125665 14-3-3 beta/zeta Monoclonal Antibody (4E2) 702477 14-3-3 delta/zeta Antibody (1H9L19), ABfinity Rabbit Monoclonal 711507 14-3-3 delta/zeta Antibody (1HCLC), ABfinity Rabbit Oligoclonal 702241 14-3-3 epsilon Antibody (5H10L5), ABfinity Rabbit Monoclonal 711273 14-3-3 epsilon Antibody (5HCLC), ABfinity Rabbit Oligoclonal PA517104 14-3-3 epsilon Polyclonal Antibody PA528937 14-3-3 epsilon Polyclonal Antibody PA529773 14-3-3 epsilon Polyclonal Antibody PA575298 14-3-3 eta (Lys81) Polyclonal Antibody MA524792 14-3-3 eta Monoclonal Antibody PA528113 14-3-3 eta Polyclonal Antibody PA529774 14-3-3 eta Polyclonal Antibody PA546811 14-3-3 eta Polyclonal Antibody MA116588 14-3-3 gamma Monoclonal Antibody (HS23) MA116587 14-3-3 gamma Monoclonal Antibody (KC21) PA529690 14-3-3 gamma Polyclonal Antibody PA578233 14-3-3 gamma Polyclonal Antibody 510700 14-3-3 Pan Polyclonal
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,574.223 B2 Cali Et Al
    USO095.74223B2 (12) United States Patent (10) Patent No.: US 9,574.223 B2 Cali et al. (45) Date of Patent: *Feb. 21, 2017 (54) LUMINESCENCE-BASED METHODS AND 4,826,989 A 5/1989 Batz et al. PROBES FOR MEASURING CYTOCHROME 4,853,371 A 8/1989 Coy et al. 4,992,531 A 2f1991 Patroni et al. P450 ACTIVITY 5,035,999 A 7/1991 Geiger et al. 5,098,828 A 3/1992 Geiger et al. (71) Applicant: PROMEGA CORPORATION, 5,114,704 A 5/1992 Spanier et al. Madison, WI (US) 5,283,179 A 2, 1994 Wood 5,283,180 A 2f1994 Zomer et al. 5,290,684 A 3/1994 Kelly (72) Inventors: James J. Cali, Verona, WI (US); Dieter 5,374,534 A 12/1994 Zomer et al. Klaubert, Arroyo Grande, CA (US); 5,498.523 A 3, 1996 Tabor et al. William Daily, Santa Maria, CA (US); 5,641,641 A 6, 1997 Wood Samuel Kin Sang Ho, New Bedford, 5,650,135 A 7/1997 Contag et al. MA (US); Susan Frackman, Madison, 5,650,289 A T/1997 Wood 5,726,041 A 3/1998 Chrespi et al. WI (US); Erika Hawkins, Madison, WI 5,744,320 A 4/1998 Sherf et al. (US); Keith V. Wood, Mt. Horeb, WI 5,756.303 A 5/1998 Sato et al. (US) 5,780.287 A 7/1998 Kraus et al. 5,814,471 A 9, 1998 Wood (73) Assignee: PROMEGA CORPORATION, 5,876,946 A 3, 1999 Burbaum et al. 5,976,825 A 11/1999 Hochman Madison, WI (US) 6,143,492 A 11/2000 Makings et al.
    [Show full text]
  • Molecular Mechanism of Active Photoprotein Complex Formation
    Molecular Mechanism of Active Photoprotein Complex Formation Elena V. Eremeeva Thesis committee Promotors Prof. dr. W.J.H. van Berkel Personal Chair at the Laboratory of Biochemistry Prof. dr. A.J.W.G. Visser Emeritus Professor of Microspectroscopy Co-promotor Dr. E.S. Vysotski Associate professor Institute of Biophysics, Russian Academy of Sciences, Krasnoyarsk Other members Prof. dr. H. van Amerongen, Wageningen University Prof. dr. S. de Vries, Delft University of Technology Dr. J.T.M. Kennis, VU University Amsterdam Dr. S. J.J. Brouns, Wageningen University This research was conducted under the auspices of the Graduate School VLAG (Advanced studies in Food Technology, Agrobiotechnology, Nutrition and Health Sciences). Molecular Mechanism of Active Photoprotein Complex Formation Elena V. Eremeeva Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Wednesday 16 January 2013 at 4 p.m. in the Aula. Elena V. Eremeeva Molecular mechanism of active photoprotein complex formation 195 pages Thesis, Wageningen University, Wageningen, NL (2013) With references, with summaries in English and Dutch ISBN 978-94-6173-458-7 Table of contents Chapter 1 General Introduction 7 Chapter 2 Ligand binding and conformational states of the photoprotein 25 obelin Chapter 3 The intrinsic fluorescence of apo-obelin and apo-aequorin and 43 use of its
    [Show full text]
  • Site-Specific Mutagenesis of the Calcium-Binding Photoprotein
    Proc. Natd. Acad. Sci. USA Vol. 83, pp. 8107-8111, November 1986 Biochemistry Site-specific mutagenesis of the calcium-binding photoprotein aequorin (bioluninescence/oxygenase/oligonudeotide-directed mutagenesis/protein modification) FREDERICK I. TsuJI*, SATOSHI INOUYEtt, TOSHIO GOTO§, AND YOSHIYUKI SAKAKIt *Marine Biology Research Division, Scripps Institution of Oceanography, University of California-San Diego, La Jolla, CA 92093, and V. A. Medical Center Brentwood, Los Angeles, CA 90073; tResearch Laboratory for Genetic Information, Kyushu University, Fukuoka 812, Japan; and §Department of Agricultural Chemistry, Faculty of Agriculture, Nagoya University, Nagoya 464, Japan Communicated by Martin D. Kamen, July 21, 1986 ABSTRACT The luminescent protein aequorin from the which amino acid substitutions were made at the three jellyfish Aequoria victoria emits light by an intramolecular Ca2l-binding sites, at the three cysteines, and at histidine in reaction in the presence of a trace amount of Ca2 . In order to the hydrophobic region. understand the mechanism of the reaction, a study of structure-function relationships was undertaken with respect MATERIALS AND METHODS to modifying certain of its amino acid residues. This was done by carrying out oligonudeotide-directed site-specific mutagen- Enzymes and Chemicals. All restriction endonucleases, esis of apoaequorin cDNA and expressing the mutagenized Escherichia coli T4 DNA ligase, Klenow enzyme of DNA cDNA in Escherichia cofi. Amino acid substitutions were made polymerase 1, and T4 polynucleotide kinase were purchased at the three Ca2+-binding sites, the three cysteines, and a from Takara Shuzo (Kyoto, Japan). Tris, 2-mercaptoethanol, histidine in one of the hydrophobic regions. Subsequent assay and isopropyl-,fD-thiogalactopyranoside were obtained from of the modified aequorin showed that the Ca2 -binding sites, Wako Pure Chemicals (Osaka, Japan).
    [Show full text]
  • Luciferin Production and Luciferase Transcription in the Bioluminescent Copepod Metridia Lucens
    City University of New York (CUNY) CUNY Academic Works Publications and Research Baruch College 2018 Luciferin production and luciferase transcription in the bioluminescent copepod Metridia lucens Michael Tessler American Museum of Natural History Jean P. Gaffney CUNY Bernard M Baruch College Jason M. Crawford Yale University Eric Trautman Yale University Nehaben A. Gujarati CUNY Bernard M Baruch College See next page for additional authors How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/bb_pubs/1104 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Authors Michael Tessler, Jean P. Gaffney, Jason M. Crawford, Eric Trautman, Nehaben A. Gujarati, Philip Alatalo, Vincent A. Pierbone, and David F. Gruber This article is available at CUNY Academic Works: https://academicworks.cuny.edu/bb_pubs/1104 Luciferin production and luciferase transcription in the bioluminescent copepod Metridia lucens Michael Tessler1, Jean P. Gaffney2,3, Jason M. Crawford4, Eric Trautman4, Nehaben A. Gujarati2, Philip Alatalo5, Vincent A. Pieribone6 and David F. Gruber2,3 1 Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA 2 Department of Natural Sciences, City University of New York, Bernard M. Baruch College, New York, NY, United States of America 3 Biology, City University of New York, Graduate School and University Center, New York, NY, United States of America 4 Department of Chemistry, Yale University, New Haven, CT, United States of America 5 Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States of America 6 Cellular and Molecular Physiology, Yale University, New Haven, CT, United States of America ABSTRACT Bioluminescent copepods are often the most abundant marine zooplankton and play critical roles in oceanic food webs.
    [Show full text]