Deconstructing Google Dataset Search May 2019 1 Introduction A

Total Page:16

File Type:pdf, Size:1020Kb

Deconstructing Google Dataset Search May 2019 1 Introduction A Deconstructing Google Dataset Search May 2019 Introduction A little ripple went through the data services airwaves in fall of 2018 when Google announced its beta version of the Google Dataset Search. Google Scholar is increasingly successful as a research product, and now the tech giant has stepped forward again to bring its signature style to the data. This could be a great boon to data discovery and increase the overall sharing and use of research. But with that, Google brings its now familiar persuasive model to bear on another piece of digital research. This tool, especially if it follows the Google Scholar trajectory, will certainly make finding datasets easier. But will a corresponding increase in data provenance, sharing, and interoperability follow? Or, as with Google Scholar and publisher paywalls, will this tool’s impact be to highlight the painful gaps in data re- use, interoperability, and documentation? How did Google Dataset Search Start? Beta Google Dataset Search is launching in a rich landscape. It is rich both in content, as use of web- based data repositories grow, and in opportunity, as standards, guidelines, and even publishing requirements dictate ever-changing data sharing norms. As we in libraries have experienced, this shift in the data landscape is concurrent with trends in publishing, reproducible and open science, and the exciting opportunities new technology afford us year after year (Ware & Mabe, 2015). In 2017, Natasha Noy and Dan Brickley posted to Google’s AI Blog announcing the new project to make public datasets searchable through Google Search (Noy & Brickley, 2017). Citing the growing need for research data to be made available publicly, the Google team indicates that a search through their famous engine could be possible. This is thanks to increasing popularity of structured and standardized descriptions of datasets. The challenge Google’s team is setting out to answer, per their own blog post, is that these datasets exist in multiple places across the internet. Not only that, but once a dataset is found, the “veracity or provenance of that information” is not always clear (Noy & Brickley, 2017). How does Google Dataset Search work? This search tool, like other Google products, will use website providers’ embedded descriptions and metadata. The more structured this information is, the better Google’s tools will be able to represent the website in search results. To achieve this, Google’s guidelines are based on Schema.org (Follow the structured, 2019). Schema.org vocabulary was initially founded by –Google, Yahoo, Microsoft and Yandex. Now it is developed through an open, transparent, community process facilitated by W3.org, the World Wide Web Consortium that actively develops and communicates about the growth of the web, and GitHub, a collaboration platform for web and software developersSchema.org, n.d.). Schema.org provides commonly used, open, and transparent description standards for website structure and metadata. It is notable that Noy and Brickley, in their blogpost, make the connection that Schema.org’s work on datasets closely follows W3C’s work. They “expect [it] will be a foundation for future elaborations and improvements to dataset description” (Noy & Brickley, 2017). This did not automatically provide a good way to make datasets machine-findable across the internet. So as with many other content types, Google published guidelines (Follow the structured, 2019). Alongside markups for job postings, recipes, and local businesses, there are structured data 1 Deconstructing Google Dataset Search May 2019 guidelines for datasets in the reference for developers. The markup guidelines provide definitions for required and recommended properties as well as best practices for sitemap, source, and provenance. Google also uses this guide to recommend using the Structured Data Testing tool to validate your code. This tool examines your website, or any other provided URL, and detects the use of specific data types and the tags that describe the information. This provides automatic feedback to site-builders about how the Google search engines ‘sees’ the website, and if there are any errors or warnings that can be corrected to improve the search. What is Google Dataset Search doing? In this tool, Google‘s machine is targeting structured data that indicates a datasets is linked or displayed on the webpage. To do so, Google will use the web developer’s markup on the webpages, as well as the sitemap files. It also looks for landing pages for the dataset, as seen in dataset repositories. By finding these specific structures of metadata in the webpages code, the Dataset Search knows if the page contains datasets or links to datasets, if it should be displayed in the search results, and if there is any description available. When scrutinizing for the markup on the website, Google Dataset Search is using the vocabulary of metadata properties provided by Schema.org to understand the webpage contents. This vocabulary defines the property ‘dataset’ as “a body of structured information describing some topic(s) of interest”, a type of thing part of the broader category ‘CreativeWork.’ (Dataset, n.d.). According to the Developers guidance, this property then requires two additional properties. The first is, “description,” defined as “a short summary describing a dataset.” This must be inputted as text in the code. The second required property to describe a ‘dataset’ is “name,” another text property defined as “a descriptive name of the dataset.” The guidance provides an additional fifteen properties that can be included in the website code. These are optional but provide deeper information about the dataset, including a citation, location, geospatial coverage, and temporal coverage.On the sitemap, Google is looking for practices that identify the relationships between links or files on the webpage. For example, it will seek named relationships between pages on the website using of the ‘sameAs’ or ‘isBasedOn’ properties. These properties indicate the description of the data repeated elsewhere on a site, if there are any derivatives or latter iterations of the dataset. The guidance documentation provided by Google explains the best use of these named relationships. Metadata implementation for websites is not always a perfect process, which is why Google maintains the guidance document and forums with FAQs for developers hoping to make their website discoverable (Follow the structured, 2019). Taken together, the guidance provided by Google for website developers aims to provide not only description, but access through links and citation information for datasets that appear in their search results, relying on that structured metadata embedded in web pages. Not only is this search tool now available for use, but the work of the search algorithms in finding the metadata is also being recorded by Google. This metadata will be used to compose what the Google team is calling “an index of enriched metadata” (Burgess & Noy, 2018). This index is what will provide more power and speed to Google Dataset Search as it grows. How is it different from other Google Data tools? 2 Deconstructing Google Dataset Search May 2019 The Google Dataset Search does provide a more in-depth search result for a distinct type of resource, compared to other tools. It will find a wide variety of materials, from proprietary formats, to spreadsheets, even to organized tabular information displayed through HTML. These materials are raw datasets, usually with the type of format for download available. This is distinct from Google Public Data or Google Knowledge Graph. Google Public Data Explorer also leverages metadata to create an interface for searching and exploring data. The main difference is that Google Public Data Explorer requires two specific files, in specific formats, namely xml and csv. The goal of this interface is to create data visualizations, rather than access to raw data with citations (“DSPL Developer Guide,” 2015).The Google Knowledge Graph is the highlighted infobox that appears in search results and runs off Google’s retrieved results and metadata indexing to provide answer-like search results. It is also mentioned as a tool for fine-tuning the Google Dataset Search results (Burgess & Noy, 2018). These products are not necessarily similar, but the Google team expects interaction. This interaction will allow the dataset results improve rapidly where the Knowledge Graph has already demonstrated a method for improving the response from the algorithms. The Google team also draws the connection between Google Scholar and Google Dataset Search. Dataset metadata can be ‘augmented’ through Google Scholar through references and citation to provide both author data and a “signal about the importance and prominence of a dataset” (Burgess & Noy, 2018). The team alludes to stronger connections between the two in the future, although details are not yet available. An example search A simple example search of ‘graduation rates’ demonstrates the main features of the user interface. Unlike Google Public Data Explorer or Google Scholar, the beta Dataset Search has no advanced option for starting the query, only a keyword field. It does accept and encourage advanced Google search qualifiers such as ‘site.’ The search bar displays suggested search terms.Once the results have returned, the number of results is displayed in the top left. On a computer browser screen the results are displayed in two columns (On tablet or mobile, it is displayed as one column). The biggest change from the interface of Google Scholar or the Public Data Explorer is the lack of facets for search narrowing. Instead, results are displayed with logo images (if available), URL, and data if available for the results. In this example, the top results are from New York City Open Data initiative, Kaggle.com, and a U.S. dataset hosted on data.gov.The interface is also different because it has a more prominent ‘share’ icon in the right hand side of the dataset information pane.
Recommended publications
  • 2020 Vision: Info Pro Skills for a New Decade
    2020 Vision: Info Pro Skills for a New Decade Search Skills for Today’s Info Pros and Thriving in the New Information Landscape Presented by: Mary Ellen Bates Bates Information Services BatesInfo.com Presented for: Initiative Fortbildung e.V. 9 and 10 May 2019 2020 VISION DAY 1: Search Skills for Today’s Info Pros INSIDE A SEARCHER’S MIND: BRINGING THE DETECTIVE TO THE SEARCH ..........................................1 TECHNIQUES OF A DETECTIVE ......................................................................................................................2 DIFFERENT SEARCH APPROACHES.................................................................................................................3 GETTING CREATIVE....................................................................................................................................5 WHAT’S NEW (OR AT LEAST USEFUL) WITH GOOGLE: TIPS AND TOOLS FOR TODAY’S GOOGLE .........6 GOOGLE TRICKS........................................................................................................................................6 SEARCHING THE DEEP WEB / GREY LITERATURE ................................................................................8 SEARCH STRATEGIES FOR GREY LITERATURE....................................................................................................9 SOME GREY LIT/DEEP WEB TOOLS.............................................................................................................10 GLEANING INSIGHT FROM SOCIAL MEDIA........................................................................................12
    [Show full text]
  • Ciência De Dados Na Ciência Da Informação
    Ciência da Informação v. 49 n.3 set./dez. 2020 ISSN 0100-1965 eISSN 1518-8353 Edição especial temática Special thematic issue / Edición temática especial Ciência de dados na ciência da informação Data science in Information Sience Ciencia de datos en la Ciencia de la Información Instituto Brasileiro de Informação em Ciência e Tecnologia (Ibict) Diretoria Indexação Cecília Leite Oliveira Ciência da Informação tem seus artigos indexados ou resumidos. Coordenação-Geral de Pesquisa e Desenvolvimento de Novos Produtos (CGNP) Bases Internacionais Anderson Luis Cambraia Itaborahy Directory of Open Access Journals - DOAJ. Paschal Thema: Science de L’Information, Documentation. Library and Coordenação-Geral de Pesquisa e Manutenção de Produtos Consolidados (CGPC) Information Science Abstracts. PAIS Foreign Language Bianca Amaro Index. Information Science Abstracts. Library and Literature. Páginas de Contenido: Ciências de la Información. Coordenação-Geral de Tecnologias de Informação e Informática EDUCACCION: Notícias de Educación, Ciencia y Cultura (CGTI) Tiago Emmanuel Nunes Braga Iberoamericanas. Referativnyi Zhurnal: Informatika. ISTA Information Science & Technology Abstracts. LISTA Library, Coordenação de Ensino e Pesquisa, Ciência e Tecnologia da Information Science & Technology Abstracts. SciELO Informação (COEPPE) Scientific Electronic Library On-line. Latindex – Sistema Gustavo Saldanha Regional de Información em Línea para Revistas Científicas Coordenação de Planejamento, Acompanhamento e Avaliação de América Latina el Caribe, España y Portugal, México. (COPAV) INFOBILA: Información Bibliotecológica Latinoamericana. José Luis dos Santos Nascimento Indexação em Bases de Dados Nacionais Coordenação de Administração (COADM) Reginaldo de Araújo Silva Portal de Periódicos LivRe – Portal de Periódicos de Livre Acesso. Comissão Divisão de Editoração Científica Nacional de Energia Nuclear (Cnen). Portal Periódicos Ramón Martins Sodoma da Fonseca da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes).
    [Show full text]
  • Cc5212-1 Procesamiento Masivo De Datos Otoño 2020
    CC5212-1 PROCESAMIENTO MASIVO DE DATOS OTOÑO 2020 Lecture 4.5 Projects, Practice with Pig/Hadoop Aidan Hogan [email protected] Course Marking (Revised) • 75% for Weekly Labs (~9% a lab) – 4/4 obligatory, 4/7 optional • 25% for Class Project • Need to pass in overall grade Assignments each week Hands-on each week! Working in groups Working in groups! CLASS PROJECTS Class Project • Done in threes • Goal: Use what you’ve learned to do something cool/fun (hopefully) • Process: – Form groups of three (in the forum, before April 30th) – On April 30th we will assign the rest automatically – Start thinking up topics / find interesting datasets! – Register topic (deadline around May 21st) – Work on projects during semester – Deliverables will due be around week 13 • Deliverables: 4 minute presentation (video) & short report • Marked on: Difficulty, appropriateness, scale, good use of techniques, presentation, coolness, creativity, value – Ambition is appreciated, even if you don’t succeed Desiderata for project • Must focus around some technique from the course! • Expected difficulty: similar to a lab, but without any instructions • Data not too small: – Should have >250,000 tuples/entries • Data not too large: – Should have <1,000,000,000 tuples/entries – If very large, perhaps take a sample? • In case of COVID-19 data, we can make exceptions Where to find/explore data? • Kaggle: – https://www.kaggle.com/ • Google Dataset Search: – https://datasetsearch.research.google.com/ • Datos Abiertos de Chile: – https://datos.gob.cl/ – https://es.datachile.io/ • … PRACTICE WITH HADOOP/PIG Practice with Hadoop • Optional Assignment 1 (not evaluated): – Hadoop: Find the number of good movies in which each actor/actresses has starred.
    [Show full text]
  • Dataset Search: a Lightweight, Community-Built Tool to Support Research Data Discovery
    Journal of eScience Librarianship Volume 10 Issue 1 Special Issue: Research Data and Article 3 Preservation (RDAP) Summit 2020 2021-01-19 Dataset Search: A lightweight, community-built tool to support research data discovery Sara Mannheimer Montana State University Et al. Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/jeslib Part of the Scholarly Communication Commons Repository Citation Mannheimer S, Clark JA, Hagerman K, Schultz J, Espeland J. Dataset Search: A lightweight, community- built tool to support research data discovery. Journal of eScience Librarianship 2021;10(1): e1189. https://doi.org/10.7191/jeslib.2021.1189. Retrieved from https://escholarship.umassmed.edu/jeslib/ vol10/iss1/3 Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 License. This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Journal of eScience Librarianship by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. ISSN 2161-3974 JeSLIB 2021; 10(1): e1189 https://doi.org/10.7191/jeslib.2021.1189 Full-Length Paper Dataset Search: A lightweight, community-built tool to support research data discovery Sara Mannheimer, Jason A. Clark, Kyle Hagerman, Jakob Schultz, and James Espeland Montana State University, Bozeman, MT, USA Abstract Objective: Promoting discovery of research data helps archived data realize its potential to advance knowledge. Montana
    [Show full text]
  • Talks & Abstracts
    TALKS & ABSTRACTS MONDAY, MAY 13 Welcome & Opening Remarks: Keith Webster, Dean, Carnegie Mellon University Libraries Michael McQuade, Vice President for Research, Carnegie Mellon University Beth A. Plale, Science Advisor, CISE/OAC, National Science Foundation Keynote 1: Tom Mitchell, Interim Dean, E. Fredkin University Professor, School of Computer Science, Carnegie Mellon University Title: Discovery from Brain Image Data Abstract: How does the human brain use neural activity to create and represent meanings of words, phrases, sentences and stories? One way to study this question is to collect brain image data to observe neural activity while people read text. We have been doing such experiments with fMRI (1 mm spatial resolution) and MEG (1 msec time resolution) brain imaging, and developing novel machine learning approaches to analyze this data. As a result, we have learned answers to questions such as "Are the neural encodings of word meaning the same in your brain and mine?", and "What sequence of neurally encoded information flows through the brain during the half-second in which the brain comprehends a word?" This talk will summarize our machine learning approach to data discovery, and some of what we have learned about the human brain as a result. We will also consider the question of how reuse and aggregation of such scientific data might change the future of research in cognitive neuroscience. Session 1: Automation in data curation and metadata generation Session Chair: Paola Buitrago, Director for AI and Big Data, Pittsburgh Supercomputing Center 1.1 Keyphrase extraction from scholarly documents for data discovery and reuse Cornelia Caragea and C.
    [Show full text]
  • Search, Reuse and Sharing of Research Data in Materials Science and Engineering—A Qualitative Interview Study
    PLOS ONE RESEARCH ARTICLE Search, reuse and sharing of research data in materials science and engineeringÐA qualitative interview study Bettina SuhrID*, Johanna Dungl, Alexander StockerID Virtual Vehicle Research GmbH, Graz, Austria * [email protected] a1111111111 a1111111111 a1111111111 Abstract a1111111111 a1111111111 Open research data practices are a relatively new, thus still evolving part of scientific work, and their usage varies strongly within different scientific domains. In the literature, the inves- tigation of open research data practices covers the whole range of big empirical studies covering multiple scientific domains to smaller, in depth studies analysing a single field of OPEN ACCESS research. Despite the richness of literature on this topic, there is still a lack of knowledge on Citation: Suhr B, Dungl J, Stocker A (2020) the (open) research data awareness and practices in materials science and engineering. Search, reuse and sharing of research data in While most current studies focus only on some aspects of open research data practices, we materials science and engineeringÐA qualitative aim for a comprehensive understanding of all practices with respect to the considered scien- interview study. PLoS ONE 15(9): e0239216. https://doi.org/10.1371/journal.pone.0239216 tific domain. Hence this study aims at 1) drawing the whole picture of search, reuse and sharing of research data 2) while focusing on materials science and engineering. The cho- Editor: Marco Lepidi, University of Genova, ITALY sen approach allows to explore the connections between different aspects of open research Received: February 27, 2020 data practices, e.g. between data sharing and data search. In depth interviews with 13 Accepted: September 1, 2020 researchers in this field were conducted, transcribed verbatim, coded and analysed using Published: September 15, 2020 content analysis.
    [Show full text]
  • A Day Without a Search Engine: an Experimental Study of Online and Offline Searches∗
    A Day without a Search Engine: An Experimental Study of Online and Offline Searches∗ Yan Chen Grace YoungJoo Jeon Yong-Mi Kim March 6, 2013 Abstract With the advent of the Web and search engines, online searching has become a common method for obtaining information. Given this popularity, the question arises as to how much time people save by using search engines for their information needs, and the extent to which online search affects search experiences and outcomes. Using a random sample of queries from a major search engine and a sample of reference questions from the Internet Public Library (IPL), we conduct a real-effort experiment to compare online and offline search experiences and outcomes. We find that participants are significantly more likely to find an answer on the Web, compared to offline searching. Restricting to the set of questions in which participants find answers in both treatments, a Web search takes on average 7 (9) minutes, whereas the corresponding offline search takes 22 (19) minutes for a search-engine (IPL) question. While library sources are judged to be significantly more trustworthy and authoritative than the corresponding Web sources, Web sources are judged to be significantly more relevant. Balancing all factors, the overall source quality is not significantly different between the two treatments for search-engine questions. However, for IPL questions, non-Web sources are judged to have significantly higher overall quality than the corresponding Web sources. Lastly, post-search questionnaires reveal that participants find online searching more enjoyable than offline searching. Keywords: search, productivity, experiment JEL Classification: C93, H41 ∗We would like to thank David Campbell, Jacob Goeree, Jeffrey MacKie-Mason, Karen Markey, Betsy Masiello, Soo Young Rieh and Hal Varian for helpful discussions, Donna Hayward and her colleagues at the University of Michi- gan Hatcher Graduate Library for facilitating the non-Web treatment, Ashlee Stratakis and Dan Stuart for excellent research assistance.
    [Show full text]
  • U.S. Government Publishing Office Style Manual
    Style Manual An official guide to the form and style of Federal Government publishing | 2016 Keeping America Informed | OFFICIAL | DIGITAL | SECURE [email protected] Production and Distribution Notes This publication was typeset electronically using Helvetica and Minion Pro typefaces. It was printed using vegetable oil-based ink on recycled paper containing 30% post consumer waste. The GPO Style Manual will be distributed to libraries in the Federal Depository Library Program. To find a depository library near you, please go to the Federal depository library directory at http://catalog.gpo.gov/fdlpdir/public.jsp. The electronic text of this publication is available for public use free of charge at https://www.govinfo.gov/gpo-style-manual. Library of Congress Cataloging-in-Publication Data Names: United States. Government Publishing Office, author. Title: Style manual : an official guide to the form and style of federal government publications / U.S. Government Publishing Office. Other titles: Official guide to the form and style of federal government publications | Also known as: GPO style manual Description: 2016; official U.S. Government edition. | Washington, DC : U.S. Government Publishing Office, 2016. | Includes index. Identifiers: LCCN 2016055634| ISBN 9780160936029 (cloth) | ISBN 0160936020 (cloth) | ISBN 9780160936012 (paper) | ISBN 0160936012 (paper) Subjects: LCSH: Printing—United States—Style manuals. | Printing, Public—United States—Handbooks, manuals, etc. | Publishers and publishing—United States—Handbooks, manuals, etc. | Authorship—Style manuals. | Editing—Handbooks, manuals, etc. Classification: LCC Z253 .U58 2016 | DDC 808/.02—dc23 | SUDOC GP 1.23/4:ST 9/2016 LC record available at https://lccn.loc.gov/2016055634 Use of ISBN Prefix This is the official U.S.
    [Show full text]
  • JLEP-Issue-9.2.Pdf
    JOURNAL OF LAW , ECONOMICS & POLICY VOLUME 9 WINTER 2013 NUMBER 2 EDITORIAL BOARD 2012-2013 Adam Park Editor-in-Chief Nathaniel Harris Morgan Shields Benjamin Charlton Executive Editor Publications Editor Managing Editor Genevieve Miller Carolyn Head Jennifer Johnston Senior Articles Editor Senior Notes Editor Senior Research Editor Peter Anderson Emily Barber David Brodian Kylie Caporuscio Juan Kassar Jason Malashevich Anthony Kanakis Mark Stevens Tom Randall Articles Editors Notes Editors Research Editors Anthony Kanakis Tom Randall Articles Submissions Editor Technology Editor Mark Weiss Jacob Merrill Associate Articles Outreach Editor Submissions Editor MEMBERS Michael Brody Louise Martin Robert Strange Hollie Kapos Elizabeth Newell Lauren Wynns Adam Schneider CANDIDATE MEMBERS Josh Branson Kevin Hill Ian Rothfuss Marie Keiko Breyan Ryan Leavitt Maxwell Slackman Victoria Clarke Sarah Mernin Kyra Smerkanich Brady Cummins Mariam Noori Jonathan Stapor David Dubin Catherine Oryl Charles Thresher Steven Dunn Erica Peterson Allison Walsh Meagan Dziura Michael Rogers Preston Wise Kelly Fryberger Crystal Yi i 1 JOURNAL OF LAW , ECONOMICS & POLICY VOLUME 9 WINTER 2013 NUMBER 2 BOARD OF ADVISORS Lisa E. Bernstein Francesco Parisi James M. Buchanan Eric Posner Judge Guido Calabresi Judge Richard A. Posner Lloyd R. Cohen Roberta Romano Robert D. Cooter Hans-Bernd Schäfer Robert C. Ellickson Steven M. Shavell Richard A. Epstein Henry E. Smith Judge Douglas H. Ginsburg Vernon L. Smith Mark F. Grady Gordon Tullock Bruce H. Kobayashi Thomas S. Ulen Henry G. Manne W. Kip Viscusi A. Douglas Melamed Todd J. Zywicki ii JOURNAL OF LAW , ECONOMICS & POLICY VOLUME 9 WINTER 2013 NUMBER 2 CONTENTS ARTICLES 169 ANTITRUST FOR HIGH-TECH AND LOW:REGULATION,INNOVATION, AND RISK Ronald A.
    [Show full text]
  • Sustainability of (Open) Data Portal Infrastructures a Distributed Version Control Approach to Creating Portals for Reuse
    Sustainability of (Open) Data Portal Infrastructures A Distributed Version Control Approach to Creating Portals for Reuse This study has been prepared by the University of Southampton as part of the European Data Portal. The European Data Portal is an initiative of the European Commission, implemented with the support of a consortium led by Capgemini Invent, including Intrasoft International, Fraunhofer Fokus, con.terra, Sogeti, 52North, Time.Lex, the Lisbon Council, and the University of Southampton. The Publications Office of the European Union is responsible for contract management of the European Data Portal. For more information about this paper, please contact: European Commission Directorate General for Communications Networks, Content and Technology Unit G.1 Data Policy and Innovation Daniele Rizzi – Policy Officer Email: [email protected] European Data Portal Gianfranco Cecconi, European Data Portal Lead Esther Huyer Email: [email protected] Email: [email protected] Written and reviewed by: Luis-Daniel Ibáñez Johanna Walker Email: [email protected] Email: [email protected] Mike Hoffman Elena Simperl Email: [email protected] Email: [email protected] Last update: 02.03.2020 www: https://europeandataportal.eu/ @: [email protected] DISCLAIMER By the European Commission, Directorate-General of Communications Networks, Content and Technology. The information and views set out in this publication are those of the author(s) and do not necessarily reflect the official opinion of the Commission. The Commission does not guarantee the accuracy of the data included in this study. Neither the Commission nor any person acting on the Commission’s behalf may be held responsible for the use, which may be made of the information contained therein.
    [Show full text]
  • A Study on the Veracity of Semantic Markup for Dataset Pages
    Dataset or Not? A study on the veracity of semantic markup for dataset pages Tarfah Alrashed1, Dimitris Paparas2, Omar Benjelloun2, Ying Sheng2, and Natasha Noy2 1 CSAIL, MIT, USA [email protected] 2 Google Research, Google, USA fdpaparas, benjello, yingsheng, [email protected] Abstract. Semantic markup, such as Schema.org, allows providers on the Web to describe content using a shared controlled vocabulary. This markup is invaluable in enabling a broad range of applications, from vertical search engines, to rich snippets in search results, to actions on emails, to many others. In this paper, we focus on semantic markup for datasets, specifically in the context of developing a vertical search engine for datasets on the Web, Google's Dataset Search. Dataset Search relies on Schema.org to identify pages that describe datasets. While Schema.org was the core enabling technology for this vertical search, we also discovered that we need to address the following problem: pages from 61% of internet hosts that provide Schema.org/Dataset markup do not actually describe datasets. We analyze the veracity of dataset markup for Dataset Search's Web-scale corpus and categorize pages where this markup is not reliable. We then propose a way to drastically increase the quality of the dataset metadata corpus by developing a deep neural-network classifier that identifies whether or not a page with Schema.org/Dataset markup is a dataset page. Our classifier achieves 96.7% recall at the 95% precision point. This level of precision enables Dataset Search to circumvent the noise in semantic markup and to use the metadata to provide high quality results to users.
    [Show full text]
  • Automl: a Survey of the State-Of-The-Art
    AutoML: A Survey of the State-of-the-Art Xin He, Kaiyong Zhao, Xiaowen Chu∗ Department of Computer Science, Hong Kong Baptist University Abstract Deep learning (DL) techniques have obtained remarkable achievements on various tasks, such as image recognition, object detection, and language modeling. However, building a high-quality DL system for a specific task highly relies on human expertise, hindering its wide application. Meanwhile, automated machine learning (AutoML) is a promising solution for building a DL system without human assistance and is being extensively studied. This paper presents a comprehensive and up-to-date review of the state-of-the-art (SOTA) in AutoML. According to the DL pipeline, we introduce AutoML methods {{ covering data preparation, feature engineering, hyperparameter optimization, and neural architecture search (NAS) {{ with a particular focus on NAS, as it is currently a hot sub-topic of AutoML. We summarize the representative NAS algorithms' performance on the CIFAR-10 and ImageNet datasets and further discuss the following subjects of NAS methods: one/two-stage NAS, one-shot NAS, joint hyperparameter and architecture optimization, and resource-aware NAS. Finally, we discuss some open problems related to the existing AutoML methods for future research. Keywords: deep learning, automated machine learning (AutoML), neural architecture search (NAS), hyperparameter optimization (HPO) 1. Introduction can be understood to involve the automated construction of an ML pipeline on the limited computational budget. In recent years, deep learning has been applied in vari- With the exponential growth of computing power, AutoML ous fields and used to solve many challenging AI tasks, in has become a hot topic in both industry and academia.
    [Show full text]