Comparison of Heterogeneous Azeotropic Distillation and Extractive

Total Page:16

File Type:pdf, Size:1020Kb

Comparison of Heterogeneous Azeotropic Distillation and Extractive Computers and Chemical Engineering 100 (2017) 27–37 Contents lists available at ScienceDirect Computers and Chemical Engineering journal homepage: www.elsevier.com/locate/compchemeng Comparison of heterogeneous azeotropic distillation and extractive distillation methods for ternary azeotrope ethanol/toluene/water separation ∗ Lei Zhao, Xinyu Lyu, Wencheng Wang, Jun Shan, Tao Qiu Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, No.1, Gehu Road, Wujin District, Changzhou, Jiangsu 213164, China a r t i c l e i n f o a b s t r a c t Article history: Ethanol and toluene are important organic solvents in chemical industry. Ethanol, toluene and water Received 31 October 2016 present a ternary minimum-boiling azeotrope and three binary azeotropes. In this article, two methods Received in revised form 1 February 2017 are studied to separate the ternary azeotrope: heterogeneous azeotropic distillation using the toluene, Accepted 4 February 2017 which is in the system itself, as entrainer and extractive distillation with glycerol as the only one solvent. Available online 6 February 2017 In the heterogeneous azeotropic distillation, the pressures of the three columns are changed respectively to achieve heat integration. In the extractive distillation, only one solvent and two columns are used Keywords: to separate the ternary mixture. Experiment shows that the partially heat-integrated heterogeneous Ternary azeotrope azeotropic distillation reduces the energy cost and total annual cost by 27.7% and 13.4% respectively Heterogeneous azeotropic distillation compared with the conventional heterogeneous azeotropic distillation. Unexpectedly, the extractive dis- Extractive distillation Ethanol/toluene/water tillation can save 18.8% and 39.3% in the energy cost and total annual cost respectively compared with the partially heat-integrated heterogeneous azeotropic distillation. © 2017 Elsevier Ltd. All rights reserved. 1. Introduction rities. This special HAD method is applied to separate azeotrope or close-boiling mixtures using the entrainer, which is in the sys- Ethanol and toluene are widely used in chemical, pharmaceuti- tem itself, to generate a lower-boiling azeotrope with the one or cal, dye and other fields as good solvents. Ethanol can deliquesce two components in the mixture. The minimum-boiling azeotrope easily and absorb moisture from the air quickly because of the pres- produces two immiscible liquid phases in the decanter. Aque- ence of hydrogen bond. Since ethanol, toluene and water present ous phase and organic phase both flow back to the column with three binary azeotropes and one ternary azeotrope, ordinary dis- optimum reflux ratios and the rest are separated and fed into tillation methods can not separate the mixture effectively. Some different columns to obtain pure products. HAD for azeotropic mix- other kinds of distillation methods should be studied to separate ture is expected to cross the distillation boundary (Doherty and the ethanol/toluene/water mixture. Malone, 2001; Widagdo and Seider, 1996). Kiss used HAD method Many methods can be used to separate azeotropic mixture, for in bioethanol dehydration with n-pentane as entrainer (Kiss et al., example, pressure-swing distillation (Yu et al., 2012), azeotropic 2012). Luyben also used benzene as the entrainer in the separation distillation (Abu-Eishah and Luyben, 1985), extractive distillation of ethanol/water azeotrope by HAD (Luyben, 2006a, 2006b). (Meirelles et al., 1992), adsorption (Garg and Ausikaitis, 1983), per- ED is generally applied to separate binary azeotrope and other vaporation using membrane (Fleming, 1992) and some other new close-boiling mixtures with the relative volatility of light compo- separation techniques. In this article, heterogeneous azeotropic dis- nents and heavy components below 1.1 (Seader and Henley, 1998; tillation (HAD) and extractive distillation (ED) methods are studied Errico et al., 2013a, 2013b; Kossack et al., 2008; Lei et al., 2003; to separate the ethanol/toluene/water mixture. Liang et al., 2014). The solvent added in the mixture improves It is innovative to use toluene, which is in the system itself, as the relative volatility of light components and heavy components entrainer for the HAD, which will not bring in any other impu- because the solvent interacts differently with the light components and heavy components in the mixture. When the relative volatility is improved, the light components are acquired in the top of the ∗ extractive column (EC) while the heavy components and solvent Corresponding author. are acquired from the bottom of the EC for subsequent separation. E-mail address: [email protected] (T. Qiu). http://dx.doi.org/10.1016/j.compchemeng.2017.02.007 0098-1354/© 2017 Elsevier Ltd. All rights reserved. 28 L. Zhao et al. / Computers and Chemical Engineering 100 (2017) 27–37 Fig. 1. Process flow sheet of HAD. Table 1 Azeotropic Temperature and Composition of the System at 1 atm. Temp (K) Type No. Comp. Toluene (mass%) Ethanol (mass%) Water (mass%) 347 Heterogeneous 3 47.49 42.75 9.77 357.68 Heterogeneous 2 80.09 0 19.91 351.3 Homogeneous 2 0 95.62 4.38 350.01 Homogeneous 2 31.92 68.08 0 Solvent and heavy components are separated by a solvent recov- optimization programs are used to get optimal configurations of ery column (SRC) easily. Then, the solvent obtained in the bottom the two distillation methods. of SRC is recycled to the EC (Kossack et al., 2008). Luyben used dimethyl sulfoxide as solvent to separate maximum-boiling ace- 2. Simulation tone/chloroform mixture by ED (Luyben, 2008). Figueroa used ED method with ionic liquids as solvent to produce anhydrous ethanol 2.1. Heterogeneous azeotropic distillation and saved energy a lot (Figueroa et al., 2012). Lei used ED method with solid inorganic salt and ionic liquid as solvents to separate 2.1.1. Process design and ternary diagrams In the separation of the ternary mixture with ethanol/water mixture (Lei et al., 2014). Long retrofitted conven- ethanol/toluene/water, the toluene can also serve as an entrainer tional ED to a thermally coupled distillation scheme and reduced and form a low-boiling ternary azeotrope with ethanol and water. the energy cost significantly (Duc Long and Lee, 2013). So, it does not need to add any other entrainer, which will not Separation of the ethanol/toluene/water mixture has visible bring in any other impurities. The ethanol/toluene/water mixture economic benefit, social benefit and environmental benefit. There presents three binary azeotropes and one ternary azeotrope. One are a lot of papers discussing the separation of binary azeotrope ternary azeotrope (ethanol/toluene/water) is satisfactory because via HAD or ED. However, the articles on the separation of ternary it is heterogeneous and its azeotropic temperature (347 K) is azeotrope using HAD and ED are quite limited. So, it is neces- the lowest in the system. Another three binary azeotropes are sary to study some workable distillation methods to separate the also formed with azeotropic temperatures of 357.68, 351.3 and ethanol/toluene/water ternary azeotrope, with the emphasis on 350.01 K, respectively. Table 1 shows the azeotropic temperature economic optimization. and composition of ethanol/toluene/water mixture at 1 atm. When In order to separate the ethanol/toluene/water ternary the pressure is 2.18 atm or 0.33 atm, the ternary azeotrope is still azeotrope, two special distillation methods are studied in this arti- heterogeneous and its azeotropic temperature is still the lowest cle: HAD and ED methods. According to the total annual cost (TAC), in the system. The NRTL physical property model is used in the simulation for the separation of the ternary azeotrope. L. Zhao et al. / Computers and Chemical Engineering 100 (2017) 27–37 29 Table 2 Goal Functions and Necessary Parameters for Economic Evaluation. Parameters Data Condensers Heat transfer 2 coefficient = 0.852 kW/K m 2 0.65 Capital cost = 7296 × (A, m ) Q Heat transfer area: A = (K×t) Reboilers Heat transfer 2 coefficient = 0.568 kW/K m 2 0.65 Capital cost = 7296 × (A, m ) Q Heat transfer area: A = (K×t) Column vessel Capital 1.066 0.802 cost = 17640 × (D, m) × (L, m) Length: H = 1.2 × 0.61 × (NT − 2) Energy cost LP stream (433 K): $7.78 per GJ MP stream (457 K): $8.22 per GJ HP stream (527 K): $9.88 per GJ Chilled-water (253.15 K): $7.89 per GJ totalcapitalcost TAC paybackperiod + annual energy cost Payback period 3 years The process flow sheet of the HAD using toluene as entrainer is shown in Fig. 1 with three columns and one decanter. The pressures of column 2 (C2) and column 3 (C3) are both reduced to 0.33 atm to ensure that the temperature of the condensers is about 323.75 K. So, cooling water can still be used in the condensers. The pressure of column 1 (C1) is raised to 2.18 atm to ensure that the tempera- ture in the top stage of C1 is about 20 K more than the temperature in the bottom of C2 and C3. So, heat integration can be achieved in the HAD in the next section. The C1 has a decanter and the feed- stock is fed into this column (Stage 1 is the top tray). High-purity ethanol product is obtained from the bottom of C1 while the min- imum boiling ethanol/toluene/water heterogeneous azeotrope is obtained from the top of C1. Then, the overhead vapor stream of C1 is cooled, and two liquid phases are separated in the decanter. Some of both the aqueous and organic phases are refluxed to the top tray. The rest of the aqueous phase is fed into C2 and the rest of the organic phase is fed into C3. High-purity water and toluene products are obtained in the bottom of C2 and C3 respectively while the top products of these two columns are combined and back to C1.
Recommended publications
  • Review of Extractive Distillation. Process Design, Operation
    Review of Extractive Distillation. Process design, operation optimization and control Vincent Gerbaud, Ivonne Rodríguez-Donis, Laszlo Hegely, Péter Láng, Ferenc Dénes, Xinqiang You To cite this version: Vincent Gerbaud, Ivonne Rodríguez-Donis, Laszlo Hegely, Péter Láng, Ferenc Dénes, et al.. Review of Extractive Distillation. Process design, operation optimization and control. Chemical Engineering Research and Design, Elsevier, 2019, 141, pp.229-271. 10.1016/j.cherd.2018.09.020. hal-02161920 HAL Id: hal-02161920 https://hal.archives-ouvertes.fr/hal-02161920 Submitted on 21 Jun 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Open Archive Toulouse Archive Ouverte OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible This is an author’s version published in: http://oatao.univ-toulouse.fr/239894 Official URL: https://doi.org/10.1016/j.cherd.2018.09.020 To cite this version: Gerbaud, Vincent and Rodríguez-Donis, Ivonne and Hegely, Laszlo and Láng, Péter and Dénes, Ferenc and You, Xinqiang Review of Extractive Distillation. Process design, operation optimization and control. (2018) Chemical Engineering Research and Design, 141.
    [Show full text]
  • Heterogeneous Azeotropic Distillation
    PROSIMPLUS APPLICATION EXAMPLE HETEROGENEOUS AZEOTROPIC DISTILLATION EXAMPLE PURPOSE This example illustrates a high purity separation process of an azeotropic mixture (ethanol-water) through heterogeneous azeotropic distillation. This process includes distillation columns. Additionally these rigorous multi- stage separation modules are part of a recycling stream, demonstrating the efficiency of ProSimPlus convergence methods. Specifications are set on output streams in order to insure the required purity. This example illustrates the way to set "non-standard" specifications in the multi-stage separation modules. Three phase calculations (vapor-liquid- liquid) are done with the taken into account of possible liquid phase splitting. ACCESS Free-Internet Restricted to ProSim clients Restricted Confidential CORRESPONDING PROSIMPLUS FILE PSPS_EX_EN-Heterogeneous-Azeotropic-Distillation.pmp3 . Reader is reminded that this use case is only an example and should not be used for other purposes. Although this example is based on actual case it may not be considered as typical nor are the data used always the most accurate available. ProSim shall have no responsibility or liability for damages arising out of or related to the use of the results of calculations based on this example. Copyright © 2009 ProSim, Labège, France - All rights reserved www.prosim.net Heterogeneous azeotropic distillation Version: March, 2009 Page: 2 / 12 TABLE OF CONTENTS 1. PROCESS MODELING 3 1.1. Process description 3 1.2. Process flowsheet 5 1.3. Specifications 6 1.4. Components 6 1.5. Thermodynamic model 7 1.6. Operating conditions 7 1.7. "Hints and Tips" 9 2. RESULTS 9 2.1. Comments on results 9 2.2. Mass and energy balances 10 2.3.
    [Show full text]
  • Distillation ­ Accessscience from Mcgraw­Hill Education
    6/19/2017 Distillation ­ AccessScience from McGraw­Hill Education (http://www.accessscience.com/) Distillation Article by: King, C. Judson University of California, Berkeley, California. Last updated: 2014 DOI: https://doi.org/10.1036/1097­8542.201100 (https://doi.org/10.1036/1097­8542.201100) Content Hide Simple distillations Fractional distillation Vapor­liquid equilibria Distillation pressure Molecular distillation Extractive and azeotropic distillation Enhancing energy efficiency Computational methods Stage efficiency Links to Primary Literature Additional Readings A method for separating homogeneous mixtures based upon equilibration of liquid and vapor phases. Substances that differ in volatility appear in different proportions in vapor and liquid phases at equilibrium with one another. Thus, vaporizing part of a volatile liquid produces vapor and liquid products that differ in composition. This outcome constitutes a separation among the components in the original liquid. Through appropriate configurations of repeated vapor­liquid contactings, the degree of separation among components differing in volatility can be increased manyfold. See also: Phase equilibrium (/content/phase­equilibrium/505500) Distillation is by far the most common method of separation in the petroleum, natural gas, and petrochemical industries. Its many applications in other industries include air fractionation, solvent recovery and recycling, separation of light isotopes such as hydrogen and deuterium, and production of alcoholic beverages, flavors, fatty acids, and food oils. Simple distillations The two most elementary forms of distillation are a continuous equilibrium distillation and a simple batch distillation (Fig. 1). http://www.accessscience.com/content/distillation/201100 1/10 6/19/2017 Distillation ­ AccessScience from McGraw­Hill Education Fig. 1 Simple distillations. (a) Continuous equilibrium distillation.
    [Show full text]
  • Tissue Free Water Tritium Separation from Foodstuffs by Azeotropic Distillation
    140 SK98K0361 21st RHDJasna podChopkom TISSUE FREE WATER TRITIUM SEPARATION FROM FOODSTUFFS BY AZEOTROPIC DISTILLATION Florentina Constantin, Ariadna Ciubotaru, DecebalPopa Inspectorate of Public Health of Bucharest, Romania 1. INTRODUCTION The actual tritium content in the environment is due to both natural production by cosmic ray interactions in the upper atmosphere and to varying amount of man- made tritium. Tritium, the radioactive isotope of hydrogen, is one of the most important radionuclide released to the environment during the normal operation of a typical nuclear power reactor. Tritiated water constitutes almost the entire radioactivity in liquid waste discharged to the environment from heavy water reactors. Therefore, monitoring tritium in air, precipitation, drinking water and vegetation is necessary for assessing the environmental impact of tritium releases in gaseous and liquid effluents from nuclear plants. The use for agricultural purposes of river water receiving releases of tritium, results in contamination of irrigated crops and then in the contamination of the food chain. ? Tritium is everywhere in living matter, has a long physical half-time (T= 12.26 y) and is known to follow protium pathways in biological material. Tritium in liquid or solid biota samples can not be easily determined quantitatively by any kind of nondestructive analysis because its beta radiation energy (E =18 keV) is so weak that the most part is absorbed in the sample. Therefore, most non-aqueous samples must be treated chemically or physically to be suitable for counting. The choice of preparation method will depend on the type of samples, number and quantities of samples to be processed and availability of measurement equipment.
    [Show full text]
  • Comparison of Complete Extractive and Azeotropic Distillation Processes for Anhydrous Ethanol Production Using Aspen Plustm Simu
    43 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 80, 2020 The Italian Association of Chemical Engineering Online at www.cetjournal.it Guest Editors: Eliseo Maria Ranzi, Rubens Maciel Filho Copyright © 2020, AIDIC Servizi S.r.l. DOI: 10.3303/CET2080008 ISBN 978-88-95608-78-5; ISSN 2283-9216 Comparison of Complete Extractive and Azeotropic Distillation Processes for Anhydrous Ethanol Production using Aspen PlusTM Simulator Nahieh T. Miranda*, Rubens Maciel Filho, Maria Regina Wolf Maciel Laboratory of Optimization, Design, and Advanced Control (LOPCA)/Laboratory of Development of Separation Processes (LDPS), School of Chemical Engineering, University of Campinas, Brazil. [email protected] Performance of the extractive and azeotropic distillation processes using ethylene glycol and cyclohexane as solvents, respectively, for anhydrous ethanol production, were investigated using 02 RadFrac columns each and solvent recycling streams via simulation in Aspen Plus™ Simulator. Both operate at 1 atm, and feed flow -1 rate equals to 100 kmol.h (ethanol – 0.896 and water – 0.104 in mole fractions at the azeotropic point). The NRTL-RK was the model used for extractive and azeotropic distillations. The anhydrous ethanol purity from top of the 1st column of the extractive distillation (22 stages) was 99.50 % (on a mole basis) and water with nd st 99.20 % of purity at the top of the 2 column. On the other hand, in the azeotropic distillation, the 1 column (30 stages) had a bottom product of anhydrous ethanol purity of 99.99 % and water with 99.99 % of purity in the 2nd column, also at the bottom. Both processes produced anhydrous ethanol with a high-grade purity required by the standard norms ASTM D4806, EN 15376, and ANP 36.
    [Show full text]
  • Partial Separation of an Azeotropic Mixture of Hydrogen Chloride and Water and Copper (II) Chloride Recovery for Optimization of the Copper-Chlorine Cycle
    Partial Separation of an Azeotropic Mixture of Hydrogen Chloride and Water and Copper (II) Chloride Recovery for Optimization of the Copper-Chlorine Cycle by Matthew P. Lescisin A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Applied Science in The Faculty of Engineering and Applied Science Mechanical Engineering University of Ontario Institute of Technology September 2017 © Matthew P. Lescisin, 2017 Contents Contents ii Abstract v Acknowledgments vi List of Figures vii List of Tables viii Nomenclature ix Quantities...................................... ix Greek Letters.................................... x Subscripts...................................... xi Acronyms...................................... xi 1 Introduction1 2 Background4 2.1 Boiling in the Subcooled Liquid Region .................. 4 2.2 Vapor-Liquid Equilibrium (VLE)...................... 5 2.3 Phase Diagrams................................ 5 2.3.1 Tie-Lines ............................... 6 2.4 Distillation .................................. 6 2.5 Azeotropes .................................. 8 3 Literature Review9 3.1 Azeotropic Distillation............................ 9 3.2 Extractive Distillation............................ 10 3.3 Pressure-Swing Distillation .......................... 11 3.4 Batch Mode.................................. 13 3.5 Heat-Integrated Distillation Columns.................... 13 3.5.1 Heat-Integrated PSD......................... 14 ii CONTENTS iii 3.6 Reflux Ratio ................................. 15
    [Show full text]
  • Studying the Effect of Mixing Miscible Hydrocarbon Components on the Multi-Stage Distillation Operation Compared with Single Component Distillation
    STUDYING THE EFFECT OF MIXING MISCIBLE HYDROCARBON COMPONENTS ON THE MULTI-STAGE DISTILLATION OPERATION COMPARED WITH SINGLE COMPONENT DISTILLATION MOHD NOR FIRDAUS BIN MOHD SALLEH A thesis submitted in fulfilment of the Requirement for the award of the degree of Bachelor of Chemical Engineering (Gas Technology) Faculty of Chemical and Natural Resources Engineering University Malaysia Pahang (UMP) APRIL 2008 ii I declare that this thesis entitled ‘Effect of mixing miscible hydrocarbon component on the multi-stage distillation operation compared with single component’ is the results of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted candidature of any degree. Signature : ……………………………………… Name : MOHD NOR FIRDAUS BIN MOHD SALLEH Date : 30 th APRIL 2008 iii Special dedicated to my beloved father and mother and my whole family members iv ACKNOWLEDGEMENT Alhamdulillah all praises be to almighty Allah who made it possible for me to done this thesis by time. First of all, I would like to express my appreciation especially to my loving caring parent, Mr. Mohd Salleh bin Daud and Madam Rahah binti Md Salleh and rest of my family members who are very supportive morally to whatever good things that I have involve and done all these years. Secondly I am greatly indebted to final year project supervisor Doctor Hayder A. Abdul Bari who was very kind to accept me as his supervise student and allowed me to work with him until this project is done. He greatly influenced, guidance, encouragement, comments and motivated me to explore distillation process in depth.
    [Show full text]
  • Optimization Study on the Azeotropic Distillation Process for Isopropyl Alcohol Dehydration
    Korean J. Chem. Eng., 23(1), 1-7 (2006) Optimization study on the azeotropic distillation process for isopropyl alcohol dehydration Jungho Cho and Jong-Ki Jeon*,† Department of Chemical Engineering, Dong Yang University, 1, Kyochon-dong, Poongki-eup, Youngju, Gyeongbuk 750-711, Korea *Department of Chemical Engineering, Kongju National University, 182, Shinkwan-dong, Gongju, Chungnam 314-701, Korea (Received 9 August 2005 • accepted 26 November 2005) Abstract−Modeling and optimization work was performed using benzene as an entrainer to obtain a nearly pure an- hydrous isopropyl alcohol product from dilute aqueous IPA mixture through an azeotropic distillation process. NRTL liquid activity coefficient model and PRO/II with PROVISION 6.01, a commercial process simulator, were used to simulate the overall azeotropic distillation process. We determined the total reboiler heat duties as an objective function and the concentration of IPA at concentrator top as a manipulated variable. As a result, 38.7 mole percent of IPA at concentrator top gave the optimum value that minimized the total reboiler heat duties of the three distillation columns. Key words: Azeotropic Distillation, Entrainer, NRTL Liquid Activity Coefficient Model, Simulation, Optimization INTRODUCTION using special distillation. One is to utilize an azeotropic distillation process using benzene or cyclohexane as an entrainer [Font et al., An anhydrous isopropyl alcohol (IPA) product with purity over 2003; Tao et al., 2003; Al-Amer, 2000; Fele et al., 2000] and the 99.9% by weight has been widely used as a raw material of paint other is an extractive distillation process using ethylene glycol as a or ink products and as a solvent in electronic and medicine indus- solvent [Ligero and Ravagnani, 2003; Pinto et al., 2000].
    [Show full text]
  • Azeotropes As Powerful Tool for Waste Minimization in Industry and Chemical Processes
    molecules Review Azeotropes as Powerful Tool for Waste Minimization in Industry and Chemical Processes Federica Valentini and Luigi Vaccaro * Laboratory of Green S.O.C., Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy; [email protected] * Correspondence: [email protected]; Tel./Fax: +39-07-5585-5541 Academic Editor: Derek J. McPhee Received: 17 October 2020; Accepted: 10 November 2020; Published: 12 November 2020 Abstract: Aiming for more sustainable chemical production requires an urgent shift towards synthetic approaches designed for waste minimization. In this context the use of azeotropes can be an effective tool for “recycling” and minimizing the large volumes of solvents, especially in aqueous mixtures, used. This review discusses the implementation of different kinds of azeotropic mixtures in relation to the environmental and economic benefits linked to their recovery and re-use. Examples of the use of azeotropes playing a role in the process performance and in the purification steps maximizing yields while minimizing waste. Where possible, the advantages reported have been highlighted by using E-factor calculations. Lastly azeotrope potentiality in waste valorization to afford value-added materials is given. Keywords: azeotrope; waste minimization; solvent recovery; azeotropic distillation; process design; waste valorization 1. Introduction The materials not incorporated into the final desired product and the energy required for conducting a process can be considered most trivially as the major direct origin of “waste” associated to chemical production. In addition, the possible formation of undesired isomers or byproducts also results in the generation of costly waste, that being in some cases hazardous, can limit the final application of the main product.
    [Show full text]
  • Graphical Calculation Method for Minimum Reflux Ratio in Azeotropic Distillation'
    GRAPHICAL CALCULATION METHOD FOR MINIMUM REFLUX RATIO IN AZEOTROPIC DISTILLATION' SHOZO TANAKA AND JIRO YAMADA** Shin-etsu Chemical Industry Co., Ltd., Tokyo, Japan In an azeotropic distillation column, the rate of net flow and the composition of net flow for both stripping and rectifying sections can be calculated from the limiting con- ditions of the separation desired. The pinch points are dotted on the radial lines starting from the point of net flow composition by trial and error, and locus of the pinch points are traced on the triangular diagram by the way of connecting the pinch points. Each minimum reflux ratio of stripping and rectifying sections can be calculated from the quan- titative ratio of vapor and liquid of the operating line passing the point of intersection of locus line and feed line, and the larger of the two values shall be defined as the minimum reflux ratio of the system. For example, we illustrate the graphical calculation method for AcOH-H2O-BuOAc system and AcOH-H2O-EtOAc system. Jm^Vm-Lm+i=~W, ^mi=Xwi DXdi-SXSf Introduction An-Vn+i Lin-L) b, Oni- D-S Recently, some substantial papers on calculation [II] when the entrainer is supplied with the feed to method for azeotropic distillation have been reported the column, by Yorizane et al.6>7\ Yamada et al.5\ and Hirose Jm=-W, et alAK The authors previously proposed a graph- ^ni~Xdi ical calculation method of minimumreflux ratio of (4) the azeotropic distillation, and in this paper we report The minimum reflux ratio in the stripping section some results of additional study.
    [Show full text]
  • Extractive Distillation: Recent Advances in Operation Strategies
    Open Archive TOULOUSE Archive Ouverte ( OATAO ) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ Eprints ID : 15857 To link to this article : DOI : 10.1515/revce-2014-0031 URL : https://www.degruyter.com/view/j/revce.2015.31.issue-1/revce-2014-0031/revce-2014-0031.xml To cite this version : Shen, Weifeng and Benyounes, Hassiba and Gerbaud, Vincent Extractive distillation: recent advances in operation strategies . (2014) Reviews in Chemical Engineering, vol. 31 (n° 1). pp. 13-26. ISSN 0167-8299 Any correspondence concerning this service should be sent to the repository administrator: [email protected] Weifeng Shen , Hassiba Benyounes and Vincent Gerbaud * Extractive distillation: recent advances in operation strategies Abstract : Extractive distillation is one of the efficient 1 Introduction techniques for separating azeotropic and low-relative- volatility mixtures in various chemical industries. This In most separation systems, the predominant nonideality paper first provides an overview of thermodynamic occurs in the liquid phase because of molecular interac- insight covering residue curve map analysis, the appli- tions. Azeotropic and low-relative-volatility mixtures are cation of univolatility and unidistribution curves, and often present in the separating industry, and their sepa- thermodynamic feasibility study. The pinch-point anal- ration cannot be realized by conventional distillation. ysis method combining bifurcation shortcut presents Extractive distillation is then a suitable widely used tech- another branch of study, and several achievements have nique for separating azeotropic and low-relative-volatility been realized by the identification of possible product cut mixtures in the pharmaceutical and chemical industries.
    [Show full text]
  • United States Patent (10) Patent No.: US 9,505,701 B2 Garbark Et Al
    USOO9505701 B2 (12) United States Patent (10) Patent No.: US 9,505,701 B2 Garbark et al. (45) Date of Patent: Nov. 29, 2016 (54) METHOD FOR THE PRODUCTION OF 2,566,559 A * 9, 1951 Dolnick .................. CO7C 41.56 ESTERS AND USES THEREOF 568/605 2,813,113 A 11/1957 Goebel et al. 2.997,493 A 8, 1961 Huber (71) Applicant: ETROLIAM NASIONAL BERHAD, 3,048,608 A 8, 1962 Girard et al. uala Lumpur (MY) 4,061,581. A 12/1977 Leleu et al. 4,298,730 A 11/1981 Gall tal. (72) Inventors: Daniel B. Garbark, Blacklick, OH 4,313,890 A 2, 1982 Ayyy a (US); Herman Paul Benecke, 5.362,368 A 1 1/1994 Lynn et al. Columbus, OH (US) 5,773.256 A 6/1998 Pellenc et al. 5,773,391 A 6/1998 Lawate et al. (73) Assignee: Petrolliam Nasional Berhad, Kuala 7,125,9506,107,500 AB2 10/20068, 2000 PE. 1 et al. al. Lumpur (MY) 7,192.457 B2 3/2007 Murphy et al. 7,589,222 B2 9/2009 Narayan et al. (*) Notice: Subject to any disclaimer, the term of this 2004/0167343 Al 8, 2004 Halpern et al. patent is extended or adjusted under 35 588. 5.5% A. $38. Sanarayan et al et al.1 U.S.C. 154(b) by 0 days. 2009/0216040 A1 8/2009 Benecke et al. 2009, 0239964 A1 9, 2009 Sasaki et al. (21) Appl. No.: 14/381,530 2010, 0087350 A1 4/2010 Sonnenschein et al. 2010/01 17022 A1 5, 2010 Carr et al.
    [Show full text]