Mammalian Community Responses to a Gradient of Land-Use Intensity on the Island of Borneo

Total Page:16

File Type:pdf, Size:1020Kb

Mammalian Community Responses to a Gradient of Land-Use Intensity on the Island of Borneo Mammalian community responses to a gradient of land-use intensity on the island of Borneo Oliver Richard Wearn Division of Ecology and Evolution Department of Life Sciences Imperial College London A thesis submitted for the degree of Doctor of Philosophy 2015 ii Copyright declaration The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, distribute or transmit the thesis on the condition that they attribute it, that they do not use it for commercial purposes and that they do not alter, transform or build upon it. For any reuse or distribution, researchers must make clear to others the license terms of this work. iii Abstract Southeast Asian rainforests have, in recent decades, experienced the highest rates of deforestation and logging across the major tropical regions. This has left a vast estate of degraded forest in the region, which is under threat from further degradation and conversion to agriculture, principally for the expansion of oil palm (Elaeis guineensis) plantations. However, knowledge of the relative conservation value of different land-uses in the region is still limited, and a robust quantitative basis for resolving land-use tradeoffs, in particular between agricultural yield and biodiversity, is lacking. I aimed to assess terrestrial mammal species richness, abundance and β-diversity across a gradient of land-use intensity (old-growth forest, logged forest and oil palm) in Sabah, Malaysian Borneo. Overall mammal species richness was conserved even in the intensively-logged forests that I sampled, as were the majority of apparent old-growth specialists. Oil palm, on the other hand, harboured a highly depauperate mammal community. These broad patterns were echoed for overall mammal abundance, as well as in the potential ecosystem functions of mammals that I examined. However, I found evidence that the fundamental drivers of community assembly were altered across the land-use gradient and so, consequently, were patterns of β-diversity. Fine-grained β-diversity, in particular, was highest across the land-uses in logged forest, reflecting the increased environmental heterogeneity in this habitat. In addition, community composition and species abundance were not stable across land-uses. Omnivores and herbivores were more abundant in logged forest compared to old-growth forest, and only a limited number of carnivore species persisted in oil palm. Invasive species increased in abundance with land-use intensity. My findings underline the conservation importance of the large areas of degraded forest in Southeast Asia, and the extremely limited value offered by oil palm. If sustainability of the palm oil industry is to be achieved, new plantations should be diverted away from all remaining unfragmented forests, both old-growth and degraded forests alike. iv Acknowledgements Inevitably, the acknowledgements that follow are but the tip of the iceberg of the many and varied people and organisations that, in no small part, helped me at all stages in the formation of this thesis. To all those people not mentioned here, rest assured I remain wholly indebted to you. Firstly, I acknowledge my principal funder, the Sime Darby Foundation, as well as the Zoological Society of London, for providing the resources needed to complete this work. I acknowledge the Economic Planning Unit and, latterly, the Sabah Biodiversity Council, for allowing me to conduct research in Malaysia. I also appreciate the agreement from the Sabah Forestry Department, Yayasan Sabah, the Maliau Basin Management Committee, Benta Wawasan and Sabah Softwoods to allow research to be done in their respective areas. I am grateful for the support I received from the Royal Society South East Asia Rainforest Research Programme and am especially indebted to Glen Reynolds and his team for the huge amount of logistical assistance I received in-country. I extend my thanks also to Henry Bernard, my local collaborator, for kindly obliging with all my requests for research or logistical support in Sabah. An emphatic word of thanks must go to my supervisory team: Rob Ewers, Chris Carbone and Marcus Rowcliffe. Thank-you for all of the ideas and counsel you gave me during my Ph. D. I couldn’t have asked for a better team and your supervision was always absolutely spot-on. I’ve learnt a lot from you all and will miss the sometimes confusing, sometimes enlightening, meetings we’ve had over the years. I am also grateful to my broader supervisory panel, Tim Coulson and E. J. Milner-Gulland, for the insightful feedback they provided during the earlier stages of my Ph. D. Of everyone involved in this thesis, I am most deeply indebted to the research assistants who helped me to collect the data out in Borneo, often shedding blood (if the leeches got their way), sweat and tears in the process, with apparently little reward. To Leah Findlay, Matt Holmes, Faye Thompson, v Jack Thorley and Jess Haysom, thank-you all for being superlative in the field, always rising to meet whatever challenge was thrown at us and, quite obligingly, for putting up with me in the field. You have all learned a life-time supply of free beer on me. Thank-you also to Jeremy Cusack and Robin Loveridge for being great field companions and, of course, for sharing the heavy work-load on Team Tikus. It was an absolute pleasure to work with you. Thank-you so much, also, to the many and varied people who helped form the tapestry of social life at the SAFE “temporary camp” that we called a home from home. It pains me that I am unable to name everyone individually here in the limited space available, but thanks in particular to the rest of the “trinity”, Sarah Luke and Claudia Gray, as well as Timm Döbert, Terhi Riutta, Jen Sheridan and James Rice for making field life that much more enjoyable. I could not have achieved the back-breaking task of collecting data on elusive mammals without the tireless work of staff at the SAFE Project. In particular, Matiew bin Tarongak, James Loh, Mohd Sabri bin Bationg and Aleks Warat Koban bin Lukas should all be applauded for working so tirelessly and diligently in the field. Even when the day involved lugging 100 steel traps up the face of a slippery hillside, it was a pleasure with you guys. The help of Ed Turner, MinSheng Khoo, Johnny Larenus, Sarah Watson and Ryan Gray was also absolutely invaluable in making the fieldwork even remotely possible. During my, admittedly limited, time spent in the UK working in my two institutions – both at Silwood Park and at the Institute of Zoology – I’ve also had the great pleasure of working with a fantastic bunch of people over the years. I thank everyone I’ve ever shared an office with for making the write- up just that bit more bearable and in particular all of the “FEC” lab group, both past and present. I am especially grateful for the inordinate amount of help that Marion Pfeifer provided with all things RapidEye. vi Lastly, I am deeply grateful to my family for their constant support and encouragement, and for their unquestioning accommodation of my tropical wanderlust over the years before and during the making of this thesis. vii Declaration of originality R. M. Ewers, C. Carbone and J. M. Rowcliffe contributed at all stages of the thesis, including the conception, design and analysis. All further assistance received is detailed below. Chapter 1: R. M. Ewers and E. J. Milner-Gulland commented on an earlier draft of this chapter. Chapter 2: R. M. Ewers, J. M. Rowcliffe, C. Carbone and H. Bernard provided extensive comments on this chapter. M. Linkie and an anonymous reviewer also greatly helped to improve the manuscript during submission to PLoS One. Chapter 3: R. M. Ewers, C. Carbone, J. M. Rowcliffe and H. Bernard all provided comments on an earlier draft of this chapter, which greatly assisted in improving the clarity of the presentation. Chapter 4: R. M. Ewers and C. Carbone provided helpful comments on this chapter. M. Pfeifer pre- processed the RapidEye satellite images and ran the models of above-ground live tree biomass, of which the mapped outputs featured in my modelling of community assembly. These maps were provided as part of an ongoing collaborative effort at the SAFE Project. Chapter 5: R. M. Ewers, J. M. Rowcliffe and C. Carbone provided comments on this chapter. M. Tobler provided helpful feedback on an earlier version of one of the hierarchical models used. The Imperial College High Performance Computing facility was used to run the bulk of the analysis. M. Pfeifer’s above-ground live tree biomass estimates were again used in this chapter. Chapter 6: R. M. Ewers, J. M. Rowcliffe and C. Carbone all provided comments on this chapter. I herewith certify that all other material in this thesis is solely the result of my own work. viii Table of contents Copyright declaration .......................................................................................................................... iii Abstract ................................................................................................................................................. iv Acknowledgements ............................................................................................................................... v Declaration of originality .................................................................................................................. viii Table of contents .................................................................................................................................
Recommended publications
  • The Conservation Behaviorist
    The Conservation Behaviorist Heidi Fisher, student at Boston University, receives E. O. Wilson Conservation Award Animal Behavior Society ABS Conservation Committee The Conservation Behaviorist, an electronic biannual news-update, informs ABS members about the Conservation Committee’s activities, research trends in behavior and conservation, and relevant scientific news in conservation research where behavior plays an important role. The Conservation Behaviorist Vol. 3, No. 1, May 2005 ____________________________________________________________ In this issue The ABS Conservation Committee ..……………………….. 2 Encyclopedia of Animal Behavior........................................ 2 Elizabeth V. Lonsdorf and Mark L. Wildhaber join ABS Conservation Committee…………………………………….. 2 Perspectives: Animal Cognition and its Role in Conservation Behavior, by Guillermo Paz-y-Miño C.……………………... 3 Feature Article: Conservation Behavior in Borneo’s logged forests, by Jason Munshi-South….…………………..……….5 Animal Behavior Society Annual Meeting……………………7 Excerpts From Back Issues …………………...…………….10 © Photo Sherri Michaud Conservation Tips By Daniel T. Blumstein “…As a field biologist, it is difficult not to become a conservationist, particularly when Is there anything a behaviorist can you study animal behavior. An animal’s first do to help conservation? response to a stressor is often a change at Work in an endangered habitat. Even if you the behavioral level. Behavior is a reliable are not focusing on an endangered species, indicator of ecological disturbance…” says by working in an endangered habitat you will Fisher. Her proposal “Communication breakdown illustrate, by example, the value of the habitat and hybridization in Xiphophorus fishes” will be and you may be able to collect additional funded by the ABS Student Research Grant information that will be useful for endangered Program and she will receive the 2005 E.
    [Show full text]
  • Laws of Malaysia
    LAWS OF MALAYSIA ONLINE VERSION OF UPDATED TEXT OF REPRINT Act 716 WILDLIFE CONSERVATION ACT 2010 As at 1 December 2014 2 WILDLIFE CONSERVATION ACT 2010 Date of Royal Assent … … 21 October 2010 Date of publication in the Gazette … … … 4 November 2010 Latest amendment made by P.U.(A)108/2014 which came into operation on ... ... ... ... … … … … 18 April 2014 3 LAWS OF MALAYSIA Act 716 WILDLIFE CONSERVATION ACT 2010 ARRANGEMENT OF SECTIONS PART I PRELIMINARY Section 1. Short title and commencement 2. Application 3. Interpretation PART II APPOINTMENT OF OFFICERS, ETC. 4. Appointment of officers, etc. 5. Delegation of powers 6. Power of Minister to give directions 7. Power of the Director General to issue orders 8. Carrying and use of arms PART III LICENSING PROVISIONS Chapter 1 Requirement for licence, etc. 9. Requirement for licence 4 Laws of Malaysia ACT 716 Section 10. Requirement for permit 11. Requirement for special permit Chapter 2 Application for licence, etc. 12. Application for licence, etc. 13. Additional information or document 14. Grant of licence, etc. 15. Power to impose additional conditions and to vary or revoke conditions 16. Validity of licence, etc. 17. Carrying or displaying licence, etc. 18. Change of particulars 19. Loss of licence, etc. 20. Replacement of licence, etc. 21. Assignment of licence, etc. 22. Return of licence, etc., upon expiry 23. Suspension or revocation of licence, etc. 24. Licence, etc., to be void 25. Appeals Chapter 3 Miscellaneous 26. Hunting by means of shooting 27. No licence during close season 28. Prerequisites to operate zoo, etc. 29. Prohibition of possessing, etc., snares 30.
    [Show full text]
  • Checklist of the Mammals of Indonesia
    CHECKLIST OF THE MAMMALS OF INDONESIA Scientific, English, Indonesia Name and Distribution Area Table in Indonesia Including CITES, IUCN and Indonesian Category for Conservation i ii CHECKLIST OF THE MAMMALS OF INDONESIA Scientific, English, Indonesia Name and Distribution Area Table in Indonesia Including CITES, IUCN and Indonesian Category for Conservation By Ibnu Maryanto Maharadatunkamsi Anang Setiawan Achmadi Sigit Wiantoro Eko Sulistyadi Masaaki Yoneda Agustinus Suyanto Jito Sugardjito RESEARCH CENTER FOR BIOLOGY INDONESIAN INSTITUTE OF SCIENCES (LIPI) iii © 2019 RESEARCH CENTER FOR BIOLOGY, INDONESIAN INSTITUTE OF SCIENCES (LIPI) Cataloging in Publication Data. CHECKLIST OF THE MAMMALS OF INDONESIA: Scientific, English, Indonesia Name and Distribution Area Table in Indonesia Including CITES, IUCN and Indonesian Category for Conservation/ Ibnu Maryanto, Maharadatunkamsi, Anang Setiawan Achmadi, Sigit Wiantoro, Eko Sulistyadi, Masaaki Yoneda, Agustinus Suyanto, & Jito Sugardjito. ix+ 66 pp; 21 x 29,7 cm ISBN: 978-979-579-108-9 1. Checklist of mammals 2. Indonesia Cover Desain : Eko Harsono Photo : I. Maryanto Third Edition : December 2019 Published by: RESEARCH CENTER FOR BIOLOGY, INDONESIAN INSTITUTE OF SCIENCES (LIPI). Jl Raya Jakarta-Bogor, Km 46, Cibinong, Bogor, Jawa Barat 16911 Telp: 021-87907604/87907636; Fax: 021-87907612 Email: [email protected] . iv PREFACE TO THIRD EDITION This book is a third edition of checklist of the Mammals of Indonesia. The new edition provides remarkable information in several ways compare to the first and second editions, the remarks column contain the abbreviation of the specific island distributions, synonym and specific location. Thus, in this edition we are also corrected the distribution of some species including some new additional species in accordance with the discovery of new species in Indonesia.
    [Show full text]
  • Disaggregation of Bird Families Listed on Cms Appendix Ii
    Convention on the Conservation of Migratory Species of Wild Animals 2nd Meeting of the Sessional Committee of the CMS Scientific Council (ScC-SC2) Bonn, Germany, 10 – 14 July 2017 UNEP/CMS/ScC-SC2/Inf.3 DISAGGREGATION OF BIRD FAMILIES LISTED ON CMS APPENDIX II (Prepared by the Appointed Councillors for Birds) Summary: The first meeting of the Sessional Committee of the Scientific Council identified the adoption of a new standard reference for avian taxonomy as an opportunity to disaggregate the higher-level taxa listed on Appendix II and to identify those that are considered to be migratory species and that have an unfavourable conservation status. The current paper presents an initial analysis of the higher-level disaggregation using the Handbook of the Birds of the World/BirdLife International Illustrated Checklist of the Birds of the World Volumes 1 and 2 taxonomy, and identifies the challenges in completing the analysis to identify all of the migratory species and the corresponding Range States. The document has been prepared by the COP Appointed Scientific Councilors for Birds. This is a supplementary paper to COP document UNEP/CMS/COP12/Doc.25.3 on Taxonomy and Nomenclature UNEP/CMS/ScC-Sc2/Inf.3 DISAGGREGATION OF BIRD FAMILIES LISTED ON CMS APPENDIX II 1. Through Resolution 11.19, the Conference of Parties adopted as the standard reference for bird taxonomy and nomenclature for Non-Passerine species the Handbook of the Birds of the World/BirdLife International Illustrated Checklist of the Birds of the World, Volume 1: Non-Passerines, by Josep del Hoyo and Nigel J. Collar (2014); 2.
    [Show full text]
  • Borneo: Broadbills & Bristleheads
    TROPICAL BIRDING Trip Report: BORNEO June-July 2012 A Tropical Birding Set Departure Tour BORNEO: BROADBILLS & BRISTLEHEADS RHINOCEROS HORNBILL: The big winner of the BIRD OF THE TRIP; with views like this, it’s easy to understand why! 24 June – 9 July 2012 Tour Leader: Sam Woods All but one photo (of the Black-and-yellow Broadbill) were taken by Sam Woods (see http://www.pbase.com/samwoods or his blog, LOST in BIRDING http://www.samwoodsbirding.blogspot.com for more of Sam’s photos) 1 www.tropicalbirding.com Tel: +1-409-515-0514 E-mail: [email protected] TROPICAL BIRDING Trip Report: BORNEO June-July 2012 INTRODUCTION Whichever way you look at it, this year’s tour of Borneo was a resounding success: 297 bird species were recorded, including 45 endemics . We saw all but a few of the endemic birds we were seeking (and the ones missed are mostly rarely seen), and had good weather throughout, with little rain hampering proceedings for any significant length of time. Among the avian highlights were five pitta species seen, with the Blue-banded, Blue-headed, and Black-and-crimson Pittas in particular putting on fantastic shows for all birders present. The Blue-banded was so spectacular it was an obvious shoe-in for one of the top trip birds of the tour from the moment we walked away. Amazingly, despite absolutely stunning views of a male Blue-headed Pitta showing his shimmering cerulean blue cap and deep purple underside to spectacular effect, he never even got a mention in the final highlights of the tour, which completely baffled me; he simply could not have been seen better, and birds simply cannot look any better! However, to mention only the endemics is to miss the mark, as some of the, other, less local birds create as much of a stir, and can bring with them as much fanfare.
    [Show full text]
  • Published Vestigations Together Study Existing Accept Arrangements
    Notes on the Nomenclature of some grasses II by Dr. J.Th. Henrard (Rijksherbarium, Leiden) (Issued September 10th, 1941). In a former article new combinations and critical observa- 1) many all the world. New in- tions were published on various grasses over vestigations in critical genera together with the study of the existing literature made it necessary to accept various other arrangements in this important family. The old system of Bentham, once the basis for a total is and modified and review, now more more many tribes are and limited. The have purified more exactly most recent system we at the moment, is Hubbard’s treatment of this family in the work of Hutchinson: The families of flowering plants. Vol. II. Monocotyle- dons. The grasses are divided there into 26 tribes. We have here the great advantage that aberrant which are into genera, not easy to place one of the formerly accepted tribes, are given as representatives of distinct new tribes. The curious tropical genus Streptochaeta f.i. con- stitutes the tribe of the Streptochaeteae. It is quite acceptable that tribes consist of but may one genus, especially when such a genus is a totally deviating one and cannot be inserted into one of the already existing ones. Such tribes are f.i. the Nardeae with the only northern genus Nardus, and the Mediterranean tribe of the Lygeeae with the only genus Lygeum, one of the Esparto grasses. It is therefore wonder no that Hubbard creates a new tribe, the Anomochloeae, for one of the most curious tropical grasses of the world.
    [Show full text]
  • Endemism and Diversity of Small Mammals Along Two Neighboring Bornean Mountains
    Endemism and diversity of small mammals along two neighboring Bornean mountains Miguel Camacho-Sanchez1,2,*, Melissa T.R. Hawkins3,4,5,*, Fred Tuh Yit Yu6, Jesus E. Maldonado3 and Jennifer A. Leonard1 1 Conservation and Evolutionary Genetics Group, Doñana Biological Station (EBD-CSIC), Sevilla, Spain 2 CiBIO—Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Vairão, Portugal 3 Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA 4 Department of Biological Sciences, Humboldt State University, Arcata, CA, USA 5 Division of Mammals, National Museum of Natural History, Washington, DC, USA 6 Sabah Parks, Kota Kinabalu, Sabah, Malaysia * These authors contributed equally to this work. ABSTRACT Mountains offer replicated units with large biotic and abiotic gradients in a reduced spatial scale. This transforms them into well-suited scenarios to evaluate biogeographic theories. Mountain biogeography is a hot topic of research and many theories have been proposed to describe the changes in biodiversity with elevation. Geometric constraints, which predict the highest diversity to occur in mid-elevations, have been a focal part of this discussion. Despite this, there is no general theory to explain these patterns, probably because of the interaction among different predictors with the local effects of historical factors. We characterize the diversity of small non-volant mammals across the elevational gradient on Mount (Mt.) Kinabalu (4,095 m) and Mt. Tambuyukon (2,579 m), two neighboring mountains in Borneo, Malaysia. We documented a decrease in species richness with elevation which deviates from expectations of the geometric constraints and suggests that spatial Submitted 14 February 2018 Accepted 9 September 2019 factors (e.g., larger diversity in larger areas) are important.
    [Show full text]
  • Faunal Surveys in Unlogged Forest of the Inhutani Ii Malinau Timber Concession, East Kalimantan, Indonesia
    FAUNAL SURVEYS IN UNLOGGED FOREST OF THE INHUTANI II MALINAU TIMBER CONCESSION, EAST KALIMANTAN, INDONESIA Timothy G. O’Brien and Robert A. Fimbel with contributions from Asri Adyati Dwiyahreni Sebastian (Bas) van Balen Jaboury Ghazoul Simon Hedges Purnama Hidayat Katharine Liston Erwin Widodo Nural Winarni Wildlife Conservation Society 2300 Southern Blvd. Bronx, New York 10460 USA Table of Contents Page Table Legends Figure Legends Appendices Section 1: Study Overview Introduction Study Purpose Study Site and Design Overview Main Findings Future Activities Section 2: Mammal Surveys Methods Results and Discussion Problems and Recommendations Section 3: Bird Surveys Methods Results Discussion Problems and Recommendations Section 4: Invertebrate Surveys Methods Results and Discussion Problems and Recommendations Table Legends Table 1. Location and length of the six survey transects. Table 2. Comparison of the six transects. Table 3. Mammal species positively identified in the Bulungan Research Forest, September-October 1998. Table 4. Numbers of groups (primates) and individuals (all other mammals) recorded during transects and timed mammal searches combined (for the CL and RIL sites). Table 5. Numbers of groups (primates) and individuals (all other mammals) recorded during timed mammal searches (for the CL and RIL sites). Table 6. Numbers of groups (primates) and individuals (all other mammals) recorded during transect surveys. Table 7. Numbers of groups (primates) and individuals (all other mammals) recorded per 100 hours and per 100 km of survey effort (transect data only). Table 8. Relative abundances (proportions) of primates and squirrels in the three sites (transects and timed mammal searches combined, minimum numbers). Table 9. Similarity coefficients (modified Morista-Horn index) for number of primates and squirrels recorded in the three sites (transects plus timed mammal searches, minimum numbers).
    [Show full text]
  • (Gramineae) Background Concerned, It
    BLUMEA 31 (1986) 281-307 Generic delimitationof Rottboelliaand related genera (Gramineae) J.F. Veldkamp R. de Koning & M.S.M. Sosef Rijksherbarium,Leiden, The Netherlands Summary Generic delimitations within the Rottboelliastrae Stapf and Coelorachidastrae Clayton (for- mal name) are revised. Coelorachis Brongn., Hackelochloa O. Ktze, Heteropholis C.E. Hubb., in Ratzeburgia Kunth, and Rottboellia formosa R. Br, are to be included Mnesithea Kunth. Heteropholis cochinchinensis (Lour.) Clayton and its variety chenii (Hsu) Sosef & Koning are varieties of Mnesithea laevis (Retz.) Kunth. Robynsiochloa Jacq.-Félix is to be included in Rottboellia L.f. The necessary new combinations, a list of genera and representative species, and a key to the genera are given. In the Appendix a new species of Rottboellia, R. paradoxa Koning & Sosef, is described from the Philippines. The enigmatic species Rottboellia villosa Poir. is transferred to Schizachyrium villosum (Poir.) Veldk., comb. nov. Introduction Historical background The of the within the of taxa delimitation genera group represented by Rottboel- lia L. f. and its closest relatives, here taken in the sense of Clayton (1973), has always posed a considerable problem. former In times Rottboellia contained many species. It was divided up in various the of Hackel seemed most ways, but system 5 subgenera as proposed by (1889) authoritative: Coelorachis (Brongn.) Hack., Hemarthria (R. Br.) Hack., Peltophorus (Desv.) HackPhacelurus (Griseb.) Hack., and Thyrsostachys Hack. When at the end of the last century and in the beginning of the present one many large grass genera were split up, e.g. Andropogon, Panicum, Stapf (1917) raised Hackel's subgenera to generic rank, reviving some old names formerly treated as synonyms, and created several new of the of other unable finish his ones.
    [Show full text]
  • Dieter Thomas Tietze Editor How They Arise, Modify and Vanish
    Fascinating Life Sciences Dieter Thomas Tietze Editor Bird Species How They Arise, Modify and Vanish Fascinating Life Sciences This interdisciplinary series brings together the most essential and captivating topics in the life sciences. They range from the plant sciences to zoology, from the microbiome to macrobiome, and from basic biology to biotechnology. The series not only highlights fascinating research; it also discusses major challenges associated with the life sciences and related disciplines and outlines future research directions. Individual volumes provide in-depth information, are richly illustrated with photographs, illustrations, and maps, and feature suggestions for further reading or glossaries where appropriate. Interested researchers in all areas of the life sciences, as well as biology enthusiasts, will find the series’ interdisciplinary focus and highly readable volumes especially appealing. More information about this series at http://www.springer.com/series/15408 Dieter Thomas Tietze Editor Bird Species How They Arise, Modify and Vanish Editor Dieter Thomas Tietze Natural History Museum Basel Basel, Switzerland ISSN 2509-6745 ISSN 2509-6753 (electronic) Fascinating Life Sciences ISBN 978-3-319-91688-0 ISBN 978-3-319-91689-7 (eBook) https://doi.org/10.1007/978-3-319-91689-7 Library of Congress Control Number: 2018948152 © The Editor(s) (if applicable) and The Author(s) 2018. This book is an open access publication. Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.
    [Show full text]
  • Introductory Grass Identification Workshop University of Houston Coastal Center 23 September 2017
    Broadleaf Woodoats (Chasmanthium latifolia) Introductory Grass Identification Workshop University of Houston Coastal Center 23 September 2017 1 Introduction This 5 hour workshop is an introduction to the identification of grasses using hands- on dissection of diverse species found within the Texas middle Gulf Coast region (although most have a distribution well into the state and beyond). By the allotted time period the student should have acquired enough knowledge to identify most grass species in Texas to at least the genus level. For the sake of brevity grass physiology and reproduction will not be discussed. Materials provided: Dried specimens of grass species for each student to dissect Jewelry loupe 30x pocket glass magnifier Battery-powered, flexible USB light Dissecting tweezer and needle Rigid white paper background Handout: - Grass Plant Morphology - Types of Grass Inflorescences - Taxonomic description and habitat of each dissected species. - Key to all grass species of Texas - References - Glossary Itinerary (subject to change) 0900: Introduction and house keeping 0905: Structure of the course 0910: Identification and use of grass dissection tools 0915- 1145: Basic structure of the grass Identification terms Dissection of grass samples 1145 – 1230: Lunch 1230 - 1345: Field trip of area and collection by each student of one fresh grass species to identify back in the classroom. 1345 - 1400: Conclusion and discussion 2 Grass Structure spikelet pedicel inflorescence rachis culm collar internode ------ leaf blade leaf sheath node crown fibrous roots 3 Grass shoot. The above ground structure of the grass. Root. The below ground portion of the main axis of the grass, without leaves, nodes or internodes, and absorbing water and nutrients from the soil.
    [Show full text]
  • Use of Field Recorded Sounds in the Assessment of Forest Birds in Palawan, Philippines ______Required in the Field [19]
    Asia Pacific Journal of Multidisciplinary Research, Vol. 7, No. 2, May, 2019 _____________________________________________________________________________________________________________________ Asia Pacific Journal of Use of Field Recorded Sounds in the Multidisciplinary Research Assessment of Forest Birds in Palawan, Vol. 7 No.2, 24-31 May 2019 Philippines P-ISSN 2350-7756 E-ISSN 2350-8442 Alejandro A. Bernardo Jr. www.apjmr.com College of Arts and Sciences, Western Philippines University, CHED Recognized Journal Aborlan, Palawan, Philippines ASEAN Citation Index [email protected] Date Received: August 3, 2018; Date Revised: February 8, 2019 Abstract -The uses of bioacoustics in biological applications are getting popular in research communities. Among such application is the use of sound recordings in avifaunal researches. This research explored the possibility of using the sound recording in the assessment of forest birds in Palawan by comparing it in widely used Point Count Method (PCM). To compare the two methods, a simultaneous point count and sound recording surveys from February to November 2017 in the forested slopes of Victoria-Anipahan Mountain in Aborlan, Palawan were conducted. The Sound Recording Method (SRM) listed slightly lower species richness than the PCM, but the difference in the mean number of species was not significant (F1,49=1.05, p > 0.05). The SRM was found to be biased towards noisy and loud calling bird species but it failed to detect the silent and rarely calling species. SRM was also equally sensitive as compared to PCM in detecting endemic and high conservation priority species. Because of these, it was recognized that SRM could be used as one of the alternative methods in forest bird assessment particularly if the concern is avifaunal species richness.
    [Show full text]