Amphipoda of the NEP

Total Page:16

File Type:pdf, Size:1020Kb

Amphipoda of the NEP Amphipoda of the Northeast Pacific (Equator to Aleutians, intertidal to abyss): XVIII. Pardaliscoidea - a revised review Donald B. Cadien, LACSD 22 July 2004 (revised 9Dec2014) Preface The purpose of this review is to bring together information on all of the species reported to occur in the NEP fauna. It is not a straight path to the identification of your unknown animal. It is a resource guide to assist you in making the required identification in full knowledge of what the possibilities are. Never forget that there are other, as yet unreported species from the coverage area; some described, some new to science. The natural world is wonderfully diverse, and we have just scratched its surface! Introduction to the Pardaliscoidea The superfamily Pardaliscoidea is represented by three families in the Northeast Pacific, Pardaliscidae, Stilipedidae, and Vitjazianidae, with the bulk of both genera and species in the first. It is among the natant groups of Bousfield and Shih (1994), along with the lysianassoids, the phoxocephaloids, stegocephaloids, dexaminoids, ampeliscoids, pontoporeoids, eusiroids, oediceratoids, melphidippoids, and the synopioids. They also include the hyperiids here. All these groups share some common morphological elements, as they have adopted some common approaches to life. All are callynophorate, at least in the males, and most bear calceoli, although these are lacking in the pardaliscoids, stegocephaloids, dexaminoids, synopioids, and ampeliscoids. Berge et al (2000) placed pardaliscids in their clade 10, which also contained Hyperiopsidae, Vitjazianidae, Hyperiidae, Nihotungidae, Didymocheliidae and Lafystiidae. In their analysis the stilipedids were more closely related to the iphimedioids than to the pardaliscoids. All such analyses are preliminary, and both the composition of the superfamilies and their interrelationships remain largely speculative. The three families composing the superfamily all occur primarily in the deep sea. Brandt et al (2012) characterized all three as occurring primarily at depths below 2000m, being three of the seven families to be so distributed. Diagnosis of the Pardaliscoidea “Plesiomorphic, weakly rostrate, abdominally processiferous, pelagic marine gammarideans with dimorphic terminal male stage; conjoint flagellar segment of antenna 1 and peduncle of antenna 2 bearing brush setae; accessory flagellum usually strong, occasionally vestigial or lacking; eyes (when present) deep reniform, lateral; mouthparts modified; upper lip with distal notch, lobes asymmetrical; lower lip broad, inner lobes well developed or fused; mandibular molar vestigial or lacking, incisor (and lacinia) strong, palp slender, terminal segment often short; inner plates of maxillae sparsely setose, outer plate of maxilla 1 with 7-8 apical spine teeth, palp often greatly enlarged; maxilliped inner plate reduced, outer plate large, palp strong; coxal plates shallow, 4th not strongly excavate behind; coxae 5-7 equi- or anteriorly lobate; gnathopods 1 and 2 non-amplexing, subsimilar, subchelate or simple, occasionally enlarged and raptorial; peraeopods 3 and 4 tend to be raptorial; peraeopods 5-7 elongate, homopodous or heteropodous, bases not broadly expanded; brood plates broad; coxal gill on peraeopod 7; pleopods powerful; uropods lanceolate, tips weakly 1 spinose, rami unequal; uropod 3 lanceolate, foliaceous, outer ramus 2-segmented; telson lobes deeply separated (apices with notch and spines).”(from Bousfield 1978). Ecological Commentary The pardaliscoids are mostly deep-sea creatures, found from the bathyal into the abyssal and/or hadal zones. Some species occur at shelf depths, but these are the exception. In the deep sea some members of the Pardaliscidae have been observed to be attracted to baited traps, and are in consequence part of the scavenging guild. While most of the deep-sea scavengers are lysianassoids, the pardaliscoids also share this feeding mode. Jamieson et al (2011 present observational evidence that members of the pardaliscid genus Princaxelia are bait-attracted scavengers in trenches. This nutritional mode does not seem to be active at slope and shelf depths for pardaliscoids. In an extensive review of the scavenger guild in Australian waters at those depths, Lowry and Smith (2003) reported no pardaliscoids in any of the hundreds of deployed baited traps. Princaxelia (arrow) circling bait at 7703m in the Japan trench (from Jamieson et al 2012) Many pardaliscoids swim actively, and some are true bathypelagic forms (Birstein & Vinogradov 1958, 1960, 1964, 1970; Thurston 1976). Sainte –Marie and Brunel (1985), in their investigation of swimming amphipods from shelf depths in the NW Atlantic, reported Pardalisca cuspidata as being taken in the suprabenthos. Since most pardaliscoids are not found at shelf depths this quantitative investigation underestimated swimming in the group. Perhaps because of their swimming habit some pardaliscoids have extraordinarily broad distributions, being reliably reported from wide spread points on the globe (see for instance Hendrycks and Conlan 2003). Such swimming is typical of non-mate guarding species that do not engage in prolonged precopula (Conlan 1991). It also places pardaliscoids in the “natant” group of families of Bousfield and Shih (1994). The superfamily lacks calceoli, but bears a well developed sensory callynophore (Lowry 1986). This structure may be present in both sexes, or absent in females, depending on genus. If present in both sexes it is generally better developed in the male, arguing for 2 involvement in mate search as well as prey location. Other sexual differences are variable, with males and females almost identical in some pardaliscoids, while differing substantially in others. Where differences are marked, they usually involve differences in ornamentation of the pleosome or urosome. The two described species in the pardaliscid genus Parpano, for instance are believed to perhaps be male (with urosomal teeth) and female (lacking them) of a single species (J. L. Barnard 1964). In other genera such ornamentation is constant between the sexes. Key to NEP Pardaliscoid genera Biswas et al (2009) have provided a key to all the genera of the Pardaliscidae. I will provide only a key to the families in the NEP. There are two regional genera in the Stilipedidae, which will also be keyed. 1. Coxa 4 posteriorly excavate……………………………………..Stilipedidae..2 Coxa 4 not excavate, anterior and posterior margins subparallel…………..…3 2. P7 longer than P6 or P5, dactyl as wide as propod……………………..Stilipes P7 subequal to P5 and P6, dactyl more slender than propod…………….Astyra 3. Mandibular molar large, triturative……………..……....Vitjazianidae Vemana Mandibular molar absent…………………………………..……..Pardaliscidae NEP Pardaliscoidea from McLaughlin et al. (2005) augmented by known provisionals *= Taxon on SCAMIT Ed. 9 list (Cadien and Lovell 2014). Valid taxa bolded, synonyms not. [Listed provisional species are from thesis (Dickinson 1976), or consulting taxonomic investigations (Thomas in Blake et al 1992; Cadien in Lissner et al 1986) within the area. In nearly all cases they are not documented by voucher descriptions or available specimens. They are presented here to provide some idea of the potential undescribed diversity of the group within the NEP] Family Pardaliscidae Pardaliscidae sp G Dickinson 1976§ - Cascadia Abyssal Plain, Oregon: 2820m Antronicippe serrata Stock and Iliffe 1990 – Galapagos Ids, Ecuador: 24m Caleidoscopsis copal (J. L. Barnard 1967) – Cascadia Abyssal Plain, Oregon to Baja Abyssal Plain, Mexico: 2398-2816m Caleidoscopsis tikal (J. L. Barnard 1967) – Cascadia Abyssal Plain, Oregon to off Northern Baja California, Mexico: 1720-2824m Caleidoscopsis sp A (Dickinson 1976§) – Cascadia Abyssal Plain, Oregon: 2787- 2820m Caleidoscopsis sp B (Dickinson 1976§) – Cascadia Abyssal Plain, Oregon: 2800- 2820m Halice aculeata Chevreux 1912 – Northeast Atlantic, Indian Ocean, Southwest Pacific, NEP off Central California: 0-10,500m [4000m in NEP] Halice cocalito J. L. Barnard 1964 – Gulf of Panama: 1749m Halice hesmonectes Martin, France and Van Dover 1993 – East Pacific Rise, off southern Mexico; 2520m Halice ulcisor J. L. Barnard 1971 – Oregon: 600-800m 3 Halice sp A Dickinson 1976§ - Cascadia Abyssal Plain, Oregon: 2787-2816m Halice sp B Dickinson 1976§ - Cascadia Abyssal Plain, Oregon: 2816m Halice sp W Dickinson 1976§ - Cascadia Abyssal Plain, Oregon: 2820m Halice sp X Dickinson 1976§ - Cascadia Abyssal Plain, Oregon: 2820m Halice sp Y Dickinson 1976§ - Cascadia Abyssal Plain, Oregon: 2815m Halice sp Z Dickinson 1976§ - Cascadia Abyssal Plain, Oregon: 2813-2824m Halicella halona J. L. Barnard 1971 (see Rhynohalicella halona) Halicoides lolo (J. L. Barnard 1971) – Oregon: 800m Halicoides synopiae (J. L. Barnard 1962) – Monterey, Central California to outer coast of Baja California, Mexico: 52-1720m Halicoides sp 1 (Thomas 1992§) – Gulf of the Farallones: 2045-3085 Macroarthrus victoriae Hendrycks and Conlan 2003 – Central California: 4050m Nicippe tumida Bruzelius 1859 – Northeast Atlantic to North Pacific circumboreal, to Bahia San Cristobal, Mexico: 34-1367m Octomana hadromischa Hendrycks and Conlan 2003 – Central California: 1787-4050m Pardalisca endeavouri Shaw 1989 – Explorer Ridge west of Vancouver Id., Canada: 1797m Pardalisca marionis Stebbing 1888 – Gulf of the Farallones: 2045-3085m Pardalisca tenuipes Sars, 1893 – North Atlantic, North Pacific to SCB: 32- 1094m Pardalisca sp J. L. Barnard 1967 – Santa Maria Basin, Central California
Recommended publications
  • AMPHIPODA Sheet 103 SUB-ORDER: HYPERIIDEA Family: Hyperiidae (BY M
    CONSEIL INTERNATIONAL POUR L’EXPLORATION DE LA MER Zooplankton AMPHIPODA Sheet 103 SUB-ORDER: HYPERIIDEA Family: Hyperiidae (BY M. J. DUNBAR) 1963 https://doi.org/10.17895/ices.pub.4917 -2- 1. Hyperia galba, 9;a, per. 1; b, per. 2. - 2. Hyperia medusarum, 9;a, per. 1 ; b, per. 2. - 3. Hyperoche rnedusarum, 8; a, per. 1 ; b, per. 2. - 4. Parathemisto abyssorum, Q; a, per. 3; b, uropods. - 5. Para- themisto gauchicaudi (“short-legged” form), 9; a, per. 3; b, uropods; c, per. 5. - 6. Parathemisto libellula, Q; a, per. 3; b, uropods; c, per. 5. - 7. Parathemisto gracilipes, (first antenna not drawn in full); a, per. 5; b, uropods 3. (Figures 7, 7a and 7b redrawn from HURLEY;Figure 6c original; remainder drawn from SARS.) The limbs of the peraeon, or peraeopods, are here numbered in series from 1 to 7, numbers 1 and 2 being also called “gnathopods”; “per.” = peraeopod. Only the species of the northern part of the North Atlantic are treated here; the Mediterranean species are omitted. The family is still in need of revision. Family Hyperiidae Key to the genera:- la. Per. 5-7 considerably longer than per. 3 and 4. ........................................................ Parathemisto Boeck lb. Per. 5 and 6 longer than 3 and 4; per. 7 much shorter than 5 and 6 ..................Hyperioides longipes Chevreux (not figured) lc. Per. 5-7 not longer than 3 and 4 ....................................................................................... 2 2a. Per. 1 and 2, the fixed finger (onjoint 5) of thechelanot shorter than the movable finger (joint 6). ...Hyperoche medusarum (Kroyer) (Fig. 3) 2b. Per.
    [Show full text]
  • The 17Th International Colloquium on Amphipoda
    Biodiversity Journal, 2017, 8 (2): 391–394 MONOGRAPH The 17th International Colloquium on Amphipoda Sabrina Lo Brutto1,2,*, Eugenia Schimmenti1 & Davide Iaciofano1 1Dept. STEBICEF, Section of Animal Biology, via Archirafi 18, Palermo, University of Palermo, Italy 2Museum of Zoology “Doderlein”, SIMUA, via Archirafi 16, University of Palermo, Italy *Corresponding author, email: [email protected] th th ABSTRACT The 17 International Colloquium on Amphipoda (17 ICA) has been organized by the University of Palermo (Sicily, Italy), and took place in Trapani, 4-7 September 2017. All the contributions have been published in the present monograph and include a wide range of topics. KEY WORDS International Colloquium on Amphipoda; ICA; Amphipoda. Received 30.04.2017; accepted 31.05.2017; printed 30.06.2017 Proceedings of the 17th International Colloquium on Amphipoda (17th ICA), September 4th-7th 2017, Trapani (Italy) The first International Colloquium on Amphi- Poland, Turkey, Norway, Brazil and Canada within poda was held in Verona in 1969, as a simple meet- the Scientific Committee: ing of specialists interested in the Systematics of Sabrina Lo Brutto (Coordinator) - University of Gammarus and Niphargus. Palermo, Italy Now, after 48 years, the Colloquium reached the Elvira De Matthaeis - University La Sapienza, 17th edition, held at the “Polo Territoriale della Italy Provincia di Trapani”, a site of the University of Felicita Scapini - University of Firenze, Italy Palermo, in Italy; and for the second time in Sicily Alberto Ugolini - University of Firenze, Italy (Lo Brutto et al., 2013). Maria Beatrice Scipione - Stazione Zoologica The Organizing and Scientific Committees were Anton Dohrn, Italy composed by people from different countries.
    [Show full text]
  • New Insights from the Neuroanatomy of Parhyale Hawaiensis
    bioRxiv preprint doi: https://doi.org/10.1101/610295; this version posted April 18, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The “amphi”-brains of amphipods: New insights from the neuroanatomy of Parhyale hawaiensis (Dana, 1853) Christin Wittfoth, Steffen Harzsch, Carsten Wolff*, Andy Sombke* Christin Wittfoth, University of Greifswald, Zoological Institute and Museum, Dept. of Cytology and Evolutionary Biology, Soldmannstr. 23, 17487 Greifswald, Germany. https://orcid.org/0000-0001-6764-4941, [email protected] Steffen Harzsch, University of Greifswald, Zoological Institute and Museum, Dept. of Cytology and Evolutionary Biology, Soldmannstr. 23, 17487 Greifswald, Germany. https://orcid.org/0000-0002-8645-3320, sharzsch@uni- greifswald.de Carsten Wolff, Humboldt University Berlin, Dept. of Biology, Comparative Zoology, Philippstr. 13, 10115 Berlin, Germany. http://orcid.org/0000-0002-5926-7338, [email protected] Andy Sombke, University of Vienna, Department of Integrative Zoology, Althanstr. 14, 1090 Vienna, Austria. http://orcid.org/0000-0001-7383-440X, [email protected] *shared last authorship ABSTRACT Background Over the last years, the amphipod crustacean Parhyale hawaiensis has developed into an attractive marine animal model for evolutionary developmental studies that offers several advantages over existing experimental organisms. It is easy to rear in laboratory conditions with embryos available year- round and amenable to numerous kinds of embryological and functional genetic manipulations. However, beyond these developmental and genetic analyses, research on the architecture of its nervous system is fragmentary.
    [Show full text]
  • A New Species of Stilipedidae (Amphipoda: Senticaudata) from the South Mid-Atlantic Ridge
    Zootaxa 3852 (1): 133–140 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3852.1.6 http://zoobank.org/urn:lsid:zoobank.org:pub:F2D4DB10-3F03-4482-A444-B7493841A0C7 A new species of Stilipedidae (Amphipoda: Senticaudata) from the South Mid- Atlantic Ridge C.S. SEREJO Museu Nacional – Universidade Federal do Rio de Janeiro, Departamento de Invertebrados, Setor de Carcinologia, Quinta da Boa Vista s/n, São Cristóvão, 20940-040, Rio de Janeiro, RJ, Brazil. [email protected] Abstract A new species of Alexandrella is herein described based on material from the South Mid-Atlantic Ridge around depths of 4700 m. Samples were collected in the scope of the South MAR ECO (Patterns and Processes of the Ecosystems of the Mid-Atlantic) Project, which was part of the Census of Marine Life (CoML). Until the present study, Alexandrella was restricted to Antarctic and Subantarctic waters, with two species having extended distributions (Kermadec Trench, Aus- tralia and New Zealand). This is the first record of Alexandrella in the deep sea Atlantic, outside the Southern Ocean limits. Key words: Alexandrella, new species, deep sea, Mid-Atlantic Ridge, Census of Marine Life. Introduction Oceans of the southern hemisphere have been much less researched and sampled than the northern hemisphere, especially the South Atlantic. The South Atlantic Ocean is the newest of all major oceans, formed by the separation of South America and Africa 175 – 90 million years ago (Levin & Gooday, 2003). Its configuration and size are outcomes of two independent spreading processes: one that formed the North Atlantic in the early Mesozoic nearly 200 million years ago and another that formed the South Atlantic 100 million years later.
    [Show full text]
  • Crustacea, Malacostraca)*
    SCI. MAR., 63 (Supl. 1): 261-274 SCIENTIA MARINA 1999 MAGELLAN-ANTARCTIC: ECOSYSTEMS THAT DRIFTED APART. W.E. ARNTZ and C. RÍOS (eds.) On the origin and evolution of Antarctic Peracarida (Crustacea, Malacostraca)* ANGELIKA BRANDT Zoological Institute and Zoological Museum, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany Dedicated to Jürgen Sieg, who silently died in 1996. He inspired this research with his important account of the zoogeography of the Antarctic Tanaidacea. SUMMARY: The early separation of Gondwana and the subsequent isolation of Antarctica caused a long evolutionary his- tory of its fauna. Both, long environmental stability over millions of years and habitat heterogeneity, due to an abundance of sessile suspension feeders on the continental shelf, favoured evolutionary processes of “preadapted“ taxa, like for exam- ple the Peracarida. This taxon performs brood protection and this might be one of the most important reasons why it is very successful (i.e. abundant and diverse) in most terrestrial and aquatic environments, with some species even occupying deserts. The extinction of many decapod crustaceans in the Cenozoic might have allowed the Peracarida to find and use free ecological niches. Therefore the palaeogeographic, palaeoclimatologic, and palaeo-hydrographic changes since the Palaeocene (at least since about 60 Ma ago) and the evolutionary success of some peracarid taxa (e.g. Amphipoda, Isopo- da) led to the evolution of many endemic species in the Antarctic. Based on a phylogenetic analysis of the Antarctic Tanaidacea, Sieg (1988) demonstrated that the tanaid fauna of the Antarctic is mainly represented by phylogenetically younger taxa, and data from other crustacean taxa led Sieg (1988) to conclude that the recent Antarctic crustacean fauna must be comparatively young.
    [Show full text]
  • Diet Variability and Reproductive Performance of Macaroni Penguins Eudyptes Chrysolophus at Bird Island, South Georgia
    Vol. 466: 261–274, 2012 MARINE ECOLOGY PROGRESS SERIES Published October 15 doi: 10.3354/meps09930 Mar Ecol Prog Ser Diet variability and reproductive performance of macaroni penguins Eudyptes chrysolophus at Bird Island, South Georgia Claire M. Waluda*, Simeon L. Hill, Helen J. Peat, Philip N. Trathan British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK ABSTRACT: We analysed summer diet and fledging mass of macaroni penguins Eudyptes chrysolophus breeding at Bird Island, South Georgia, during the crèche period (January and February) between 1989 and 2010. Crustaceans were the main prey accounting, for over 90% of the diet by mass. Antarctic krill Euphausia superba was the main prey, in 17 out of 22 years. Amphipods Themisto gaudichaudii were the main prey in 1994 and 2009, fish in 2004, and the euphausiids Thysanoessa spp. and Euphausia frigida in 2000. There was no clearly dominant prey group in 1999. Prey diversity and the frequency occurrence of T. gaudichaudii both increased with a decreasing proportion of E. superba in the diet. There was strong evidence that macaroni penguins have a sigmoidal functional response, indicating that this kind of response should be accounted for when devising ecosystem-based management reference points for seabirds. The energy and mass of all euphausiids combined (rather than E. superba in particular) in the diet were the most reliable predictors of chick fledging mass; the correlation between model-predicted and observed values was 0.84. The gross energy content of individual meals was often above aver- age in years when the diets contained fewer euphausiids, but fledging mass was always below average in these years.
    [Show full text]
  • Crustacea: Amphipoda: Hyperiidea: Hyperiidae), with the Description of a New Genus to Accommodate H
    Zootaxa 3905 (2): 151–192 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3905.2.1 http://zoobank.org/urn:lsid:zoobank.org:pub:A47AE95B-99CA-42F0-979F-1CAAD1C3B191 A review of the hyperiidean amphipod genus Hyperoche Bovallius, 1887 (Crustacea: Amphipoda: Hyperiidea: Hyperiidae), with the description of a new genus to accommodate H. shihi Gasca, 2005 WOLFGANG ZEIDLER South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia. E-mail [email protected] Table of contents Abstract . 151 Introduction . 152 Material and methods . 152 Systematics . 153 Suborder Hyperiidea Milne-Edwards, 1830 . 153 Family Hyperiidae Dana, 1852 . 153 Genus Hyperoche Bovallius, 1887 . 153 Key to the species of Hyperoche Bovallius, 1887 . 154 Hyperoche medusarum (Kröyer, 1838) . 155 Hyperoche martinezii (Müller, 1864) . 161 Hyperoche picta Bovallius, 1889 . 165 Hyperoche luetkenides Walker, 1906 . 168 Hyperoche mediterranea Senna, 1908 . 173 Hyperoche capucinus Barnard, 1930 . 177 Hyperoche macrocephalus sp. nov. 180 Genus Prohyperia gen. nov. 182 Prohyperia shihi (Gasca, 2005) . 183 Acknowledgements . 186 References . 186 Abstract This is the first comprehensive review of the genus Hyperoche since that of Bovallius (1889). This study is based primarily on the extensive collections of the ZMUC but also on more recent collections in other institutions. Seven valid species are recognised in this review, including one described as new to science. Two new characters were discovered; the first two pereonites are partially or wholly fused dorsally and the coxa of pereopod 7 is fused with the pereonite.
    [Show full text]
  • Interannual Variability in the Occurrence of Themisto (Amphipoda) in the North Norwegian Sea
    POLISH POLAR RESEARCH 21 3-4 143-152 2000 Krzysztof WENCKI Zakład Ekologii Morza Instytut Oceanologii PAN Powstańców Warszawy 55 81-712 Sopot, POLSKA e-mail: [email protected] Interannual variability in the occurrence of Themisto (Amphipoda) in the north Norwegian Sea ABSTRACT: Two species of Amphipoda (Hyperiidae), Themisto libellula (Mandt, 1822) and Themisto abyssorum (Boeck, 1870), were collected with the use of a WP-2 net from the area be­ tween Nordkapp and Spitsbergen (73° to 78° N) in July of 1993,1996,1997, and 1998. Densities ranged from 6 to 992 ind. 100 nr3 (T. abyssorum) and from 8 to 448 ind. 100 nr3 (r. libellula), and respective total biomass of T. abyssorum from 65.6 to 81.2 mg d.w. 100 m'3 and T. libellula from 59.9 to 131.5 mg d.w. 100 nr3. Key words: Arctic plankton, Themisto abyssorum, Themisto libellula, density, biomass. Introduction The northern Atlantic is known for its variability in climate (Katsov and Walsh 1996). The effect of this variability on marine organisms has been reported by Wcslawski and Kwaśniewski (1990) based on the example of Svalbard waters. This area is extremely changeable both with regard to environmental factors as well as trophic conditions (Sakshaug et al. 1994). The climatic fluctuations can change the composition of zooplankton and influence its total abundance (Cushing and Dickson 1976). Macroplanktonic crustaceans, including hyperiid amphipods (Themisto abys­ sorum and Themisto libellula), are key species for Arctic pelagic food webs, since fish, seals, and whales feed on them (Mehlum and Gabrielsen 1993, Sakshaug et al.
    [Show full text]
  • Benthic Macrofaunal and Megafaunal Distribution on the Canadian Beaufort Shelf and Slope
    Benthic Macrofaunal and Megafaunal Distribution on the Canadian Beaufort Shelf and Slope by Jessica Nephin B.Sc., University of British Columbia, 2009 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE in the School of Earth and Ocean Sciences c Jessica Nephin, 2014 University of Victoria All rights reserved. This thesis may not be reproduced in whole or in part, by photocopying or other means, without the permission of the author. ii Benthic Macrofaunal and Megafaunal Distribution on the Canadian Beaufort Shelf and Slope by Jessica Nephin B.Sc., University of British Columbia, 2009 Supervisory Committee Dr. S. Kim Juniper School of Earth and Ocean Sciences, Department of Biology Supervisor Dr. Verena Tunnicliffe School of Earth and Ocean Sciences, Department of Biology Departmental Member Dr. Julia Baum Department of Biology Outside Member Dr. Philippe Archambault Université du Québec à Rimouski Additional Member iii Supervisory Committee Dr. S. Kim Juniper (School of Earth and Ocean Sciences, Department of Biology) Supervisor Dr. Verena Tunnicliffe (School of Earth and Ocean Sciences, Department of Biology) Departmental Member Dr. Julia Baum (Department of Biology) Outside Member Dr. Philippe Archambault (Université du Québec à Rimouski) Additional Member ABSTRACT The Arctic region has experienced the largest degree of anthropogenic warming, causing rapid, yet variable sea-ice loss. The effects of this warming on the Canadian Beaufort Shelf have led to a longer ice-free season which has assisted the expansion of northern development, mainly in the oil and gas sector. Both these direct and indirect effects of climate change will likely impact the marine ecosystem of this region, in which benthic fauna play a key ecological role.
    [Show full text]
  • Hyperia Galba in the North Sea Birgit Dittrich*
    HELGOLANDER MEERESUNTERSUCHUNGEN Helgol&nder Meeresunters. 42, 79-98 (1988) Studies on the life cycle and reproduction of the parasitic amphipod Hyperia galba in the North Sea Birgit Dittrich* Lehrstuhl ffir Speziefle Zoologie und Parasitologie, Ruhr-Universit~t Bochum; D-4630 Bochum 1 and Biologische Anstalt Helgoland (Meeresstation); D-2192 Helgoland, Federal Republic of Germany ABSTRACT: The structure of a Hyperia galba population, and its seasonal fluctuations were studied in the waters of the German Bight around the island of Helgoland over a period of two years (1984 and 1985). A distinct seasonal periodicity in the distribution pattern of this amphipod was recorded. During summer, when its hosts - the scyphomedusae Aurelia aurita, Chrysaora hysoscella, Rhizo- stoma pulmo, Cyanea capillata and Cyanea lamarckn'- occur in large numbers, supplying shelter and food, a population explosion of H. galba can be observed. It is caused primarily by the relatively high fecundity of H. galba which greatly exceeds that of other amphipods: a maximum of 456 eggs was observed. The postembryonic development is completed in the medusae infested; only then are the young able to swim and search for a new host. The smallest fr4ely-swimming hyperians obtained from plankton samples were 2.6 mm in body size. The size classes observed as well as moult increment and moulting frequencies in relation to different temperatures suggest that two genera- tions are developed per year: a rapidly growing generation in summer and a slower growing generation in winter that shifts to a benthic mode of life and hibernation. For short periods, adult hyperians may become attached to zooplankters other than scyphomedusae.
    [Show full text]
  • Amphipoda Key to Amphipoda Gammaridea
    GRBQ188-2777G-CH27[411-693].qxd 5/3/07 05:38 PM Page 545 Techbooks (PPG Quark) Dojiri, M., and J. Sieg, 1997. The Tanaidacea, pp. 181–278. In: J. A. Blake stranded medusae or salps. The Gammaridea (scuds, land- and P. H. Scott, Taxonomic atlas of the benthic fauna of the Santa hoppers, and beachhoppers) (plate 254E) are the most abun- Maria Basin and western Santa Barbara Channel. 11. The Crustacea. dant and familiar amphipods. They occur in pelagic and Part 2 The Isopoda, Cumacea and Tanaidacea. Santa Barbara Museum of Natural History, Santa Barbara, California. benthic habitats of fresh, brackish, and marine waters, the Hatch, M. H. 1947. The Chelifera and Isopoda of Washington and supralittoral fringe of the seashore, and in a few damp terres- adjacent regions. Univ. Wash. Publ. Biol. 10: 155–274. trial habitats and are difficult to overlook. The wormlike, 2- Holdich, D. M., and J. A. Jones. 1983. Tanaids: keys and notes for the mm-long interstitial Ingofiellidea (plate 254D) has not been identification of the species. New York: Cambridge University Press. reported from the eastern Pacific, but they may slip through Howard, A. D. 1952. Molluscan shells occupied by tanaids. Nautilus 65: 74–75. standard sieves and their interstitial habitats are poorly sam- Lang, K. 1950. The genus Pancolus Richardson and some remarks on pled. Paratanais euelpis Barnard (Tanaidacea). Arkiv. for Zool. 1: 357–360. Lang, K. 1956. Neotanaidae nov. fam., with some remarks on the phy- logeny of the Tanaidacea. Arkiv. for Zool. 9: 469–475. Key to Amphipoda Lang, K.
    [Show full text]
  • Study of Biological Processes on the U.S. Mid-Atlantic Slope and Rise
    Vt.J J V V I MMS 87-0050 CONTRACT NO.14-12-0001-3006 STUDY OF BIOLOGICAL PROCESSES ON THE U.S. MID-ATLANTIC SLOPE AND RISE VOLUME 2 FINAL REPORT PREPARED FOR U .S. DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT SERVICE OCS Study M MS 87-0050 Contract No. 14-12-0001-30064 STUDY OF BIOLOGICAL PROCESSES ON THE US. MID-ATLANTIC SLOPE AND RISE by N. Maciolek 1, J.F. Grassle2, B. Hecker3, P .D. Boehm 1, B. Brown 1, B . Dade2, W .G. Steinhauerl, E . Baptistel, R .E. Ruffl, and R. Petrecca2 December 15, 1987 1Battelle Ocean Sciences 397 Washington Street, Duxbury, Massachusetts 02332 and 2Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543 and 3Lamont-Doherty Geological Observatory of Columbia University Palisades, New York 10964 Final Report Prepared for the US. Department of the Interior Minerals Management Service Washington, D.C. 20240 DISCLAIMER This report has been reviewed by the Minerals Management Service (MMS) and has been approved for publication . Approval does not signify that the contents necessarily reflect the views and policies of the MMS, nor does mention of trade names or commercial ,products constitute endorsement or recommendation for use . i DISCLAIMER This report is a work prepared for the United States by Battelle . In no event shall either the United States or Battelle have any responsibility or liability for any consequences of any use, misuse, inability to use, or reliance upon the information contained herein, nor does either warrant or otherwise represent in any way the accuracy, adequacy, efficacy, or applicability of the contents hereof .
    [Show full text]