Characterization of Generalized Petersen Graphs That Are Kronecker Covers Matjaž Krnc, Tomaž Pisanski

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of Generalized Petersen Graphs That Are Kronecker Covers Matjaž Krnc, Tomaž Pisanski Characterization of generalized Petersen graphs that are Kronecker covers Matjaž Krnc, Tomaž Pisanski To cite this version: Matjaž Krnc, Tomaž Pisanski. Characterization of generalized Petersen graphs that are Kronecker covers. 2018. hal-01804033v1 HAL Id: hal-01804033 https://hal.archives-ouvertes.fr/hal-01804033v1 Preprint submitted on 31 May 2018 (v1), last revised 3 Nov 2019 (v6) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Characterization of generalized Petersen graphs that are Kronecker covers∗ Matjaž Krncy and Tomaž Pisanskiz FAMNIT, University of Primorska, Slovenia May 31, 2018 Abstract The family of generalized Petersen graphs G (n; k), introduced by Coxeter et al. [4] and named by Mark Watkins (1969), is a family of cubic graphs formed by connecting the vertices of a regular polygon to the corresponding vertices of a star polygon. The Kronecker cover KC (G) of a simple undirected graph G is a a special type of bipartite covering graph of G, isomorphic to the direct (tensor) product of G and K2. We characterize all the members of generalized Petersen graphs that are Kronecker covers, and describe the structure of their respective quotients. We observe that some of such quotients are again generalized Petersen graphs, and describe all such pairs. Keywords— Generalized Petersen graphs, Kronecker cover MSC: 57M10, 05C10, 05C25 1 Introduction The generalized Petersen graphs, introduced by Coxeter et al. [4] and named by Watkins [15], form a very interesting family of trivalent graphs that can be described by only two integer parameters. They include Hamiltonian and non-Hamiltonian graphs, bipartite and non-bipartite graphs, vertex-transitive and non-vertex-transitive graphs, Cayley and non- Cayley graphs, arc-transitive graphs and non-arc transitive graphs, graphs of girth 3; 4; 5; 6; 7 or 8. Their generalization to I-graphs does not introduce any new vertex-transitive graphs but it contains also non-connected graphs and has in special cases unexpected symmetries. n Following the notation of Watkins [15], for a given integers n and k < 2 , we can define a generalized Petersen graph G (n; k) as a graph on vertex-set fu0; : : : ; un−1; v0; : : : ; vn−1g. The edge-set may be naturally partitioned into three equal parts (note that all subscripts ∗Dedicated to Mark Watkins on the Occasion of his 80th Birthday. [email protected] [email protected] 1 n−1 are assumed modulo n): the edges EO (n; k) = fuiui+1gi=0 from the outer rim, inducing a n−1 cycle of length n; the edges EI (n; k) = fvivi+kgi=0 from the inner rims, inducing gcd(n; k) n n−1 cycles of length gcd(n;k) ; and the edges ES (n; k) = fuivigi=0 , also called spokes, that induce a perfect matching in G (n; k). Hence the edge-set may be defined as E (G (n; k)) = EO (n; k)[ EI (n; k) [ ES (n; k). Various aspects of the structure of the mentioned family has been observed. Examples include identifying generalized Petersen graphs that are Hamiltonian [1] or Cayley [13, 10], or finding their automorphism group [14, 11, 7]. Also, a related generalization to I-graphs has been introduced in the Foster census [3], and further studied by Boben et al. [2]. Theory of covering graphs became one of the most important and successful tools of algebraic graph theory. It is a discrete analog of the well known theory of covering spaces in algebraic topology. In general, covers depend on the values called voltages assigned to the edges of the graphs. Only in some cases the covering is determined by the graph itself. One of such cases is the recently studied clone cover [9]. The other, more widely known case is the Kronecker cover. The Kronecker cover KC (G) (also called bipartite or canonical double cover) of a sim- ple undirected graph G is a bipartite covering graph with twice as many vertices as G. Formally, KC (G) is defined as a tensor product G × K2, i.e. a graph on a vertex-set 0 00 0 00 00 0 V (KC (G)) = fv ; v gv2V (G), and an edge-set E (KC (G)) = fu v ; u v guv2E(G). Some re- cent work on Kronecker covers includes Gévay and Pisanski [6] and Imrich and Pisanski [8]. In this paper, we study the family of generalized Petersen graphs in conjunction with the Kronecker cover operation. Namely, in the next section we state our main theorem characterizing all the members of generalized Petersen graphs that are Kronecker covers, and describing the structure of their corresponding quotient graphs. In Section 3 we focus on the necessary and sufficient conditions for a generalized Petersen graph to be a Kronecker cover while in Section 4 we complement the existence results with the description of the structure of the corresponding quotient graphs. We conclude the paper with some remarks and directions for a possible future research. 2 Main result In order to state the main result we need to introduce the graph and two 2-parametric families of cubic, connected graphs. Let H be a graph defined by the following procedure: take the Cartesian product K3P3, remove the edges of the middle triangle, add a new vertex in the middle and connect it to all three 2-vertices. Note that the graph H is mentioned in the paper [8] where it is depicted in Figure 1. The Desargues graph G (10; 3) ' KC (H) may be similarly defined by first taking K6P3, removing the edges of the middle hexagon, adding two new vertices in the middle and alter- nately connecting them to the consecutuve vertices of the middle hexagon. The mentioned construction of H and the standard drawing of Desargues graph are depicted on Figure 1. To describe the quotients of generalized Petersen graphs, we use the LCF notation, named by developers Lederberg, Coxeter and Frucht, for the representation of cubic hamiltonian 2 Figure 1: The Desargues graph and its both quotients; H and the Petersen graph. graphs (for extended description see [12]). In a Hamiltonian cubic graph, the vertices can be arranged in a cycle, which accounts for two edges per vertex. The third edge from each vertex can then be described by how many positions clockwise (positive) or counter-clockwise (negative) it leads. The basic form of the LCF notation is just the sequence [a0; a1; : : : ; an−1] of numbers of positions, starting from an arbitrarily chosen ver- tex and written in square brackets. To state our results, we only use a special type of such LCF-representable graphs, namely C+(n; k) and C−(n; k), which we define below. Definition 1. Assuming all numbers are modulo n, define graphs hn n n n i C+(n; k) = ; + (k − 1); + 2(k − 1);:::; + (n − 1)(k − 1) ; 2 2 2 2 and similarly hn n n n i C−(n; k) = ; − (k + 1); − 2(k + 1);:::; − (n − 1)(k + 1) : 2 2 2 2 In [8] it was proven that G (10; 3) is Kronecker cover of two non-isomorphic graphs. Here we prove among other things that this is the only generalized Petersen graph that is a multiple Kronecker cover. Every other generalized Petersen graph is either a Kronecker cover of a single graph or it is not a Kronecker cover at all. More precisely; Theorem 1. Among the members of the family of generalized Petersen graphs, G (10; 3) is the only graph that is the Kronecker cover of two non-isomorphic graphs, the Petersen graph and the graph H. For any other G ' G (n; k), the following holds: a) If n ≡ 2 (mod 4) and k is odd, G is a Kronecker cover. In particular n a1) if 4k < n, the corresponding quotient graph is G 2 ; k , and 3 n n a2) if n < 4k < 2n the quotient graph is G 2 ; 2 − k . k2−1 b) If n ≡ 0 (mod 4) and k is odd, G is a Kronecker cover if and only if n j 2 and n k < 2 . Moreover, + b1) if k = 4t + 1 the corresponding quotient is C (n; k) while − b2) if k = 4t + 3 the quotient is C (n; k). c) Any other generalized Petersen graph is not a Kronecker cover. For k = 1 and even n each G(n; 1) is a Kronecker cover. However, if n = 4t case b1) applies and the quotient graph is even Moebius ladder. For G(4; 1) the quotient is K4 = M4. Similarly, the 8-sided prism G(8; 1) is a Kronecker cover of M8. In case n = 4t + 2 the case a1) applies and the quotient is G(n=2; 1). For instance, the 6-sided prism is a Kronecker cover of a 3-sided prism. For k > 1 the smallest cases stated in Theorem 1 are presented in Table 1. It is well-known that any automorphism of a connected bipartite graph either preserves the two sets of bipartition or interchanges the two sets of bipartition. In the former case we call the automorphism colour preserving and in the latter case colour reversing. Clearly, the product of two color-reversing automorphisms is a color preserving automorphism and the collection of color preserving automorphisms determine a subgroup of the full automorphism group that is of index 2.
Recommended publications
  • Constructions and Enumeration Methods for Cubic Graphs and Trees
    Butler University Digital Commons @ Butler University Undergraduate Honors Thesis Collection Undergraduate Scholarship 2013 Constructions and Enumeration Methods for Cubic Graphs and Trees Erica R. Gilliland Butler University Follow this and additional works at: https://digitalcommons.butler.edu/ugtheses Part of the Discrete Mathematics and Combinatorics Commons Recommended Citation Gilliland, Erica R., "Constructions and Enumeration Methods for Cubic Graphs and Trees" (2013). Undergraduate Honors Thesis Collection. 360. https://digitalcommons.butler.edu/ugtheses/360 This Thesis is brought to you for free and open access by the Undergraduate Scholarship at Digital Commons @ Butler University. It has been accepted for inclusion in Undergraduate Honors Thesis Collection by an authorized administrator of Digital Commons @ Butler University. For more information, please contact [email protected]. BUTLER UNIVERSITY HONORS PROGRAM Honors Thesis Certification Please type all information in this section: Applicant Erica R. Gilliland (Name as it is to appear on diploma) Thesis title Constructions and Enumeration Methods for Cubic Graphs and Trees Intended date of commencement May 11, 2013 --~------------------------------ Read, approved, and signed by: tf -;t 'J,- J IJ Thesis adviser(s) D'rt/~ S// CWiV'-~ Date Date t.-t - 2. Z - 2.C?{3 Reader(s) Date Date Certified by Director, Honors Program Date For Honors Program use: Level of Honors conferred: University Departmental MtH1t£W1Ah"LS with ttijutt HoVJQ(5 ik1vrj,,1 r"U)U ",1-111 ttlStl HMbCS V(IIVet>i}\j HtlYlb6 froyrltm I Constructions and Enumeration Methods for Cubic Graphs and Trees Erica R. Gilliland A Thesis Presented to the Department of Mathematics College of Liberal Arts and Sciences and Honors Program of Butler University III Partial Fulfillment of the ncCIuirclllcnts for G rae! ua lion Honors Submitted: April 2:3, 2()1:3 Constructions and Enumeration Methods for Cubic Graphs and Trees Erica It Gilliland Under the supervision of Dr.
    [Show full text]
  • Characterization of Generalized Petersen Graphs That Are Kronecker Covers Matjaž Krnc, Tomaž Pisanski
    Characterization of generalized Petersen graphs that are Kronecker covers Matjaž Krnc, Tomaž Pisanski To cite this version: Matjaž Krnc, Tomaž Pisanski. Characterization of generalized Petersen graphs that are Kronecker covers. 2019. hal-01804033v4 HAL Id: hal-01804033 https://hal.archives-ouvertes.fr/hal-01804033v4 Preprint submitted on 18 Oct 2019 (v4), last revised 3 Nov 2019 (v6) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Discrete Mathematics and Theoretical Computer Science DMTCS vol. VOL:ISS, 2015, #NUM Characterization of generalised Petersen graphs that are Kronecker covers∗ Matjazˇ Krnc1;2;3y Tomazˇ Pisanskiz 1 FAMNIT, University of Primorska, Slovenia 2 FMF, University of Ljubljana, Slovenia 3 Institute of Mathematics, Physics, and Mechanics, Slovenia received 17th June 2018, revised 20th Mar. 2019, 18th Sep. 2019, accepted 26th Sep. 2019. The family of generalised Petersen graphs G (n; k), introduced by Coxeter et al. [4] and named by Watkins (1969), is a family of cubic graphs formed by connecting the vertices of a regular polygon to the corresponding vertices of a star polygon. The Kronecker cover KC (G) of a simple undirected graph G is a special type of bipartite covering graph of G, isomorphic to the direct (tensor) product of G and K2.
    [Show full text]
  • PDF Reference
    NetworkX Reference Release 1.0 Aric Hagberg, Dan Schult, Pieter Swart January 08, 2010 CONTENTS 1 Introduction 1 1.1 Who uses NetworkX?..........................................1 1.2 The Python programming language...................................1 1.3 Free software...............................................1 1.4 Goals...................................................1 1.5 History..................................................2 2 Overview 3 2.1 NetworkX Basics.............................................3 2.2 Nodes and Edges.............................................4 3 Graph types 9 3.1 Which graph class should I use?.....................................9 3.2 Basic graph types.............................................9 4 Operators 129 4.1 Graph Manipulation........................................... 129 4.2 Node Relabeling............................................. 134 4.3 Freezing................................................. 135 5 Algorithms 137 5.1 Boundary................................................. 137 5.2 Centrality................................................. 138 5.3 Clique.................................................. 142 5.4 Clustering................................................ 145 5.5 Cores................................................... 147 5.6 Matching................................................. 148 5.7 Isomorphism............................................... 148 5.8 PageRank................................................. 161 5.9 HITS..................................................
    [Show full text]
  • Package 'Igraph'
    Package ‘igraph’ February 28, 2013 Version 0.6.5-1 Date 2013-02-27 Title Network analysis and visualization Author See AUTHORS file. Maintainer Gabor Csardi <[email protected]> Description Routines for simple graphs and network analysis. igraph can handle large graphs very well and provides functions for generating random and regular graphs, graph visualization,centrality indices and much more. Depends stats Imports Matrix Suggests igraphdata, stats4, rgl, tcltk, graph, Matrix, ape, XML,jpeg, png License GPL (>= 2) URL http://igraph.sourceforge.net SystemRequirements gmp, libxml2 NeedsCompilation yes Repository CRAN Date/Publication 2013-02-28 07:57:40 R topics documented: igraph-package . .5 aging.prefatt.game . .8 alpha.centrality . 10 arpack . 11 articulation.points . 15 as.directed . 16 1 2 R topics documented: as.igraph . 18 assortativity . 19 attributes . 21 autocurve.edges . 23 barabasi.game . 24 betweenness . 26 biconnected.components . 28 bipartite.mapping . 29 bipartite.projection . 31 bonpow . 32 canonical.permutation . 34 centralization . 36 cliques . 39 closeness . 40 clusters . 42 cocitation . 43 cohesive.blocks . 44 Combining attributes . 48 communities . 51 community.to.membership . 55 compare.communities . 56 components . 57 constraint . 58 contract.vertices . 59 conversion . 60 conversion between igraph and graphNEL graphs . 62 convex.hull . 63 decompose.graph . 64 degree . 65 degree.sequence.game . 66 dendPlot . 67 dendPlot.communities . 68 dendPlot.igraphHRG . 70 diameter . 72 dominator.tree . 73 Drawing graphs . 74 dyad.census . 80 eccentricity . 81 edge.betweenness.community . 82 edge.connectivity . 84 erdos.renyi.game . 86 evcent . 87 fastgreedy.community . 89 forest.fire.game . 90 get.adjlist . 92 get.edge.ids . 93 get.incidence . 94 get.stochastic .
    [Show full text]
  • The Wigner 3N-J Graphs up to 12 Vertices
    The Wigner 3n-j Graphs up to 12 Vertices Richard J. Mathar∗ Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden, The Netherlands (Dated: September 21, 2018) The 3-regular graphs representing sums over products of Wigner 3 − jm symbols are drawn on up to 12 vertices (complete to 18j-symbols), and the irreducible graphs on up to 14 vertices (complete to 21j-symbols). The Lederer-Coxeter-Frucht notations of the Hamiltonian cycles in these graphs are tabulated to support search operations. PACS numbers: 03.65.Fd, 31.10.+z Keywords: Angular momentum, Wigner 3j symbol, recoupling coefficients I. WIGNER SYMBOLS AND CUBIC GRAPHS an order and sign of the three quantum numbers in the Wigner symbol) adds no information besides phase fac- A. Wigner Sums tors. A related question is whether and which cuts through We consider sums of the form the edges exist that split any of these graphs into vertex- induced binary trees. The two trees generated by these X j j j j j j 01 02 03 01 :: :: ··· means represent recoupling schemes [1, 4, 14, 19, 29, 41, m01 m02 m03 −m01 m:: m:: 42]. The association generalizes the relation between m01;m02;::: (1) Clebsch-Gordan coefficients (connection coefficients be- over products of Wigner 3jm-symbols which are closed tween sets of orthogonal polynomials [21, 27]) and the in the sense (i) that the sum is over all tupels of magnetic Wigner 3j symbols to higher numbers of coupled angu- lar momenta. quantum numbers m:: admitted by the standard spectro- scopic multiplicity of the factors, (ii) that for each column designed by j:: and m:: another column with sign-reversed m appears in another factor [17, 39, 40].
    [Show full text]
  • Igraph’ Documentation of August 16, 2008
    Package ‘igraph’ documentation of August 16, 2008 Version 0.5.1 Date Feb 14, 2008 Title Routines for simple graphs, network analysis. Author Gabor Csardi <[email protected]> Maintainer Gabor Csardi <[email protected]> Description Routines for simple graphs and network analysis. igraph can handle large graphs very well and provides functions for generating random and regular graphs, graph visualization, centrality indices and much more. Depends stats Suggests stats4, rgl, tcltk, RSQLite, digest, graph, Matrix License GPL (>= 2) URL http://cneurocvs.rmki.kfki.hu/igraph R topics documented: igraph-package . .4 aging.prefatt.game . .5 alpha.centrality . .7 arpack . .9 articulation.points . 13 as.directed . 14 attributes . 15 barabasi.game . 17 betweenness . 19 biconnected.components . 21 bonpow . 22 canonical.permutation . 24 1 2 R topics documented: cliques . 26 closeness . 27 clusters . 29 cocitation . 30 cohesive.blocks . 31 edge.betweenness.community . 33 communities . 35 components . 36 constraint . 37 conversion . 38 decompose.graph . 39 degree . 40 degree.sequence.game . 41 diameter . 43 dyad.census . 44 edge.connectivity . 45 erdos.renyi.game . 46 evcent . 47 revolver ........................................... 49 fastgreedy.community . 53 forest.fire.game . 54 get.adjlist . 56 girth . 57 graph.adjacency . 58 Graphs from adjacency lists . 61 graph.automorphisms . 62 graph.constructors . 64 graph.data.frame . 66 graph.de.bruijn . 68 graph.density . 69 graph.famous . 70 graph.formula . 72 graph.graphdb . 74 graph-isomorphism . 76 graph.kautz . 79 graph.coreness . 80 graph.laplacian . 81 graph.lcf . 82 graph.maxflow . 83 graph-motifs . 85 igraph from/to graphNEL conversion . 86 graph.structure . 87 grg.game . 88 growing.random.game . 89 igraph-parameters .
    [Show full text]
  • The Second Malta Conference in Graph Theory and Combinatorics 2017
    The Second Malta Conference in Graph Theory and Combinatorics 2017 2MCGTC-2017 in honour of the 75th birthday of Professor Stanley Fiorini 26{30 June 2017 ii Welcome Address Mer~ba! We are honoured that you chose to join us for The Second Malta Confer- ence in Graph Theory and Combinatorics. This conference is commemorating the 75th birthday of Professor Stanley Fiorini, who introduced graph theory and combinatorics at the University of Malta. Many of you may be asking when the previous Malta Conference was held? The First Malta Conference on Graphs and Combinatorics was held during the period 28 May { 2 June, 1990, at the Suncrest Hotel, also in Qawra, St Paul's Bay. It differed from a number of similar conferences held in the central Mediterranean region at that time in that it consisted of three types of lectures. L´aszl´oLov´aszand Carsten Thomassen delivered two instructional courses of five one-hour lectures each; the former was A survey of independent sets in graphs and the latter was on Embeddings of graphs. There were also four invited speakers, namely L.W. Beineke, N.L. Biggs, R. Graham and D.J.A. Welsh, each of whom gave a one-hour lecture. The third type of talks were the 20-minute contributed talks running in two parallel sessions and given by 39 speakers. Volume 124 (1994) of the journal Discrete Mathematics was a special edition dedicated to this conference; it was edited by Stanley Fiorini and Josef Lauri, and it consisted of 22 selected papers. Twenty-seven years later we are gathered here for the second such conference organ- ised in the Island of Malta.
    [Show full text]
  • Altermundusaltermundus C 1.00 V.V Documentation 2021 Janvier 19 Li Matthes Alain Tkz-Berge
    AlterMundusAlterMundus tkz-berge v 1.00 c Alain Matthes 19 janvier 2021 Documentation V.v 1.00 c http://altermundus.fr tkz-berge Alain Matthes The package tkz-berge is a collection of some useful macros if you want to draw some classic graphs of the graph theory or to make others graphs. The kind of graphs that I will present, are sometimes called combinatorial graphs to distinguish them from the graphs of functions. Often, the word graph is short for graph of a function. A combinatorial graph is a very simple structure, a bunch of dots, some of which are connected by lines. Some of graphs have names, sometimes inspired by the graph’s topology, and sometimes after their discoverer. Why tkz-berge.sty? Claude Berge (1926 – 2002) was a French mathematician, recognized as one of the modern founders of AlterMundus combinatorics and graph theory. He played a major role in the renaissance of combinatorics and he is remembered for his famous conjecture on perfect graphs, solved some months after his death. M Firstly, I would like to thank Till Tantau for the beautiful LATEX package, namely TikZ. MI am grateful to Michel Bovani for providing the fourier font. M I received much valuable advice and guidance on Graph Theory from Rafael Villarroel http://graphtheoryinlatex.blogspot.com/. M The names of graphs can be found here MathWorld - SimpleGraphs by E.Weisstein Please report typos or any other comments to this documentation to Alain Matthes This file can be redistributed and/or modified under the terms of the LATEX Project Public License Distributed from CTAN archives in directory CTAN://macros/latex/base/lppl.txt.
    [Show full text]
  • Package 'Igraph0'
    Package ‘igraph0’ February 15, 2013 Version 0.5.6-2 Date 2013-01-05 Title Network analysis and visualization, old, deprecated package. Author See AUTHORS file. Maintainer Gabor Csardi <[email protected]> Description Network analysis package, old, deprecated version. ’igraph0’ is the old version of the igraph package, kept alive temporarily, for compatibility reasons. In this package,vertices and edges are in- dexed from zero, whereas in ’igraph’,starting from version 0.6, they are in- dexed from one. Please do not use this package for new projects. Depends stats Suggests stats4, rgl, tcltk, RSQLite, digest, graph, Matrix License GPL (>= 2) URL http://igraph.sourceforge.net SystemRequirements gmp, libxml2 Repository CRAN Date/Publication 2013-01-09 19:39:41 NeedsCompilation yes R topics documented: igraph-package . .4 aging.prefatt.game . .6 alpha.centrality . .8 arpack . 10 articulation.points . 13 1 2 R topics documented: as.directed . 14 attributes . 16 barabasi.game . 18 betweenness . 20 biconnected.components . 22 bipartite.projection . 23 bonpow . 24 canonical.permutation . 26 cliques . 28 closeness . 30 clusters . 31 cocitation . 32 cohesive.blocks . 33 communities . 36 components . 37 constraint . 38 conversion . 39 conversion between igraph and graphNEL graphs . 40 decompose.graph . 41 degree . 42 degree.sequence.game . 43 diameter . 45 Drawing graphs . 46 dyad.census . 52 edge.betweenness.community . 53 edge.connectivity . 55 erdos.renyi.game . 57 evcent . 58 fastgreedy.community . 59 forest.fire.game . 61 get.adjlist . 62 get.incidence . 63 girth . 65 graph-isomorphism . 66 graph-motifs . 69 graph-operators . 71 graph.adjacency . 72 graph.automorphisms . 75 graph.bipartite . 76 graph.constructors . 77 graph.coreness .
    [Show full text]
  • Naming Polyhedra by General Face-Spirals – Theory and Applications to Fullerenes and Other Polyhedral Molecules∗
    Naming Polyhedra by General Face-Spirals { Theory and Applications to Fullerenes and other Polyhedral Molecules∗ Lukas N. Wirz,1, 2, y Peter Schwerdtfeger,2, z and James E. Avery3, 4, x 1Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, 0315 Oslo, Norway 2Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study, Massey University Auckland, Private Bag 102904, 0745 Auckland, New Zealand 3Niels Bohr Institute, University of Copenhagen (NBI), 2100 Copenhagen, Denmark 4Dep. of Computer Science, University of Copenhagen (DIKU), 2100 Copenhagen, Denmark We present a general face-spiral algorithm for cubic polyhedral graphs (including fullerenes and fulleroids), and extend it to the full class of all polyhedral graphs by way of the leapfrog transform. This yields compact canonical representations of polyhedra with a simple and intuitive geometrical interpretation, well suited for use by both computers and humans. Based on the algorithm, we suggest a unique, unambiguous, and simple notation for canonical naming of polyhedral graphs, up to automorphism, from which the graph is easily reconstructed. From this, we propose a practical nomenclature for all polyhedral molecules, and an especially compact form for the special class of fullerenes. A unique numbering of vertices is obtained as a byproduct of the spiral algorithm. This is required to denote modifications of the parent cage in IUPAC naming schemes. Similarly, the symmetry group of the molecule can be found together with the canonical general spiral at negligible cost. The algorithm is fully compatible with the classical spiral algorithm developed by Manolopoulos for fullerenes, i.
    [Show full text]
  • Generalized Petersen Graphs and Kronecker Covers Matjaž Krnc, Tomaž Pisanski
    Generalized Petersen graphs and Kronecker covers Matjaž Krnc, Tomaž Pisanski To cite this version: Matjaž Krnc, Tomaž Pisanski. Generalized Petersen graphs and Kronecker covers. Discrete Mathe- matics and Theoretical Computer Science, DMTCS, In press, vol. 21 no. 4. hal-01804033v6 HAL Id: hal-01804033 https://hal.archives-ouvertes.fr/hal-01804033v6 Submitted on 3 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Discrete Mathematics and Theoretical Computer Science DMTCS vol. 21:4, 2019, #15 Generalized Petersen Graphs and Kronecker Covers∗ Matjazˇ Krnc1;2;3y Tomazˇ Pisanski1z 1 FAMNIT, University of Primorska, Slovenia 2 FMF, University of Ljubljana, Slovenia 3 Institute of Mathematics, Physics, and Mechanics, Slovenia received 17th June 2018, revised 20th Mar. 2019, 18th Sep. 2019, accepted 26th Sep. 2019. The family of generalised Petersen graphs G (n; k), introduced by Coxeter et al. [4] and named by Watkins (1969), is a family of cubic graphs formed by connecting the vertices of a regular polygon to the corresponding vertices of a star polygon. The Kronecker cover KC (G) of a simple undirected graph G is a special type of bipartite covering graph of G, isomorphic to the direct (tensor) product of G and K2.
    [Show full text]
  • A New Approach to Catalog Small Graphs of High Even Girth
    A new approach to catalog small graphs of high even girth Vivek S. Nittoor [email protected] Independent Consultant & Researcher (formerly with the University of Tokyo) Abstract A catalog of a class of (3; g) graphs for even girth g is introduced in this pa- per. A (k; g) graph is a regular graph with degree k and girth g. This catalog of (3; g) graphs for even girth g satisfying 6 ≤ g ≤ 16, has the following properties. Firstly, this catalog contains the smallest known (3; g) graphs. An appropriate class of cubic graphs for this catalog has been identified, such that the (3; g) graph of minimum order within the class is also the smallest known (3; g) graph. Secondly, this catalog contains (3; g) graphs for more orders than other listings. Thirdly, the class of graphs have been defined so that a practical algorithm to generate graphs can be created. Fourthly, this catalog is infinite, since the results are extended into knowledge about infinitely many graphs. The findings are as follows. Firstly, Hamiltonian bipartite graphs have been identi- fied as a promising class of cubic graphs that can lead to a catalog of (3; g) graphs for even girth g with graphs for more orders than other listings, that is also ex- pected to contain a (3; g) graph with minimum order. Secondly, this catalog of (3; g) graphs contains many non-vertex-transitive graphs. Thirdly, in order to make the computation more tractable, and at the same time, to enable deeper analysis on the results, symmetry factor has been introduced as a measure of the extent of rotational symmetry along the identified Hamiltonian cycle.
    [Show full text]