Package 'Igraph'

Total Page:16

File Type:pdf, Size:1020Kb

Package 'Igraph' Package ‘igraph’ October 28, 2013 Version 0.6.6 Date 2013-10-28 Title Network analysis and visualization Author See AUTHORS file. Maintainer Gabor Csardi <[email protected]> Description Routines for simple graphs and network analysis. igraph can handle large graphs very well and provides functions for generating random and regular graphs, graph visualization, centrality indices and much more. Depends methods Suggests igraphdata, stats4, rgl, tcltk, graph, ape, Matrix License GPL (>= 2) URL http://igraph.sourceforge.net SystemRequirements gmp, libxml2 NeedsCompilation yes Repository CRAN Date/Publication 2013-10-28 21:46:12 R topics documented: igraph-package . .5 aging.prefatt.game . .7 alpha.centrality . 10 arpack . 11 articulation.points . 15 as.directed . 16 as.igraph . 18 assortativity . 19 1 2 R topics documented: attributes . 21 autocurve.edges . 23 barabasi.game . 24 betweenness . 26 biconnected.components . 28 bipartite.mapping . 29 bipartite.projection . 31 bonpow . 32 canonical.permutation . 34 centralization . 36 cliques . 39 closeness . 40 clusters . 42 cocitation . 43 cohesive.blocks . 44 Combining attributes . 48 communities . 51 community.to.membership . 55 compare.communities . 56 components . 57 constraint . 58 contract.vertices . 59 conversion . 60 conversion between igraph and graphNEL graphs . 62 convex.hull . 63 decompose.graph . 64 degree . 65 degree.sequence.game . 66 dendPlot . 67 dendPlot.communities . 68 dendPlot.igraphHRG . 70 diameter . 72 dominator.tree . 73 Drawing graphs . 74 dyad.census . 80 eccentricity . 81 edge.betweenness.community . 82 edge.connectivity . 84 erdos.renyi.game . 86 evcent . 87 fastgreedy.community . 89 forest.fire.game . 90 get.adjlist . 92 get.edge.ids . 93 get.incidence . 94 get.stochastic . 95 girth . 96 graph-isomorphism . 97 R topics documented: 3 graph-motifs . 102 graph-operators . 103 graph-operators-by-name . 105 graph.adjacency . 106 graph.automorphisms . 109 graph.bfs . 111 graph.bipartite . 113 graph.constructors . 114 graph.coreness . 117 graph.data.frame . 118 graph.de.bruijn . 120 graph.density . 121 graph.dfs . 122 graph.diversity . 124 graph.famous . 126 graph.formula . 128 graph.full.bipartite . 130 graph.graphdb . 131 graph.incidence . 133 graph.kautz . 134 graph.knn . 135 graph.laplacian . 137 graph.lcf . 138 graph.matching . 139 graph.maxflow . 141 graph.strength . 143 graph.structure . 144 Graphs from adjacency lists . 151 grg.game . ..
Recommended publications
  • Constructions and Enumeration Methods for Cubic Graphs and Trees
    Butler University Digital Commons @ Butler University Undergraduate Honors Thesis Collection Undergraduate Scholarship 2013 Constructions and Enumeration Methods for Cubic Graphs and Trees Erica R. Gilliland Butler University Follow this and additional works at: https://digitalcommons.butler.edu/ugtheses Part of the Discrete Mathematics and Combinatorics Commons Recommended Citation Gilliland, Erica R., "Constructions and Enumeration Methods for Cubic Graphs and Trees" (2013). Undergraduate Honors Thesis Collection. 360. https://digitalcommons.butler.edu/ugtheses/360 This Thesis is brought to you for free and open access by the Undergraduate Scholarship at Digital Commons @ Butler University. It has been accepted for inclusion in Undergraduate Honors Thesis Collection by an authorized administrator of Digital Commons @ Butler University. For more information, please contact [email protected]. BUTLER UNIVERSITY HONORS PROGRAM Honors Thesis Certification Please type all information in this section: Applicant Erica R. Gilliland (Name as it is to appear on diploma) Thesis title Constructions and Enumeration Methods for Cubic Graphs and Trees Intended date of commencement May 11, 2013 --~------------------------------ Read, approved, and signed by: tf -;t 'J,- J IJ Thesis adviser(s) D'rt/~ S// CWiV'-~ Date Date t.-t - 2. Z - 2.C?{3 Reader(s) Date Date Certified by Director, Honors Program Date For Honors Program use: Level of Honors conferred: University Departmental MtH1t£W1Ah"LS with ttijutt HoVJQ(5 ik1vrj,,1 r"U)U ",1-111 ttlStl HMbCS V(IIVet>i}\j HtlYlb6 froyrltm I Constructions and Enumeration Methods for Cubic Graphs and Trees Erica R. Gilliland A Thesis Presented to the Department of Mathematics College of Liberal Arts and Sciences and Honors Program of Butler University III Partial Fulfillment of the ncCIuirclllcnts for G rae! ua lion Honors Submitted: April 2:3, 2()1:3 Constructions and Enumeration Methods for Cubic Graphs and Trees Erica It Gilliland Under the supervision of Dr.
    [Show full text]
  • Graph Automorphism Groups
    Graph Automorphism Groups Robert A. Beeler, Ph.D. East Tennessee State University February 23, 2018 Robert A. Beeler, Ph.D. (East Tennessee State University)Graph Automorphism Groups February 23, 2018 1 / 1 What is a graph? A graph G =(V , E) is a set of vertices, V , together with as set of edges, E. For our purposes, each edge will be an unordered pair of distinct vertices. a e b d c V (G)= {a, b, c, d, e} E(G)= {ab, ae, bc, be, cd, de} Robert A. Beeler, Ph.D. (East Tennessee State University)Graph Automorphism Groups February 23, 2018 2 / 1 Graph Automorphisms A graph automorphism is simply an isomorphism from a graph to itself. In other words, an automorphism on a graph G is a bijection φ : V (G) → V (G) such that uv ∈ E(G) if and only if φ(u)φ(v) ∈ E(G). Note that graph automorphisms preserve adjacency. In layman terms, a graph automorphism is a symmetry of the graph. Robert A. Beeler, Ph.D. (East Tennessee State University)Graph Automorphism Groups February 23, 2018 3 / 1 An Example Consider the following graph: a d b c Robert A. Beeler, Ph.D. (East Tennessee State University)Graph Automorphism Groups February 23, 2018 4 / 1 An Example (Part 2) One automorphism simply maps every vertex to itself. This is the identity automorphism. a a d b d b c 7→ c e =(a)(b)(c)(d) Robert A. Beeler, Ph.D. (East Tennessee State University)Graph Automorphism Groups February 23, 2018 5 / 1 An Example (Part 3) One automorphism switches vertices a and c.
    [Show full text]
  • An Introduction to Algebraic Graph Theory
    An Introduction to Algebraic Graph Theory Cesar O. Aguilar Department of Mathematics State University of New York at Geneseo Last Update: March 25, 2021 Contents 1 Graphs 1 1.1 What is a graph? ......................... 1 1.1.1 Exercises .......................... 3 1.2 The rudiments of graph theory .................. 4 1.2.1 Exercises .......................... 10 1.3 Permutations ........................... 13 1.3.1 Exercises .......................... 19 1.4 Graph isomorphisms ....................... 21 1.4.1 Exercises .......................... 30 1.5 Special graphs and graph operations .............. 32 1.5.1 Exercises .......................... 37 1.6 Trees ................................ 41 1.6.1 Exercises .......................... 45 2 The Adjacency Matrix 47 2.1 The Adjacency Matrix ...................... 48 2.1.1 Exercises .......................... 53 2.2 The coefficients and roots of a polynomial ........... 55 2.2.1 Exercises .......................... 62 2.3 The characteristic polynomial and spectrum of a graph .... 63 2.3.1 Exercises .......................... 70 2.4 Cospectral graphs ......................... 73 2.4.1 Exercises .......................... 84 3 2.5 Bipartite Graphs ......................... 84 3 Graph Colorings 89 3.1 The basics ............................. 89 3.2 Bounds on the chromatic number ................ 91 3.3 The Chromatic Polynomial .................... 98 3.3.1 Exercises ..........................108 4 Laplacian Matrices 111 4.1 The Laplacian and Signless Laplacian Matrices .........111 4.1.1
    [Show full text]
  • Discriminating Power of Centrality Measures (Working Paper)
    Discriminating Power of Centrality Measures (working paper) M. Puck Rombach∗ Mason A. Porterz July 27, 2018 Abstract The calculation of centrality measures is common practice in the study of networks, as they attempt to quantify the importance of individual vertices, edges, or other components. Different centralities attempt to measure importance in different ways. In this paper, we examine a conjecture posed by E. Estrada regarding the ability of several measures to distinguish the vertices of networks. Estrada conjectured [9, 12] that if all vertices of a graph have the same subgraph centrality, then all vertices must also have the same degree, eigenvector, closeness, and betweenness centralities. We provide a counterexample for the latter two centrality measures and propose a revised conjecture. 1 Introduction Many problems in the study of networks focus on flows along the edges of a network [20]. Although flows such as the transportation of physical objects or the spread of disease are conservative, the flow of information tends to diminish as it moves through a network, and the influence of one vertex on another decreases with increasing network distance between them [17]. Such considerations have sparked an interest in network communicability, in which a arXiv:1305.3146v1 [cs.SI] 14 May 2013 perturbation of one vertex is felt by the other vertices with differing intensities [10]. These intensities depend on all paths between a pair of vertices, though longer paths have smaller influence. This idea is expressed in a general communicability function 1 n X X k ci = ck(A )ij ; (1) k=0 j=1 ∗Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, [email protected] yOxford Centre for Industrial and Applied Mathematics, Mathematical Institute and CABDyN Complex- ity Centre, University of Oxford, [email protected] 1 where A is the adjacency matrix|whose entries are 1 if vertices i and j are connected to each other and 0 if they are not|and n is the total number of vertices in the network.
    [Show full text]
  • Characterization of Generalized Petersen Graphs That Are Kronecker Covers Matjaž Krnc, Tomaž Pisanski
    Characterization of generalized Petersen graphs that are Kronecker covers Matjaž Krnc, Tomaž Pisanski To cite this version: Matjaž Krnc, Tomaž Pisanski. Characterization of generalized Petersen graphs that are Kronecker covers. 2019. hal-01804033v4 HAL Id: hal-01804033 https://hal.archives-ouvertes.fr/hal-01804033v4 Preprint submitted on 18 Oct 2019 (v4), last revised 3 Nov 2019 (v6) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Discrete Mathematics and Theoretical Computer Science DMTCS vol. VOL:ISS, 2015, #NUM Characterization of generalised Petersen graphs that are Kronecker covers∗ Matjazˇ Krnc1;2;3y Tomazˇ Pisanskiz 1 FAMNIT, University of Primorska, Slovenia 2 FMF, University of Ljubljana, Slovenia 3 Institute of Mathematics, Physics, and Mechanics, Slovenia received 17th June 2018, revised 20th Mar. 2019, 18th Sep. 2019, accepted 26th Sep. 2019. The family of generalised Petersen graphs G (n; k), introduced by Coxeter et al. [4] and named by Watkins (1969), is a family of cubic graphs formed by connecting the vertices of a regular polygon to the corresponding vertices of a star polygon. The Kronecker cover KC (G) of a simple undirected graph G is a special type of bipartite covering graph of G, isomorphic to the direct (tensor) product of G and K2.
    [Show full text]
  • PDF Reference
    NetworkX Reference Release 1.0 Aric Hagberg, Dan Schult, Pieter Swart January 08, 2010 CONTENTS 1 Introduction 1 1.1 Who uses NetworkX?..........................................1 1.2 The Python programming language...................................1 1.3 Free software...............................................1 1.4 Goals...................................................1 1.5 History..................................................2 2 Overview 3 2.1 NetworkX Basics.............................................3 2.2 Nodes and Edges.............................................4 3 Graph types 9 3.1 Which graph class should I use?.....................................9 3.2 Basic graph types.............................................9 4 Operators 129 4.1 Graph Manipulation........................................... 129 4.2 Node Relabeling............................................. 134 4.3 Freezing................................................. 135 5 Algorithms 137 5.1 Boundary................................................. 137 5.2 Centrality................................................. 138 5.3 Clique.................................................. 142 5.4 Clustering................................................ 145 5.5 Cores................................................... 147 5.6 Matching................................................. 148 5.7 Isomorphism............................................... 148 5.8 PageRank................................................. 161 5.9 HITS..................................................
    [Show full text]
  • Package 'Igraph'
    Package ‘igraph’ February 28, 2013 Version 0.6.5-1 Date 2013-02-27 Title Network analysis and visualization Author See AUTHORS file. Maintainer Gabor Csardi <[email protected]> Description Routines for simple graphs and network analysis. igraph can handle large graphs very well and provides functions for generating random and regular graphs, graph visualization,centrality indices and much more. Depends stats Imports Matrix Suggests igraphdata, stats4, rgl, tcltk, graph, Matrix, ape, XML,jpeg, png License GPL (>= 2) URL http://igraph.sourceforge.net SystemRequirements gmp, libxml2 NeedsCompilation yes Repository CRAN Date/Publication 2013-02-28 07:57:40 R topics documented: igraph-package . .5 aging.prefatt.game . .8 alpha.centrality . 10 arpack . 11 articulation.points . 15 as.directed . 16 1 2 R topics documented: as.igraph . 18 assortativity . 19 attributes . 21 autocurve.edges . 23 barabasi.game . 24 betweenness . 26 biconnected.components . 28 bipartite.mapping . 29 bipartite.projection . 31 bonpow . 32 canonical.permutation . 34 centralization . 36 cliques . 39 closeness . 40 clusters . 42 cocitation . 43 cohesive.blocks . 44 Combining attributes . 48 communities . 51 community.to.membership . 55 compare.communities . 56 components . 57 constraint . 58 contract.vertices . 59 conversion . 60 conversion between igraph and graphNEL graphs . 62 convex.hull . 63 decompose.graph . 64 degree . 65 degree.sequence.game . 66 dendPlot . 67 dendPlot.communities . 68 dendPlot.igraphHRG . 70 diameter . 72 dominator.tree . 73 Drawing graphs . 74 dyad.census . 80 eccentricity . 81 edge.betweenness.community . 82 edge.connectivity . 84 erdos.renyi.game . 86 evcent . 87 fastgreedy.community . 89 forest.fire.game . 90 get.adjlist . 92 get.edge.ids . 93 get.incidence . 94 get.stochastic .
    [Show full text]
  • The Wigner 3N-J Graphs up to 12 Vertices
    The Wigner 3n-j Graphs up to 12 Vertices Richard J. Mathar∗ Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden, The Netherlands (Dated: September 21, 2018) The 3-regular graphs representing sums over products of Wigner 3 − jm symbols are drawn on up to 12 vertices (complete to 18j-symbols), and the irreducible graphs on up to 14 vertices (complete to 21j-symbols). The Lederer-Coxeter-Frucht notations of the Hamiltonian cycles in these graphs are tabulated to support search operations. PACS numbers: 03.65.Fd, 31.10.+z Keywords: Angular momentum, Wigner 3j symbol, recoupling coefficients I. WIGNER SYMBOLS AND CUBIC GRAPHS an order and sign of the three quantum numbers in the Wigner symbol) adds no information besides phase fac- A. Wigner Sums tors. A related question is whether and which cuts through We consider sums of the form the edges exist that split any of these graphs into vertex- induced binary trees. The two trees generated by these X j j j j j j 01 02 03 01 :: :: ··· means represent recoupling schemes [1, 4, 14, 19, 29, 41, m01 m02 m03 −m01 m:: m:: 42]. The association generalizes the relation between m01;m02;::: (1) Clebsch-Gordan coefficients (connection coefficients be- over products of Wigner 3jm-symbols which are closed tween sets of orthogonal polynomials [21, 27]) and the in the sense (i) that the sum is over all tupels of magnetic Wigner 3j symbols to higher numbers of coupled angu- lar momenta. quantum numbers m:: admitted by the standard spectro- scopic multiplicity of the factors, (ii) that for each column designed by j:: and m:: another column with sign-reversed m appears in another factor [17, 39, 40].
    [Show full text]
  • Characterization of Perfect Matching Transitive Graphs
    Electronic Journal of Graph Theory and Applications 6 (2) (2018), 362–370 Characterization of perfect matching transitive graphs Ju Zhou Department of Mathematics Kutztown University of Pennsylvania Kutztown, PA 19530, USA [email protected] Abstract A graph G is perfect matching transitive, shortly PM-transitive, if for any two perfect matchings M and N of G, there is an automorphism f : V (G) 7! V (G) such that fe(M) = N, where fe(uv) = f(u)f(v). In this paper, the author proposed the definition of PM-transitive, verified PM-transitivity of some symmetric graphs, constructed several families of PM-transitive graphs which are neither vertex-transitive nor edge-transitive, and discussed PM-transitivity of generalized Petersen graphs. Keywords: vertex-transitive, edge-transitive, symmetric, PM-transitive Mathematics Subject Classification : 68R10, 05C60 DOI: 10.5614/ejgta.2018.6.2.15 1. Introduction An automorphism of a graph is a form of symmetry in which the graph is mapped onto it- self while preserving the edge-vertex connectivity. Formally, an automorphism of a graph G = (V (G);E(G)) is a permutation f of the vertex set V (G), such that the pair of vertices uv is an edge of G if and only if f(u)f(v) is also an edge of G. That is, it is a graph isomorphism from G to itself. Every graph automorphism f induces a map fe : E(G) 7! E(G) such that fe(uv) = f(u)f(v). For any vertex set X ⊆ V (G) and edge set M ⊆ E(G), denote f(X) = ff(v): v 2 Xg and Received: 20 March 2018, Revised: 2 September 2018, Accepted: 27 September 2018.
    [Show full text]
  • (V, E ) Be a Graph and Let F Be a Function That Assigns to Each Vertex of F:V(G) → {1,2,.....K} Such That for V to a Set of Values from the Set {1,2
    BALANCED DOMINATION NUMBER OF SPECIAL GRAPHS 1S.CHRISTILDA and 2P.NAMASIVAYAM 1Department of Mathematics, Sadakathullah Appa College, Tirunelveli – 627011, Tamil Nadu, INDIA. E-mail: [email protected] 2PG and Research Department of Mathematics, The MDT Hindu College, Tirunelveli – 627010, Tamil Nadu, INDIA. ABSTRACT INTRODUCTION Let G= (V, E) be a graph. A Subset D of V is called a dominating Let G = (V, E ) be a graph and let f set of G if every vertex in V-D is be a function that assigns to each adjacent to atleast one vertex in D. The Domination number γ (G) of G is the vertex of V to a set of values from cardinality of the minimum dominating set of G. Let the set {1,2,.......k} that is, G = (V, E ) be a graph and let f be a function that assigns to each vertex of f:V(G) → {1,2,.....k} such that for V to a set of values from the set {1,2,.......k} that is, f:V(G) → each u,v ϵ V(G), f(u)≠f(v), if u is {1,2,.....k} such that for each u,v V(G), f(u) ≠ f(v), if u is adjacent to v in adjacent to v in G. Then the set D G. Then the dominating set D V (G) V (G) is called a balanced is called a balanced dominating set if In this dominating set if paper, we investigate the balanced domination number for some special graphs. Keywords: balanced, domination, The special graph balanced domination number Mathematics subject classification: 05C69 is the minimum cardinality of the balanced weak balanced dominating set dominating set.
    [Show full text]
  • Igraph’ Documentation of August 16, 2008
    Package ‘igraph’ documentation of August 16, 2008 Version 0.5.1 Date Feb 14, 2008 Title Routines for simple graphs, network analysis. Author Gabor Csardi <[email protected]> Maintainer Gabor Csardi <[email protected]> Description Routines for simple graphs and network analysis. igraph can handle large graphs very well and provides functions for generating random and regular graphs, graph visualization, centrality indices and much more. Depends stats Suggests stats4, rgl, tcltk, RSQLite, digest, graph, Matrix License GPL (>= 2) URL http://cneurocvs.rmki.kfki.hu/igraph R topics documented: igraph-package . .4 aging.prefatt.game . .5 alpha.centrality . .7 arpack . .9 articulation.points . 13 as.directed . 14 attributes . 15 barabasi.game . 17 betweenness . 19 biconnected.components . 21 bonpow . 22 canonical.permutation . 24 1 2 R topics documented: cliques . 26 closeness . 27 clusters . 29 cocitation . 30 cohesive.blocks . 31 edge.betweenness.community . 33 communities . 35 components . 36 constraint . 37 conversion . 38 decompose.graph . 39 degree . 40 degree.sequence.game . 41 diameter . 43 dyad.census . 44 edge.connectivity . 45 erdos.renyi.game . 46 evcent . 47 revolver ........................................... 49 fastgreedy.community . 53 forest.fire.game . 54 get.adjlist . 56 girth . 57 graph.adjacency . 58 Graphs from adjacency lists . 61 graph.automorphisms . 62 graph.constructors . 64 graph.data.frame . 66 graph.de.bruijn . 68 graph.density . 69 graph.famous . 70 graph.formula . 72 graph.graphdb . 74 graph-isomorphism . 76 graph.kautz . 79 graph.coreness . 80 graph.laplacian . 81 graph.lcf . 82 graph.maxflow . 83 graph-motifs . 85 igraph from/to graphNEL conversion . 86 graph.structure . 87 grg.game . 88 growing.random.game . 89 igraph-parameters .
    [Show full text]
  • Fixing Numbers of Graphs and Groups Courtney Gibbons Hamilton College, [email protected]
    Hamilton College Hamilton Digital Commons Articles Works by Type 2009 Fixing Numbers of Graphs and Groups Courtney Gibbons Hamilton College, [email protected] Joshua D. Laison Follow this and additional works at: https://digitalcommons.hamilton.edu/articles Part of the Algebra Commons, and the Discrete Mathematics and Combinatorics Commons This document is the publisher's version of an article published in: The Electronic Journal of Combinatorics., vol. 16, no. 1, (2009): #R39 1-13. http://www.combinatorics.org/ojs/index.php/eljc/article/ view/v16i1r39 Citation Information Gibbons, Courtney and Laison, Joshua D., "Fixing Numbers of Graphs and Groups" (2009). Hamilton Digital Commons. https://digitalcommons.hamilton.edu/articles/59 This work is made available by Hamilton College for educational and research purposes under a Creative Commons BY-NC-ND 4.0 license. For more information, visit http://digitalcommons.hamilton.edu/about.html or contact [email protected]. Fixing Numbers of Graphs and Groups Courtney R. Gibbons Joshua D. Laison University of Nebraska – Lincoln Mathematics Department Department of Mathematics Willamette University 228 Avery Hall 900 State St. PO Box 880130 Salem, OR 97301 Lincoln, NE 68588-0130 [email protected] [email protected] Submitted: Sep 11, 2006; Accepted: Mar 12, 2009; Published: Mar 20, 2009 Mathematics Subject Classification: 05C25 Abstract The fixing number of a graph G is the smallest cardinality of a set of vertices S such that only the trivial automorphism of G fixes every vertex in S. The fixing set of a group Γ is the set of all fixing numbers of finite graphs with automorphism group Γ.
    [Show full text]