Nuclear Technology

Total Page:16

File Type:pdf, Size:1020Kb

Nuclear Technology Nuclear Technology Joseph A. Angelo, Jr. GREENWOOD PRESS NUCLEAR TECHNOLOGY Sourcebooks in Modern Technology Space Technology Joseph A. Angelo, Jr. Sourcebooks in Modern Technology Nuclear Technology Joseph A. Angelo, Jr. GREENWOOD PRESS Westport, Connecticut • London Library of Congress Cataloging-in-Publication Data Angelo, Joseph A. Nuclear technology / Joseph A. Angelo, Jr. p. cm.—(Sourcebooks in modern technology) Includes index. ISBN 1–57356–336–6 (alk. paper) 1. Nuclear engineering. I. Title. II. Series. TK9145.A55 2004 621.48—dc22 2004011238 British Library Cataloguing in Publication Data is available. Copyright © 2004 by Joseph A. Angelo, Jr. All rights reserved. No portion of this book may be reproduced, by any process or technique, without the express written consent of the publisher. Library of Congress Catalog Card Number: 2004011238 ISBN: 1–57356–336–6 First published in 2004 Greenwood Press, 88 Post Road West, Westport, CT 06881 An imprint of Greenwood Publishing Group, Inc. www.greenwood.com Printed in the United States of America The paper used in this book complies with the Permanent Paper Standard issued by the National Information Standards Organization (Z39.48–1984). 10987654321 To my wife, Joan—a wonderful companion and soul mate Contents Preface ix Chapter 1. History of Nuclear Technology and Science 1 Chapter 2. Chronology of Nuclear Technology 65 Chapter 3. Profiles of Nuclear Technology Pioneers, Visionaries, and Advocates 95 Chapter 4. How Nuclear Technology Works 155 Chapter 5. Impact 315 Chapter 6. Issues 375 Chapter 7. The Future of Nuclear Technology 443 Chapter 8. Glossary of Terms Used in Nuclear Technology 485 Chapter 9. Associations 539 Chapter 10. Demonstration Sites 571 Chapter 11. Sources of Information 605 Index 613 Preface Modern nuclear technology emerged in the twentieth century from the pioneering intellectual achievements of many scientists who struggled to explain the atom, identify and characterize its fundamental components, and apply such previously unanticipated phenomena as radioactivity and nuclear energy. Through a series of dramatic discoveries, these scientists unraveled the secrets hidden within the atomic nucleus. Using the phe- nomena of nuclear fission and nuclear fusion, scientists unlocked the vast energy content of the atomic nucleus. Their pioneering scientific efforts, performed during times of peace and conflict, resulted in a new scientific understanding of matter, its fundamental components, and the physical laws governing the relationship between energy and matter. Throughout the history of technology, only a few events have dramat- ically altered the course of human civilization. Amazingly, nuclear tech- nology provided two such world-changing events within three years. On December 2, 1942, a small band of scientists led by the Italian-American physicist Enrico Fermi succeeded in operating the world’s first nuclear re- actor at the University of Chicago. Although primitive by modern tech- nology standards, Chicago Pile One (CP-1) inaugurated the modern age of nuclear power. This pioneering experiment in the control of a nuclear fission chain reaction began a new technical era filled with great hope that human beings might wisely harvest the energy within the atomic nucleus. Nuclear scientists quickly recognized that an operating reactor also pro- vided them with a large quantity of neutrons to create many interesting new isotopes for applications in medicine, industry, basic research, envi- ronmental science, and space exploration. x PREFACE Contemporary nuclear science historians suggest that this very special event is analogous to the critical moment in Greek mythology when Prometheus stole fire from Mount Olympus (home of Zeus and the other gods) and bestowed it as a gift to humankind. Prometheus, who was one of the Titans, wanted to help human beings, but Father Zeus was extremely angry at the minor deity’s generous deed and severely punished him. Yet control of fire ultimately enabled the human race to evolve from a no- madic, survival-level, hunter-gatherer existence into the technically com- plex global civilization we enjoy today. Nuclear physicists may be perceived as the “new Prometheans”—people who have given modern society the gift of a new type of fire: the fire from within the atomic nucleus. The second world-changing nuclear technology event, the world’s first nuclear explosion, occurred at precisely 05:29:45 A.M. (mountain war time) on July 16, 1945. This event caused an incredible burst of human-made light that pierced the predawn darkness of the southern New Mexican desert and bathed the surrounding mountains in the glow of a nuclear fire- ball. The bulky, spherical plutonium-implosion device, called Trinity, ex- ploded with a yield of 21 kilotons—completely vaporizing the tall steel support tower upon which it rested. The tremendous blast signaled the dawn of a new age in warfare—the age of nuclear weaponry. From this fate- ful moment on, human beings were capable of unleashing wholesale de- struction on planet Earth. Nuclear war represents an instantaneous level of violence unavailable in all previous periods of human history. While observing the first nuclear fireball, the American physicist J. Robert Oppenheimer, who lead the team of atomic bomb scientists at Los Alamos, New Mexico, recalled the ancient Hindu declaration: “I am be- come Death, the destroyer of worlds.” Contemporary philosophers soon began to question whether this weapon extended technology beyond the ability of human social and political institutions to control it. Over the span of just a few decades in the twentieth century, the achievements of nuclear scientists greatly changed the world in which we live. The intellectual significance of the work of many of these individu- als has been publicly acknowledged through the presentation of prestigious awards, such as the Nobel Prize in physics or chemistry. Others helped bring about new levels of scientific understanding in a less publicly recognized, but nonetheless equally important, way. In addition to the nuclear reactor and the nuclear weapon, scientific breakthroughs gave rise to many of the other interesting, but sometimes controversial, nuclear technology appli- cations described in this book. In Nuclear Technology, the physical principles behind the operation of nuclear reactors for power, propulsion, research, and isotope production PREFACE xi are explained. Discussions also include the use of radioactivity and radia- tion in such areas as nuclear medicine, radiology, and food preservation. The many beneficial uses of radioactive isotopes in medicine, basic re- search, agriculture, industry, archaeology, geology, environmental science, and space exploration are also presented. Next, the social and political im- pact of nuclear technology is described. For example, nuclear technology has played a dominant role in national security and geopolitics since World War II. Looking to the future, this book suggests and encourages the family of nations to make a unanimous decision to promote and harvest only the beneficial aspects of nuclear technology. Instead of becoming the destroyer of worlds, nuclear technology should represent a powerful technology that serves as the saver of worlds and the protector of Earth. As suggested in these chapters, a future generation may apply advanced forms of nuclear technology to defend the home planet against a wayward celestial object that threatens to destroy all life in a giant cosmic collision. Astrophysicists note that the biogenic elements—those basic chemical elements found in our bodies that are necessary for life—came from a com- plex series of nuclear transformations (called nucleosynthesis) within ex- ploding ancient stars. As a result of such primeval processes that took place on a cosmic scale, we are now literally made out of stardust. In the future, nuclear technology may allow the human race to travel back to the stars from which we came. Nuclear Technology is part of a special series of comprehensive reference volumes that deals with the scientific principles, technical applications, and societal impacts of modern technologies. The present volume serves as an initial, one-stop guide to the exciting field of nuclear technology. Its chapters provide a detailed history of nuclear technology; a chronology of important milestones in the development of nuclear technology; profiles of important scientists; a detailed but readable explanation of how the tech- nology works; discussion of the impact, issues, and future of nuclear tech- nology; a glossary of important terms; and listings of relevant associations, demonstration sites, and information resources. The contents were carefully chosen and the writing carefully focused to meet the information needs of high school students, undergraduate uni- versity and college students, and members of the general public who want to understand the nature of nuclear technology, the basic scientific prin- ciples upon which it is based, how nuclear technology has influenced his- tory, and how it is now impacting society. This book serves as both a comprehensive, stand-alone introduction to nuclear technology and an excellent starting point and companion for more detailed personal inves- xii PREFACE tigations. Specialized technical books and highly focused electronic (In- ternet) resources often fail to place an important scientific event, techni- cal discovery, or applications breakthrough within its societal context. This volume overcomes
Recommended publications
  • Nuclear Technology
    Nuclear Technology Joseph A. Angelo, Jr. GREENWOOD PRESS NUCLEAR TECHNOLOGY Sourcebooks in Modern Technology Space Technology Joseph A. Angelo, Jr. Sourcebooks in Modern Technology Nuclear Technology Joseph A. Angelo, Jr. GREENWOOD PRESS Westport, Connecticut • London Library of Congress Cataloging-in-Publication Data Angelo, Joseph A. Nuclear technology / Joseph A. Angelo, Jr. p. cm.—(Sourcebooks in modern technology) Includes index. ISBN 1–57356–336–6 (alk. paper) 1. Nuclear engineering. I. Title. II. Series. TK9145.A55 2004 621.48—dc22 2004011238 British Library Cataloguing in Publication Data is available. Copyright © 2004 by Joseph A. Angelo, Jr. All rights reserved. No portion of this book may be reproduced, by any process or technique, without the express written consent of the publisher. Library of Congress Catalog Card Number: 2004011238 ISBN: 1–57356–336–6 First published in 2004 Greenwood Press, 88 Post Road West, Westport, CT 06881 An imprint of Greenwood Publishing Group, Inc. www.greenwood.com Printed in the United States of America The paper used in this book complies with the Permanent Paper Standard issued by the National Information Standards Organization (Z39.48–1984). 10987654321 To my wife, Joan—a wonderful companion and soul mate Contents Preface ix Chapter 1. History of Nuclear Technology and Science 1 Chapter 2. Chronology of Nuclear Technology 65 Chapter 3. Profiles of Nuclear Technology Pioneers, Visionaries, and Advocates 95 Chapter 4. How Nuclear Technology Works 155 Chapter 5. Impact 315 Chapter 6. Issues 375 Chapter 7. The Future of Nuclear Technology 443 Chapter 8. Glossary of Terms Used in Nuclear Technology 485 Chapter 9. Associations 539 Chapter 10.
    [Show full text]
  • Richard G. Hewlett and Jack M. Holl. Atoms
    ATOMS PEACE WAR Eisenhower and the Atomic Energy Commission Richard G. Hewlett and lack M. Roll With a Foreword by Richard S. Kirkendall and an Essay on Sources by Roger M. Anders University of California Press Berkeley Los Angeles London Published 1989 by the University of California Press Berkeley and Los Angeles, California University of California Press, Ltd. London, England Prepared by the Atomic Energy Commission; work made for hire. Library of Congress Cataloging-in-Publication Data Hewlett, Richard G. Atoms for peace and war, 1953-1961. (California studies in the history of science) Bibliography: p. Includes index. 1. Nuclear energy—United States—History. 2. U.S. Atomic Energy Commission—History. 3. Eisenhower, Dwight D. (Dwight David), 1890-1969. 4. United States—Politics and government-1953-1961. I. Holl, Jack M. II. Title. III. Series. QC792. 7. H48 1989 333.79'24'0973 88-29578 ISBN 0-520-06018-0 (alk. paper) Printed in the United States of America 1 2 3 4 5 6 7 8 9 CONTENTS List of Illustrations vii List of Figures and Tables ix Foreword by Richard S. Kirkendall xi Preface xix Acknowledgements xxvii 1. A Secret Mission 1 2. The Eisenhower Imprint 17 3. The President and the Bomb 34 4. The Oppenheimer Case 73 5. The Political Arena 113 6. Nuclear Weapons: A New Reality 144 7. Nuclear Power for the Marketplace 183 8. Atoms for Peace: Building American Policy 209 9. Pursuit of the Peaceful Atom 238 10. The Seeds of Anxiety 271 11. Safeguards, EURATOM, and the International Agency 305 12.
    [Show full text]
  • James Clerk Maxwell
    James Clerk Maxwell JAMES CLERK MAXWELL Perspectives on his Life and Work Edited by raymond flood mark mccartney and andrew whitaker 3 3 Great Clarendon Street, Oxford, OX2 6DP, United Kingdom Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries c Oxford University Press 2014 The moral rights of the authors have been asserted First Edition published in 2014 Impression: 1 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, by licence or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above You must not circulate this work in any other form and you must impose this same condition on any acquirer Published in the United States of America by Oxford University Press 198 Madison Avenue, New York, NY 10016, United States of America British Library Cataloguing in Publication Data Data available Library of Congress Control Number: 2013942195 ISBN 978–0–19–966437–5 Printed and bound by CPI Group (UK) Ltd, Croydon, CR0 4YY Links to third party websites are provided by Oxford in good faith and for information only.
    [Show full text]
  • Great Physicists
    Great Physicists Great Physicists The Life and Times of Leading Physicists from Galileo to Hawking William H. Cropper 1 2001 1 Oxford New York Athens Auckland Bangkok Bogota´ Buenos Aires Cape Town Chennai Dar es Salaam Delhi Florence HongKong Istanbul Karachi Kolkata Kuala Lumpur Madrid Melbourne Mexico City Mumbai Nairobi Paris Sao Paulo Shanghai Singapore Taipei Tokyo Toronto Warsaw and associated companies in Berlin Ibadan Copyright ᭧ 2001 by Oxford University Press, Inc. Published by Oxford University Press, Inc. 198 Madison Avenue, New York, New York 10016 Oxford is a registered trademark of Oxford University Press All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of Oxford University Press. Library of Congress Cataloging-in-Publication Data Cropper, William H. Great Physicists: the life and times of leadingphysicists from Galileo to Hawking/ William H. Cropper. p. cm Includes bibliographical references and index. ISBN 0–19–513748–5 1. Physicists—Biography. I. Title. QC15 .C76 2001 530'.092'2—dc21 [B] 2001021611 987654321 Printed in the United States of America on acid-free paper Contents Preface ix Acknowledgments xi I. Mechanics Historical Synopsis 3 1. How the Heavens Go 5 Galileo Galilei 2. A Man Obsessed 18 Isaac Newton II. Thermodynamics Historical Synopsis 41 3. A Tale of Two Revolutions 43 Sadi Carnot 4. On the Dark Side 51 Robert Mayer 5. A Holy Undertaking59 James Joule 6. Unities and a Unifier 71 Hermann Helmholtz 7. The Scientist as Virtuoso 78 William Thomson 8.
    [Show full text]
  • Thermodynamic Physics and the Poetry and Prose of Gerard Manley Hopkins
    Georgia State University ScholarWorks @ Georgia State University English Dissertations Department of English 5-11-2015 Literatures of Stress: Thermodynamic Physics and the Poetry and Prose of Gerard Manley Hopkins Thomas Mapes Follow this and additional works at: https://scholarworks.gsu.edu/english_diss Recommended Citation Mapes, Thomas, "Literatures of Stress: Thermodynamic Physics and the Poetry and Prose of Gerard Manley Hopkins." Dissertation, Georgia State University, 2015. https://scholarworks.gsu.edu/english_diss/134 This Dissertation is brought to you for free and open access by the Department of English at ScholarWorks @ Georgia State University. It has been accepted for inclusion in English Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. LITERATURES OF STRESS: THERMODYNAMIC PHYSICS AND THE POETRY AND PROSE OF GERARD MANLEY HOPKINS by THOMAS MAPES Under the Direction of Paul Schmidt, PhD ABSTRACT This dissertation examines two of the various literatures of energy in Victorian Britain: the scientific literature of the North British school of energy physics, and the poetic and prose literature of Gerard Manley Hopkins. As an interdisciplinary effort, it is intended for several audiences. For readers interested in science history, it offers a history of two terms – stress and strain – central to modern physics. As well, in discussing the ideas of various scientific authors (primarily William John Macquorn Rankine, William Thomson, P.G. Tait, and James Clerk Maxwell), it indicates several contributions these figures made to larger culture. For readers of Hopkins’ poems and prose, this dissertation corresponds with a recent trend in criticism in its estimation of Hopkins as a scientifically informed writer, at least in his years post-Stonyhurst.
    [Show full text]
  • Abstract 1. Introduction 2. Robert Stirling
    Stirling Stuff Dr John S. Reid, Department of Physics, Meston Building, University of Aberdeen, Aberdeen AB12 3UE, Scotland Abstract Robert Stirling’s patent for what was essentially a new type of engine to create work from heat was submitted in 1816. Its reception was underwhelming and although the idea was sporadically developed, it was eclipsed by the steam engine and, later, the internal combustion engine. Today, though, the environmentally favourable credentials of the Stirling engine principles are driving a resurgence of interest, with modern designs using modern materials. These themes are woven through a historically based narrative that introduces Robert Stirling and his background, a description of his patent and the principles behind his engine, and discusses the now popular model Stirling engines readily available. These topical models, or alternatives made ‘in house’, form a good platform for investigating some of the thermodynamics governing the performance of engines in general. ---------------------------------------------------------------------------------------------------------------- 1. Introduction 2016 marks the bicentenary of the submission of Robert Stirling’s patent that described heat exchangers and the technology of the Stirling engine. James Watt was still alive in 1816 and his steam engine was gaining a foothold in mines, in mills, in a few goods railways and even in pioneering ‘steamers’. Who needed another new engine from another Scot? The Stirling engine is a markedly different machine from either the earlier steam engine or the later internal combustion engine. For reasons to be explained, after a comparatively obscure two centuries the Stirling engine is attracting new interest, for it has environmentally friendly credentials for an engine. This tribute introduces the man, his patent, the engine and how it is realised in example models readily available on the internet.
    [Show full text]
  • A Selected Bibliography of Publications By, and About, J
    A Selected Bibliography of Publications by, and about, J. Robert Oppenheimer Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 17 March 2021 Version 1.47 Title word cross-reference $1 [Duf46]. $12.95 [Edg91]. $13.50 [Tho03]. $14.00 [Hug07]. $15.95 [Hen81]. $16.00 [RS06]. $16.95 [RS06]. $17.50 [Hen81]. $2.50 [Opp28g]. $20.00 [Hen81, Jor80]. $24.95 [Fra01]. $25.00 [Ger06]. $26.95 [Wol05]. $27.95 [Ger06]. $29.95 [Goo09]. $30.00 [Kev03, Kle07]. $32.50 [Edg91]. $35 [Wol05]. $35.00 [Bed06]. $37.50 [Hug09, Pol07, Dys13]. $39.50 [Edg91]. $39.95 [Bad95]. $8.95 [Edg91]. α [Opp27a, Rut27]. γ [LO34]. -particles [Opp27a]. -rays [Rut27]. -Teilchen [Opp27a]. 0-226-79845-3 [Guy07, Hug09]. 0-8014-8661-0 [Tho03]. 0-8047-1713-3 [Edg91]. 0-8047-1714-1 [Edg91]. 0-8047-1721-4 [Edg91]. 0-8047-1722-2 [Edg91]. 0-9672617-3-2 [Bro06, Hug07]. 1 [Opp57f]. 109 [Con05, Mur05, Nas07, Sap05a, Wol05, Kru07]. 112 [FW07]. 1 2 14.99/$25.00 [Ber04a]. 16 [GHK+96]. 1890-1960 [McG02]. 1911 [Meh75]. 1945 [GHK+96, Gow81, Haw61, Bad95, Gol95a, Hew66, She82, HBP94]. 1945-47 [Hew66]. 1950 [Ano50]. 1954 [Ano01b, GM54, SZC54]. 1960s [Sch08a]. 1963 [Kuh63]. 1967 [Bet67a, Bet97, Pun67, RB67]. 1976 [Sag79a, Sag79b]. 1981 [Ano81]. 20 [Goe88]. 2005 [Dre07]. 20th [Opp65a, Anoxx, Kai02].
    [Show full text]
  • Heater Element Specifications Bulletin Number 592
    Technical Data Heater Element Specifications Bulletin Number 592 Topic Page Description 2 Heater Element Selection Procedure 2 Index to Heater Element Selection Tables 5 Heater Element Selection Tables 6 Additional Resources These documents contain additional information concerning related products from Rockwell Automation. Resource Description Industrial Automation Wiring and Grounding Guidelines, publication 1770-4.1 Provides general guidelines for installing a Rockwell Automation industrial system. Product Certifications website, http://www.ab.com Provides declarations of conformity, certificates, and other certification details. You can view or download publications at http://www.rockwellautomation.com/literature/. To order paper copies of technical documentation, contact your local Allen-Bradley distributor or Rockwell Automation sales representative. For Application on Bulletin 100/500/609/1200 Line Starters Heater Element Specifications Eutectic Alloy Overload Relay Heater Elements Type J — CLASS 10 Type P — CLASS 20 (Bul. 600 ONLY) Type W — CLASS 20 Type WL — CLASS 30 Note: Heater Element Type W/WL does not currently meet the material Type W Heater Elements restrictions related to EU ROHS Description The following is for motors rated for Continuous Duty: For motors with marked service factor of not less than 1.15, or Overload Relay Class Designation motors with a marked temperature rise not over +40 °C United States Industry Standards (NEMA ICS 2 Part 4) designate an (+104 °F), apply application rules 1 through 3. Apply application overload relay by a class number indicating the maximum time in rules 2 and 3 when the temperature difference does not exceed seconds at which it will trip when carrying a current equal to 600 +10 °C (+18 °F).
    [Show full text]
  • Laplace and the Speed of Sound
    Laplace and the Speed of Sound By Bernard S. Finn * OR A CENTURY and a quarter after Isaac Newton initially posed the problem in the Principia, there was a very apparent discrepancy of almost 20 per cent between theoretical and experimental values of the speed of sound. To remedy such an intolerable situation, some, like New- ton, optimistically framed additional hypotheses to make up the difference; others, like J. L. Lagrange, pessimistically confessed the inability of con- temporary science to produce a reasonable explanation. A study of the development of various solutions to this problem provides some interesting insights into the history of science. This is especially true in the case of Pierre Simon, Marquis de Laplace, who got qualitatively to the nub of the matter immediately, but whose quantitative explanation performed some rather spectacular gyrations over the course of two decades and rested at times on both theoretical and experimental grounds which would later be called incorrect. Estimates of the speed of sound based on direct observation existed well before the Newtonian calculation. Francis Bacon suggested that one man stand in a tower and signal with a bell and a light. His companion, some distance away, would observe the time lapse between the two signals, and the speed of sound could be calculated.' We are probably safe in assuming that Bacon never carried out his own experiment. Marin Mersenne, and later Joshua Walker and Newton, obtained respectable results by deter- mining how far they had to stand from a wall in order to obtain an echo in a second or half second of time.
    [Show full text]
  • Historical Dictionary of Russian and Soviet Intelligence
    Russia • Military / Security Historical Dictionaries of Intelligence and Counterintelligence, No. 5 PRINGLE At its peak, the KGB (Komitet Gosudarstvennoy Bezopasnosti) was the largest HISTORICAL secret police and espionage organization in the world. It became so influential DICTIONARY OF in Soviet politics that several of its directors moved on to become premiers of the Soviet Union. In fact, Russian president Vladimir V. Putin is a former head of the KGB. The GRU (Glavnoe Razvedvitelnoe Upravleniye) is the principal intelligence unit of the Russian armed forces, having been established in 1920 by Leon Trotsky during the Russian civil war. It was the first subordinate to the KGB, and although the KGB broke up with the dissolution of the Soviet Union in 1991, the GRU remains intact, cohesive, highly efficient, and with far greater resources than its civilian counterparts. & The KGB and GRU are just two of the many Russian and Soviet intelli- gence agencies covered in Historical Dictionary of Russian and Soviet Intelligence. Through a list of acronyms and abbreviations, a chronology, an introductory HISTORICAL DICTIONARY OF essay, a bibliography, and hundreds of cross-referenced dictionary entries, a clear picture of this subject is presented. Entries also cover Russian and Soviet leaders, leading intelligence and security officers, the Lenin and Stalin purges, the gulag, and noted espionage cases. INTELLIGENCE Robert W. Pringle is a former foreign service officer and intelligence analyst RUSSIAN with a lifelong interest in Russian security. He has served as a diplomat and intelligence professional in Africa, the former Soviet Union, and Eastern Europe. For orders and information please contact the publisher && SOVIET Scarecrow Press, Inc.
    [Show full text]
  • April 4, 2003, Board Letter Establishing a 60-Day Reporting
    John T. Conway, Chairman A.J. Eggenbe,ger, Vice Chairman DEFENSE NUCLFAR FACILITIES John E. Mansfield SAFE'IY BOARD 625 Indiana Avenue, NW, Suite 700, Washington, D.C. 20004-2901 (202) 694-7000 April 4, 2003 The Honorable Linton Brooks Acting Administrator of the National Nuclear Security Administration U.S. Department ofEnergy 1000 Independence A venue, SW Washington, DC 20585-0701 Dear Ambassador Brooks: During the past 16 months, the Defense Nuclear Facilities Safety Board (Board) has held a number of reviews at the Pantex Plant to evaluate conduct ofoperations and the site's training programs. The Board is pleased to see that procedural adherence and conduct ofoperations for operational personnel are improving and that a program to improve operating procedures is ongoing. However, a review by the Board's staff has revealed problems at Pantex with the processes used to develop training, to evaluate personnel knowledge, to assess training program elements, and to conduct continuing training. These training deficiencies, detailed in the enclosed report, may affect the ability to improve and maintain satisfactory conduct of operations at the Pantex Plant. Therefore, pursuant to 42 U.S.C. § 2286b(d), the Board requests a report within the next 60 days regarding the measures that are being taken to address these training deficiencies. Sincerely, c: The Honorable Everet H. Beckner Mr. Daniel E. Glenn Mr. Mark B. Whitaker, Jr. Enclosure DEFENSE NUCLEAR FACILITIES SAFETY BOARD Staff Issue Report March 24, 2003 MEMORANDUM FOR: J. K. Fortenberry, Technical Director COPIES: Board Members FROM: J. Deplitch SUBJECT: Conduct ofOperations and Training Programs at the Pantex Plant This report documents a review by the staff ofthe Defense Nuclear Facilities Safety Board (Board) ofconduct ofoperations and the training programs at the Pantex Plant.
    [Show full text]
  • 70Th Anniversary of the Manhattan Project Atomic Heritage Foundation
    Atomic Heritage Foundation presents 70th Anniversary of the Manhattan Project June 2 and 3, 2015 Carnegie Institution for Science 1530 P Street, NW Washington, DC 20005 Visit our merchandise tables to purchase books, posters, and hats! Manhattan Project 70th Anniversary Manhattan Project veterans Lawrence S. O’Rourke (left) and William E. Tewes (right) with his future wife, Olive. The Atomic Heritage Foundation is proud to host events commemorating the 70th Anniversary of the Manhattan Project. It took more than half a million people to build the world’s first atomic bombs; we are honored to welcome more than a dozen men and women who participated in that astonishing effort. The 70th Anniversary Reunion on June 2 will be an opportunity for vet- erans and family members to share their memories and catch up with old friends. Veterans from Los Alamos, Oak Ridge, Hanford, Chicago and other locations will discuss how each site contributed to the Manhattan Project in its own unique way. The 70th Anniversary commemoration will continue on June 3 with a day- long symposium, which will feature a discussion of the new Manhattan Project National Historical Park. We have assembled a first-class roster of Manhattan Project veterans and experts who will discuss topics ranging from innovation to women in science to atomic spies and more. We hope you enjoy the events! Cynthia C. Kelly President, Atomic Heritage Foundation Atomic Heritage Foundation The Atomic Heritage Foundation (AHF), founded by Cynthia C. Kelly in 2002, is a nonprofit organization in Washington, DC, dedicated to the preservation and interpretation of the Manhattan Project and its legacy.
    [Show full text]