Development of Hydrogen Storage Systems Using Sodium Alanate
Total Page:16
File Type:pdf, Size:1020Kb
HZG REPORT 2011-1 // ISSN 2191-7833 Development of Hydrogen Storage Systems using Sodium Alanate (Vom Promotionsausschuss der Technischen Universität Hamburg-Harburg im Jahr 2010 als Dissertation angenommene Arbeit) G. A. Lozano Martinez HZG REPORT 2011-1 Development of Hydrogen Storage Systems using Sodium Alanate (Vom Promotionsausschuss der Technischen Universität Hamburg-Harburg im Jahr 2010 als Dissertation angenommene Arbeit) G. A. Lozano Martinez (Institut für Werkstoffforschung) Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH | Geesthacht | 2011 Die HZG Reporte werden kostenlos abgegeben. HZG Reports are available free of charge. Anforderungen/Requests: Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH Bibliothek/Library Max-Planck-Straße 1 21502 Geesthacht Germany Fax.: +49 4152 87-1717 Druck: HZG-Hausdruckerei Als Manuskript vervielfältigt. Für diesen Bericht behalten wir uns alle Rechte vor. ISSN 2191-7833 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH Max-Planck-Straße 1 21502 Geesthacht www.hzg.de HZG REPORT 2011-1 Development of Hydrogen Storage Systems using Sodium Alanate (Vom Promotionsausschuss der Technischen Universität Hamburg-Harburg im Jahr 2010 als Dissertation angenommene Arbeit) Gustavo Adolfo Lozano Martinez 132 pages with 68 fi gures and 16 tables Abstract Hydrogen storage systems based on sodium alanate are studied, modelled, and optimised, on the basis of both experimental and theoretical approaches. The experimental hydrogen sorption behaviour (kinetics, heat transfer and cycling) of small cells up to kg-scale storage tanks is compared and analysed. In particular, the effect of the size of the system, powder compaction, and addition of expanded graphite on the sorption behaviour is investigated and characterized. In order to implement simulations and further evaluations, empirical kinetic models for both hydrogen absorption and desorption of sodium alanate material are developed. The hydrogen sorption process in a storage tank is modelled on the basis of the developed kinetic equations, hydrogen transport equations and heat transfer equations. A numerical simulation is developed and validated with the experimental results previously obtained in this work. Optimisation towards the gravimetric hydrogen storage capacity of a tubular storage tank based on sodium alanate is defi ned and performed by means of the numerical simulation and the experimental results of this work. Entwicklung von Natriumalanat-basierten Wasserstoffspeichertanks Zusammenfassung Durch experimentelle und theoretische Methoden wurden Natriumalanat-Wasserstoffspeichertanks untersucht, modelliert und optimiert. Das experimentelle Sorptionsverhalten (Kinetik, Wärmeübertragung, Zyklierung) von kleinen Zellen bis hin zu Speichertanks im kg-Maßstab ist verglichen and analysiert worden. Hierbei wurde insbesondere der Einfl uss der Größe des Systems, der Materialkompaktierung, und des Zusatzes von expandiertem Graphit auf das Sorptionsverhalten erforscht und charakterisiert. Zu weiteren Evaluierungen und Simulationen wurden empirische kinetische Modelle sowohl für Absorption als auch Desorption für den Fall von Natriumalanat als Speichermaterial entwickelt. Der Wasserstoffsorptionsprozess in Speichertanks wurde mit Hilfe der entwickelten kinetischen Gleichungen, Wasserstofftransport- und Wärmeübertragungsgleichungen modelliert. Eine numerische Simulation wurde entwickelt, und durch die gefundenen experimentellen Ergebnisse dieser Arbeit validiert. Mit Hilfe der erzielten Ergebnisse und der Simulation wurde das Design eines auf Natriumalanat basierenden Wasserstoffspeichertanks in Bezug auf die gravimetrische Kapazität optimiert. Manuscript received / Manuskripteingang in TFP: 19. Januar 2011 Acknowledgements To all Professors, tutors and teachers, to my colleagues, my friends and all of my family, who both directly and indirectly inspired, shared and encouraged my desire to work in this doctoral thesis, to all and every one of you my grateful acknowledgement and sincere thanks. I want to express my thanks to Prof. Rüdiger Bormann for his guidance and advice, for the constructive periodic discussions, from which I learned how to develop a deeper phenomenological perspective and how to separate objective observations from subjective points of view. Especially I want to express my deep gratitude to Dr. Martin Dornheim for his friendly and direct supervision and his support during all my PhD work at the Department of Nanotechnology at the GKSS Research Centre (today Helmholtz-Zentrum Geesthacht). I want to thank him for believing in my ideas, my work and my character. Thanks for promoting that pleasant work atmosphere in the department, which has achieved amazing results as it will continue for sure. I would like to thank as well Prof. Thomas Klassen not only for his role as reviewer and evaluator of my thesis but also for his former work and energy invested in the development of the department of Nanotechnology, encouraging the research from new scientists in the field of hydrogen technology. For all the help and collaboration during my work on modelling and simulation I would like to give a special acknowledgement to Prof. Georg Fieg, Prof. Jobst Hapke, Dr. Chakkrit Na Ranong and all the staff of the Institute of Process and Plant Engineering at the Hamburg University of Technology. I appreciate very much the collaboration of Dr. Na Ranong, the long discussion times and his invaluable feedback and friendly advice. Many of the results of my research would not have been possible without the collaboration of the students from the Helmut Schmidt University: Stefan Walcker-Mayer, Stephan Dorn and Daniel Meyer, and from the DAAD Rise Program: Daniel Martin-Alarcon, Simon Thompson and Craig Holvey. I appreciate the financial support of the European Community in the frame of the Integrated Project “NESSHY—Novel Efficient Solid Storage for Hydrogen” and of the Helmholtz Initiative “FuncHy—Functional Materials for Mobile Hydrogen Storage”. At the department of Nanotechnology I was lucky to work under a constant motivating and friendly atmosphere, which made every day a very nice experience. My thanks to all current and former outstanding colleagues: Ulrike Bösenberg (my phenomenal office mate), Dr. José Bellosta von Colbe (for his nice support and suggestions), Oliver Metz, Claudio Pistidda, Julian Jepsen, Christian Bonatto-Minella, Anna Arendarska, Dr. Rapee Gosalawit, Dr. Ivan Saldan, Dr. Klaus Taube, Dr. Karina Suárez, Christian Horstmann, Dr. Michael Störmer, Dr. Gagik Barkhordarian, Julian Puszkiel, Fahim Karimi, Sabine Schrader, Liane Bellosta von Colbe and Prof. Michael Dahms. I am very thankful to Dr. Nico Eigen for the initial supervision and introduction to the topic of complex hydrides during the early stage of my thesis. I thank my parents, Gustavo and Julia, for their commitment in my education and the freedom I enjoyed in having independent ideas. I thank also my brother and sister, Gabriel y Cristina, for their constant patience and moral support in my life. This dissertation is dedicated above all to my lovely wife Gabriela, who is and was my inspiration and strength during all this time, who changed my life for good and whom I owe the successful and peaceful development, writing and finish of this thesis. Muchas gracias Gaby. Geesthacht, December 2010 Contents 1 INTRODUCTION ....................................................................................................................................... 1 1.1 HYDROGEN AS SOLAR ENERGY CARRIER............................................................................................... 1 1.2 HYDROGEN STORAGE: METAL HYDRIDES AS HIGH DENSITY ALTERNATIVE ........................................... 2 1.3 SCOPE AND STRUCTURE OF THE PRESENT WORK ................................................................................... 5 1.4 MODEL SYSTEM: SODIUM ALANATE...................................................................................................... 7 2 EXPERIMENTAL METHODS ................................................................................................................. 9 2.1 MATERIAL PREPARATION...................................................................................................................... 9 2.2 SORPTION KINETICS ............................................................................................................................ 10 2.3 HYDROGEN TANK STATION ................................................................................................................. 11 3 EXPERIMENTAL SORPTIONS: KINETICS AND HEAT TRANSFER........................................... 17 3.1 EFFECTS OF HEAT TRANSFER ON THE SORPTION KINETICS................................................................... 17 3.1.1 Absorption in cells of different sizes............................................................................................. 17 3.1.2 Absorptions in the thermocell ....................................................................................................... 18 3.1.3 Estimation of effective thermal conductivity ................................................................................ 18 3.1.4 Addition of expanded graphite...................................................................................................... 20 3.1.5 Discussion ....................................................................................................................................