Atomic-Absorption Methods of Analysis Useful in Geochemical Exploration
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Understanding Variation in Partition Coefficient, Kd, Values: Volume II
United States Office of Air and Radiation EPA 402-R-99-004B Environmental Protection August 1999 Agency UNDERSTANDING VARIATION IN PARTITION COEFFICIENT, Kd, VALUES Volume II: Review of Geochemistry and Available Kd Values for Cadmium, Cesium, Chromium, Lead, Plutonium, Radon, Strontium, Thorium, Tritium (3H), and Uranium UNDERSTANDING VARIATION IN PARTITION COEFFICIENT, Kd, VALUES Volume II: Review of Geochemistry and Available Kd Values for Cadmium, Cesium, Chromium, Lead, Plutonium, Radon, Strontium, Thorium, Tritium (3H), and Uranium August 1999 A Cooperative Effort By: Office of Radiation and Indoor Air Office of Solid Waste and Emergency Response U.S. Environmental Protection Agency Washington, DC 20460 Office of Environmental Restoration U.S. Department of Energy Washington, DC 20585 NOTICE The following two-volume report is intended solely as guidance to EPA and other environmental professionals. This document does not constitute rulemaking by the Agency, and cannot be relied on to create a substantive or procedural right enforceable by any party in litigation with the United States. EPA may take action that is at variance with the information, policies, and procedures in this document and may change them at any time without public notice. Reference herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government. ii FOREWORD Understanding the long-term behavior of contaminants in the subsurface is becoming increasingly more important as the nation addresses groundwater contamination. Groundwater contamination is a national concern as about 50 percent of the United States population receives its drinking water from groundwater. -
Absorption Spectroscopy and Imaging from the Visible Through Mid-Infrared with 20 Nm Resolution
Absorption spectroscopy and imaging from the visible through mid-infrared with 20 nm resolution. Aaron M. Katzenmeyer,1 Glenn Holland,1 Kevin Kjoller2 and Andrea Centrone1* 1Center for Nanoscale Science and Technology, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States. *E-mail: [email protected] 2Anasys Instruments, Inc., 325 Chapala Street, Santa Barbara, California 93101, United States. Abstract Absorption spectroscopy and mapping from visible through mid-IR wavelengths has been achieved with spatial resolution exceeding the limit imposed by diffraction, via the photothermal induced resonance technique. Correlated vibrational (chemical), and electronic properties are obtained simultaneously with topography with a wavelength-independent resolution of ≈ 20 nm using a single laboratory-scale instrument. This marks the highest resolution reported for PTIR, as determined by comparing height and PTIR images, and its first extension to near-IR and visible wavelengths. Light-matter interaction enables scientists to characterize materials and biological samples across a large range of energies. Visible (VIS) and near-infrared (NIR) light (from 400 nm to 2.5 µm) probes electronic transitions in materials [1], providing information regarding band gap, defects, and energy transfer which is crucial for the semiconductor and optoelectronic industries and for understanding processes such as photosynthesis. Mid-infrared (mid-IR) light (from 2.5 µm to 15 µm) probes vibrational transitions and provides rich chemical and structural information enabling materials identification [2]. Spectral maps can be obtained by coupling a light source and a spectrometer with an optical microscope [3]. However, light diffraction limits the lateral resolution achievable with conventional microscopic techniques to approximately half the wavelength of light [4]. -
Modeling Gas Absorption
Project Number: WMC 4028 Modeling Gas Absorption A Major Qualifying Project Report submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Bachelor of Science by _______________________________________ Yaminah Z. Jackson Date: April 24, 2008 Approved: _________________________________________ Professor William M. Clark, Project Advisor ABSTRACT This project sought to analyze the gas absorption process as an efficient way in which to remove pollutants, such as carbon dioxide from gas streams. The designed absorption lab for CM 4402 was used to collect data based on the change in composition throughout the column. The recorded and necessary calculated values were then used to create a simulation model using COMSOL Multiphysics, as a supplemental learning tool for students in CM 4402. 2 TABLE OF CONTENTS ABSTRACT ................................................................................................................................................................. 2 TABLE OF CONTENTS ............................................................................................................................................ 3 INTRODUCTION ....................................................................................................................................................... 5 ANTHROPOGENIC SOURCES ..................................................................................................................................... 5 FINDING A SOLUTION -
Carbon Dioxide Capture by Chemical Absorption: a Solvent Comparison Study
Carbon Dioxide Capture by Chemical Absorption: A Solvent Comparison Study by Anusha Kothandaraman B. Chem. Eng. Institute of Chemical Technology, University of Mumbai, 2005 M.S. Chemical Engineering Practice Massachusetts Institute of Technology, 2006 SUBMITTED TO THE DEPARTMENT OF CHEMICAL ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN CHEMICAL ENGINEERING PRACTICE AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY JUNE 2010 © 2010 Massachusetts Institute of Technology All rights reserved. Signature of Author……………………………………………………………………………………… Department of Chemical Engineering May 20, 2010 Certified by……………………………………………………….………………………………… Gregory J. McRae Hoyt C. Hottel Professor of Chemical Engineering Thesis Supervisor Accepted by……………………………………………………………………………….................... William M. Deen Carbon P. Dubbs Professor of Chemical Engineering Chairman, Committee for Graduate Students 1 2 Carbon Dioxide Capture by Chemical Absorption: A Solvent Comparison Study by Anusha Kothandaraman Submitted to the Department of Chemical Engineering on May 20, 2010 in partial fulfillment of the requirements of the Degree of Doctor of Philosophy in Chemical Engineering Practice Abstract In the light of increasing fears about climate change, greenhouse gas mitigation technologies have assumed growing importance. In the United States, energy related CO2 emissions accounted for 98% of the total emissions in 2007 with electricity generation accounting for 40% of the total1. Carbon capture and sequestration (CCS) is one of the options that can enable the utilization of fossil fuels with lower CO2 emissions. Of the different technologies for CO2 capture, capture of CO2 by chemical absorption is the technology that is closest to commercialization. While a number of different solvents for use in chemical absorption of CO2 have been proposed, a systematic comparison of performance of different solvents has not been performed and claims on the performance of different solvents vary widely. -
Absorption Spectroscopy
World Bank & Government of The Netherlands funded Training module # WQ - 34 Absorption Spectroscopy New Delhi, February 2000 CSMRS Building, 4th Floor, Olof Palme Marg, Hauz Khas, DHV Consultants BV & DELFT HYDRAULICS New Delhi – 11 00 16 India Tel: 68 61 681 / 84 Fax: (+ 91 11) 68 61 685 with E-Mail: [email protected] HALCROW, TAHAL, CES, ORG & JPS Table of contents Page 1 Module context 2 2 Module profile 3 3 Session plan 4 4 Overhead/flipchart master 5 5 Evaluation sheets 22 6 Handout 24 7 Additional handout 29 8 Main text 31 Hydrology Project Training Module File: “ 34 Absorption Spectroscopy.doc” Version 06/11/02 Page 1 1. Module context This module introduces the principles of absorption spectroscopy and its applications in chemical analyses. Other related modules are listed below. While designing a training course, the relationship between this module and the others, would be maintained by keeping them close together in the syllabus and place them in a logical sequence. The actual selection of the topics and the depth of training would, of course, depend on the training needs of the participants, i.e. their knowledge level and skills performance upon the start of the course. No. Module title Code Objectives 1. Basic chemistry concepts WQ - 02 • Convert units from one to another • Discuss the basic concepts of quantitative chemistry • Report analytical results with the correct number of significant digits. 2. Basic aquatic chemistry WQ - 24 • Understand equilibrium chemistry and concepts ionisation constants. • Understand basis of pH and buffers • Calculate different types of alkalinity. -
Computational and Experimental Models for the Prediction of Intestinal Drug Solubility and Absorption
&RPSUHKHQVLYH6XPPDULHVRI8SSVDOD'LVVHUWDWLRQV IURPWKH)DFXOW\RI3KDUPDF\ &RPSXWDWLRQDODQG([SHULPHQWDO 0RGHOVIRUWKH3UHGLFWLRQ RI,QWHVWLQDO'UXJ6ROXELOLW\ DQG$EVRUSWLRQ %< &+5,67(/$6%(5*675g0 $&7$81,9(56,7$7,6836$/,(16,6 8336$/$ Dissertation for the Degree of Doctor of Philosophy (Faculty of Pharmacy) in Pharmaceutics presented at Uppsala University in 2003 ABSTRACT Bergström, C. A. S., 2003. Computational and Experimental Models for the Prediction of Intestinal Drug Solubility and Absorption. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Pharmacy 295. 66 pp. Uppsala. ISBN 91-554-5747-9. New effective experimental techniques in medicinal chemistry and pharmacology have resulted in a vast increase in the number of pharmacologically interesting compounds. However, the number of new drugs undergoing clinical trial has not augmented at the same pace, which in part has been attributed to poor absorption of the compounds. The main objective of this thesis was to investigate whether computer-based models devised from calculated molecular descriptors can be used to predict aqueous drug solubility, an important property influencing the absorption process. For this purpose, both experimental and computational studies were performed. A new small-scale shake flask method for experimental solubility determination of crystalline compounds was devised. This method was used to experimentally determine solubility values used for the computational model development and to investigate the pH-dependent solubility of drugs. In the computer-based studies, rapidly calculated molecular descriptors were used to predict aqueous solubility and the melting point, a solid state characteristic of importance for the solubility. To predict the absorption process, drug permeability across the intestinal epithelium was also modeled. -
Raman Spectroscopy for In-Line Water Quality Monitoring — Instrumentation and Potential
Sensors 2014, 14, 17275-17303; doi:10.3390/s140917275 OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Review Raman Spectroscopy for In-Line Water Quality Monitoring — Instrumentation and Potential Zhiyun Li 1, M. Jamal Deen 1,2,4,*, Shiva Kumar 2 and P. Ravi Selvaganapathy 1,3 1 School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada; E-Mails: [email protected] (Z.L.); [email protected] (P.R.S.) 2 Electrical and Computer Engineering, McMaster University, Hamilton, ON L8S 4K1 Canada; E-Mail: [email protected] 3 Mechanical Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada 4 Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China * Author to whom correspondence should be addressed; E-Mail: [email protected] or [email protected]; Tel.: +1-905-525-9140 (ext. 27137); Fax: +1-905-521-2922. Received: 1 July 2014; in revised form: 7 September 2014 / Accepted: 9 September 2014 / Published: 16 September 2014 Abstract: Worldwide, the access to safe drinking water is a huge problem. In fact, the number of persons without safe drinking water is increasing, even though it is an essential ingredient for human health and development. The enormity of the problem also makes it a critical environmental and public health issue. Therefore, there is a critical need for easy-to-use, compact and sensitive techniques for water quality monitoring. Raman spectroscopy has been a very powerful technique to characterize chemical composition and has been applied to many areas, including chemistry, food, material science or pharmaceuticals. -
Basics of Plasma Spectroscopy
Home Search Collections Journals About Contact us My IOPscience Basics of plasma spectroscopy This content has been downloaded from IOPscience. Please scroll down to see the full text. 2006 Plasma Sources Sci. Technol. 15 S137 (http://iopscience.iop.org/0963-0252/15/4/S01) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 198.35.1.48 This content was downloaded on 20/06/2014 at 16:07 Please note that terms and conditions apply. INSTITUTE OF PHYSICS PUBLISHING PLASMA SOURCES SCIENCE AND TECHNOLOGY Plasma Sources Sci. Technol. 15 (2006) S137–S147 doi:10.1088/0963-0252/15/4/S01 Basics of plasma spectroscopy U Fantz Max-Planck-Institut fur¨ Plasmaphysik, EURATOM Association Boltzmannstr. 2, D-85748 Garching, Germany E-mail: [email protected] Received 11 November 2005, in final form 23 March 2006 Published 6 October 2006 Online at stacks.iop.org/PSST/15/S137 Abstract These lecture notes are intended to give an introductory course on plasma spectroscopy. Focusing on emission spectroscopy, the underlying principles of atomic and molecular spectroscopy in low temperature plasmas are explained. This includes choice of the proper equipment and the calibration procedure. Based on population models, the evaluation of spectra and their information content is described. Several common diagnostic methods are presented, ready for direct application by the reader, to obtain a multitude of plasma parameters by plasma spectroscopy. 1. Introduction spectroscopy for purposes of chemical analysis are described in [11–14]. Plasma spectroscopy is one of the most established and oldest diagnostic tools in astrophysics and plasma physics 2. -
Atomic Spectroscopy 008044D 01 a Guide to Selecting The
PerkinElmer has been at the forefront of The Most Trusted inorganic analytical technology for over 50 years. With a comprehensive product Name in Elemental line that includes Flame AA systems, high-performance Graphite Furnace AA Analysis systems, flexible ICP-OES systems and the most powerful ICP-MS systems, we can provide the ideal solution no matter what the specifics of your application. We understand the unique and varied needs of the customers and markets we serve. And we provide integrated solutions that streamline and simplify the entire process from sample handling and analysis to the communication of test results. With tens of thousands of installations worldwide, PerkinElmer systems are performing WORLD LEADER IN inorganic analyses every hour of every day. Behind that extensive network of products stands the industry’s largest and most-responsive technical service and support staff. Factory-trained and located in 150 countries, they have earned a reputation for consistently AA, ICP-OES delivering the highest levels of personalized, responsive service in the industry. AND ICP-MS PerkinElmer, Inc. 940 Winter Street Waltham, MA 02451 USA P: (800) 762-4000 or (+1) 203-925-4602 www.perkinelmer.com For a complete listing of our global offices, visit www.perkinelmer.com/ContactUs Copyright ©2008-2013, PerkinElmer, Inc. All rights reserved. PerkinElmer® is a registered trademark of PerkinElmer, Inc. All other trademarks are the property of their respective owners. Atomic Spectroscopy 008044D_01 A Guide to Selecting the Appropriate -
Atomic Absorption Spectroscopy
ATOMIC ABSORPTION SPECTROSCOPY Edited by Muhammad Akhyar Farrukh Atomic Absorption Spectroscopy Edited by Muhammad Akhyar Farrukh Published by InTech Janeza Trdine 9, 51000 Rijeka, Croatia Copyright © 2011 InTech All chapters are Open Access distributed under the Creative Commons Attribution 3.0 license, which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. After this work has been published by InTech, authors have the right to republish it, in whole or part, in any publication of which they are the author, and to make other personal use of the work. Any republication, referencing or personal use of the work must explicitly identify the original source. As for readers, this license allows users to download, copy and build upon published chapters even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. Notice Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the use of any materials, instructions, methods or ideas contained in the book. Publishing Process Manager Anja Filipovic Technical Editor Teodora Smiljanic Cover Designer InTech Design Team Image Copyright kjpargeter, 2011. DepositPhotos First published January, 2012 Printed in Croatia A free online edition of this book is available at www.intechopen.com Additional hard copies can be obtained from [email protected] Atomic Absorption Spectroscopy, Edited by Muhammad Akhyar Farrukh p. -
Femtosecond Transient Absorption Spectroscopy – Technical Improvements and Applications to Ultrafast Molecular Phenomena
Femtosecond Transient Absorption Spectroscopy – Technical Improvements and Applications to Ultrafast Molecular Phenomena Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Julius-Maximilians-Universitat¨ Wurzburg¨ vorgelegt von Florian Kanal aus Kirchheim unter Teck Wurzburg¨ 2015 Eingereicht bei der Fakultat¨ fur¨ Chemie und Pharmazie am Gutachter der schriftlichen Arbeit 1. Gutachter: Prof. Dr. T. Brixner 2. Gutachter: Prufer¨ des offentlichen¨ Promotionskolloquiums 1. Prufer:¨ Prof. Dr. T. Brixner 2. Prufer:¨ 3. Prufer:¨ Datum des offentlichen¨ Promotionskolloquiums: Doktorurkunde ausgehandigt¨ am List of Publications [1] D. Reitzenstein, T. Quast, F. Kanal, M. Kullmann, S. Ruetzel, M. S. Hammer, C. Deibel, V. Dyakonov, T. Brixner, and C. Lambert, Synthesis and Electron Transfer Characteristics of a Neutral, Low-Band-Gap, Mixed- Valence Polyradical, Chem. Mater. 22, 6641–6655 (2010). [2] P. Rudolf, F. Kanal, J. Knorr, C. Nagel, J. Niesel, T. Brixner, U. Schatzschneider, and P. Nuernberger, Ultrafast Photochemistry of a Manganese-Tricarbonyl CO-Releasing Molecule (CORM) in Aqueous Solution, J. Phys. Chem. Lett. 4, 596–602 (2013). [3] P. Rudolf, F. Kanal, D. Gehrig, J. Niesel, T. Brixner, U. Schatzschneider, and P. Nuernberger, Femtosecond Mid-Infrared Study of the Aqueous Solution Photochemistry of a CO- Releasing Molecule (CORM), EPJ Web of Conferences 41, 05004 (2013). [4] F. Kanal, S. Keiber, R. Eck, and T. Brixner, 100-kHz Shot-to-Shot Broadband Data Acquisition for High-Repetition-Rate Pump– Probe Spectroscopy, Opt. Express 22, 16965–16975 (2014). [5] F. Kanal, S. Ruetzel, H. Lu, M. Moos, M. Holzapfel, T. Brixner, and C. Lambert, Measuring Charge-Separation via Oligomer Length Variation, J. Phys. Chem. C 118, 23586–23598 (2014). -
Atomic Spectroscopy Atomic Spectra
Atomic Spectroscopy Atomic Spectra • energy Electron excitation n = 1 ∆E – The excitation can occur at n = 2 different degrees n = 3, etc. • low E tends to excite the outmost e-’s first • when excited with a high E (photon of high v) an e- can jump more than one levels - 4f • even higher E can tear inner e ’s 4d n=4 away from nuclei 4p 3d - – An e at its excited state is not stable and tends to 4s return its ground state n=3 3p - – If an e jumped more than one energy levels because 3s of absorption of a high E, the process of the e- Energy n=2 2p returning to its ground state may take several steps, - 2s i.e. to the nearest low energy level first then down to n=1 next … 1s Atomic Spectra • Atomic spectra energy – The level and quantities of energy n = 1 - ∆E supplied to excite e ’s can be measured n = 2 & studied in terms of the frequency and n = 3, the intensity of an e.m.r. - the etc. absorption spectroscopy – The level and quantities of energy emitted by excited e-’s, as they return to their ground state, can be measured & studied by means of the emission spectroscopy 4f – The level & quantities of energy 4d n=4 absorbed or emitted (v & intensity of 4p e.m.r.) are specific for a substance 3d 4s n=3 3p 3s – Atomic spectra are mostly in UV Energy (sometime in visible) regions n=2 2p 2s n=1 1s Atomic spectroscopy • Atomic emission – Zero background (noise) • Atomic absorption – Bright background (noise) – Measure intensity change – More signal than emission – Trace detection Signal is proportional top number of atoms AES - low noise (background) AAS - high signal The energy gap for emission is exactly the same as for absorption.