Atomic Absorption Spectroscopy
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Understanding Variation in Partition Coefficient, Kd, Values: Volume II
United States Office of Air and Radiation EPA 402-R-99-004B Environmental Protection August 1999 Agency UNDERSTANDING VARIATION IN PARTITION COEFFICIENT, Kd, VALUES Volume II: Review of Geochemistry and Available Kd Values for Cadmium, Cesium, Chromium, Lead, Plutonium, Radon, Strontium, Thorium, Tritium (3H), and Uranium UNDERSTANDING VARIATION IN PARTITION COEFFICIENT, Kd, VALUES Volume II: Review of Geochemistry and Available Kd Values for Cadmium, Cesium, Chromium, Lead, Plutonium, Radon, Strontium, Thorium, Tritium (3H), and Uranium August 1999 A Cooperative Effort By: Office of Radiation and Indoor Air Office of Solid Waste and Emergency Response U.S. Environmental Protection Agency Washington, DC 20460 Office of Environmental Restoration U.S. Department of Energy Washington, DC 20585 NOTICE The following two-volume report is intended solely as guidance to EPA and other environmental professionals. This document does not constitute rulemaking by the Agency, and cannot be relied on to create a substantive or procedural right enforceable by any party in litigation with the United States. EPA may take action that is at variance with the information, policies, and procedures in this document and may change them at any time without public notice. Reference herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government. ii FOREWORD Understanding the long-term behavior of contaminants in the subsurface is becoming increasingly more important as the nation addresses groundwater contamination. Groundwater contamination is a national concern as about 50 percent of the United States population receives its drinking water from groundwater. -
A Customized Stand-Alone Photometric Raman Sensor Applicable in Explosive Atmospheres: a Proof-Of-Concept Study
J. Sens. Sens. Syst., 7, 543–549, 2018 https://doi.org/10.5194/jsss-7-543-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. A customized stand-alone photometric Raman sensor applicable in explosive atmospheres: a proof-of-concept study Marcel Nachtmann1, Shaun Paul Keck1, Frank Braun1, Hanns Simon Eckhardt2, Christoph Mattolat2, Norbert Gretz3, Stephan Scholl4, and Matthias Rädle1 1Institute for Process Control and Innovative Energy Conversion, Mannheim University of Applied Sciences, Mannheim, 68163, Germany 2tec5 AG, Oberursel/Ts, 61440, Germany 3Medical Research Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany 4Institute for Chemical and Thermal Process Engineering, Technical University Braunschweig, Braunschweig, 38106, Germany Correspondence: Matthias Rädle ([email protected]) Received: 29 March 2018 – Revised: 12 September 2018 – Accepted: 14 September 2018 – Published: 12 October 2018 Abstract. This paper presents an explosion-proof two-channel Raman photometer designed for chemical pro- cess monitoring in hazardous explosive atmospheres. Due to its design, alignment of components is simplified and economic in comparison to spectrometer systems. Raman spectrometers have the potential of becoming an increasingly important tool in process analysis technologies as part of molecular-specific concentration monitor- ing. However, in addition to the required laser power, which restricts use in potentially explosive atmospheres, the financial hurdle is also high. Within the scope of a proof of concept, it is shown that photometric measure- ments of Raman scattering are possible. The use of highly sensitive detectors allows the required excitation power to be reduced to levels compliant for operation in potentially explosive atmospheres. -
Bioanalytical Development Method and Validation
Ganesh A. Chavan et al /J. Pharm. Sci. & Res. Vol. 11(11), 2019, 3606-3617 Bioanalytical Development Method and Validation Ganesh A. Chavan 1*, Siddhata A. Deshmukh 1, Rajendra B. Patil 2, Suvarna S. Vanjari 2 1Department of Pharmaceutical Quality Assurance, J.S.P.M’s Rajarshi Shahu College of Pharmacy and Research, Survey No.80, Tathawade, Pune 411033. 2 Department of Pharmaceutical Chemistry, J.S.P.M’s Rajarshi Shahu College of Pharmacy and Research, Survey No.80, Tathawade, Pune 411033. Abstract Bioanalysis is very essential to understand the pharmacokinetic, toxicologic of drug. It also based on the various types of biological techniques and the physico-chemical, it must be validated for the confidence of good result. In this bioanalysis there develop a new method for validation, accuracy, precision, selectivity. It is also very effective to quantitative analysis of analytes. It play very important role in evaluation and interpretation bioequivalence, pharmacokinetic and toxicokinetic studies. There some guidelines for the bioanalysis. These are also following the GLP and GMP. It develops the new method for quantitative analysis of any drug. It also focuses on the validation parameters. Bioanalysis is very important to understand the drug content in plasma, blood, serum or urine. Keywords: Application, Bioanalytical development method, Specification, Validation Parameters. INTRODUCTION It is used for the extraction of the solvent and the The responsibility of analytical findings could be a matter partitioning. It is based on the two different phase such as of nice importance in rhetorical and clinical Materia aqueous phase and the organic phase.the extraction of media. -
Atomic and Molecular Laser-Induced Breakdown Spectroscopy of Selected Pharmaceuticals
Article Atomic and Molecular Laser-Induced Breakdown Spectroscopy of Selected Pharmaceuticals Pravin Kumar Tiwari 1,2, Nilesh Kumar Rai 3, Rohit Kumar 3, Christian G. Parigger 4 and Awadhesh Kumar Rai 2,* 1 Institute for Plasma Research, Gandhinagar, Gujarat-382428, India 2 Laser Spectroscopy Research Laboratory, Department of Physics, University of Allahabad, Prayagraj-211002, India 3 CMP Degree College, Department of Physics, University of Allahabad, Pragyagraj-211002, India 4 Physics and Astronomy Department, University of Tennessee, University of Tennessee Space Institute, Center for Laser Applications, 411 B.H. Goethert Parkway, Tullahoma, TN 37388-9700, USA * Correspondence: [email protected]; Tel.: +91-532-2460993 Received: 10 June 2019; Accepted: 10 July 2019; Published: 19 July 2019 Abstract: Laser-induced breakdown spectroscopy (LIBS) of pharmaceutical drugs that contain paracetamol was investigated in air and argon atmospheres. The characteristic neutral and ionic spectral lines of various elements and molecular signatures of CN violet and C2 Swan band systems were observed. The relative hardness of all drug samples was measured as well. Principal component analysis, a multivariate method, was applied in the data analysis for demarcation purposes of the drug samples. The CN violet and C2 Swan spectral radiances were investigated for evaluation of a possible correlation of the chemical and molecular structures of the pharmaceuticals. Complementary Raman and Fourier-transform-infrared spectroscopies were used to record the molecular spectra of the drug samples. The application of the above techniques for drug screening are important for the identification and mitigation of drugs that contain additives that may cause adverse side-effects. Keywords: paracetamol; laser-induced breakdown spectroscopy; cyanide; carbon swan bands; principal component analysis; Raman spectroscopy; Fourier-transform-infrared spectroscopy 1. -
ADVANCED SPECTROMETER Introduction
ADVANCED SPECTROMETER Introduction In principle, a spectrometer is the simplest of scientific very sensitive detection and precise measurement, a real instruments. Bend a beam of light with a prism or diffraction spectrometer is a bit more complicated. As shown in Figure grating. If the beam is composed of more than one color of 1, a spectrometer consists of three basic components; a light, a spectrum is formed, since the various colors are collimator, a diffracting element, and a telescope. refracted or diffracted to different angles. Carefully measure The light to be analyzed enters the collimator through a the angle to which each color of light is bent. The result is a narrow slit positioned at the focal point of the collimator spectral "fingerprint," which carries a wealth of information lens. The light leaving the collimator is therefore a thin, about the substance from which the light emanates. parallel beam, which ensures that all the light from the slit In most cases, substances must be hot if they are to emit strikes the diffracting element at the same angle of inci- light. But a spectrometer can also be used to investigate cold dence. This is necessary if a sharp image is to be formed. substances. Pass white light, which contains all the colors of The diffracting element bends the beam of light. If the beam the visible spectrum, through a cool gas. The result is an is composed of many different colors, each color is dif- absorption spectrum. All the colors of the visible spectrum fracted to a different angle. are seen, except for certain colors that are absorbed by the gas. -
White Paper Absorbance Or Fluorescence: Which Is the Best
WHITE PAPER No. 40 Absorbance or Fluorescence: Which Is the Best Way to Quantify Nucleic Acids? Natascha Weiß1, Martin Armbrecht1 ¹Eppendorf AG, Hamburg, Germany Executive Summary When performing molecular experiments on nucleic acids, it is a basic requirement to determine the concentration as well as the quality of the sample. The standard method which serves this purpose is UV-Vis spectrophotometry – but is it always the right choice? In the present White Paper, the advantages and disadvantages of this technique will be described and it will be compared with nucleic acid quantification via fluorescence. In this context, it will be discussed which situations warrant the use of which one of the two methods. The decision will generally depend on the condition of the sample as well as on the requirements of downstream applications. Since the advantages of both methods complement each other well, it is most practical to have the ability to perform both methods on a single instrument in a flexible manner. Introduction Experiments involving nucleic acids are a mainstay in any evaluated by measuring the sample at additional wave molecular laboratory. DNA and RNA are isolated from micro- lengths (230 nm, 280 nm) and calculating the purity ratios, organisms and from cells of higher order organisms in order i.e. the ratios of the values obtained at 260/230 nm and at to be employed in a broad variety of processing steps and 260/280 nm, respectively. In this way, it will be evident analyses. It is crucial for any type of downstream applica- whether cellular debris or remainders of reagent used during tion that a defined amount of nucleic acid is used and that purification such as proteins, sugar molecules, certain salts the sample is free from contaminations that may impact the or phenols, are present in the solution, as these will generate experiments. -
On Food, Spectrophotometry, and Measurement Data Processing (Keynote Lecture)
12th IMEKO TC1 & TC7 Joint Symposium on Man Science & Measurement September, 3–5, 2008, Annecy, France ON FOOD, SPECTROPHOTOMETRY, AND MEASUREMENT DATA PROCESSING (KEYNOTE LECTURE) Roman Z. Morawski Warsaw University of Technology, Faculty of Electronics and Information Technology, Institute of Radioelectronics Warsaw, Poland [email protected] Abstract: Spectrophotometry is getting more and more Despite philosophical abnegation of food issues, the often the method of choice not only in laboratory analysis of practice of food preparation and refinement has flourished (bio)chemical substances, but also in the off-laboratory for centuries, and inspired research-and-invention-oriented identification and testing of physical properties of various minds. Today, we may speak about a fully developed products, in particular – of various organic mixtures discipline of science and technology. Enough to say that the including food products and ingredients. Specialized Institute of Food Technologists – the largest international, spectrophotometers, called spectrophotometric analyzers are non-profit professional organization involved in the designed for such applications. This keynote lecture is on advancement of food science and technology – is the state of the art and developmental trends in the domain encompassing 23 000 members worldwide. Its Committee of spectrophotometric analyzers of food with particular on Higher Education provided the following definition of emphasis on wine analyzers. The following issues are food science: "Food science is the discipline in which the covered: philosophical and methodological background of engineering, biological, and physical sciences are used to food analysis, physical and metrological principles of study the nature of foods, the causes of deterioration, the spectrophotometry, the role of measurement data processing principles underlying food processing, and the improvement in spectrophotometry, food analyzers on the market and of foods for the consuming public" [1]. -
Vacuum Ultra Violet Monochromator I Grating & OEM
Feature Article JY Division nformation Vacuum Ultra Violet Monochromator I Grating & OEM Erick Jourdain Abstract Taking the advantage of Jobin Yvon(JY) leading position in the design and realisation of diffraction grating JY has developed over the last past 30 years some of the most innovative Vacuum Ultra Violet (VUV) monochromators for synchrotron centre. These monochromators, which combine the ultimate advanced diffraction grating technologies and some ultra precise under vacuum mechanics, have been installed in several synchrotron centres and have demonstrated superior performances. Today the development of new compact VUV sources and applications require compact VUV monochromators. Based on diffraction grating capabilities and our large experience acquired in the difficult and demanding market of under vacuum synchrotron monochromators JY is currently developing new compact monochromators for application such as Extreme UV lithography or X-ray Photoemission Spectroscopy. Introduction In the middle of the seventies thank to the development of the aberration corrected holographic toroidal gratings at Jobin Yvon (JY) we introduced on the market a new VUV monochromator concept that drastically enhanced the spectroscopic performances in this field [1]. During the eighties the Toroidal Grating Monochromator (TGM) and its associated toroidal gratings had a large and world wide success. At that time most of the synchrotron VUV beamline got equipped with this monochromator type and even today some recent beamline are still been developed Fig. -
FT-IR Spectroscopy
ORIEL ORIEL PRODUCT TRAINING FT-IR Spectroscopy SECTION FOUR FEATURES • Glossary of Terms • Introduction to FT-IR Spectroscopy Stratford, CT • Toll Free 800.714.5393 Fax 203.378.2457 • www.newport.com/oriel • [email protected] GLOSSARY OF TERMS Before we start the technical discussion on FT-IR Spectrometers, we devote a couple of pages to a Glossary, to facilitate the discussion that follows. 100% Line: Calculated by ratioing two background spectra Collimation: The ideal input beam is a cylinder of light. No taken under identical conditions. Ideally, the result is a flat beam of finite dimensions can be perfectly collimated; at best line at 100% transmittance. there is a diffraction limit. In practice the input beam is a Absorbance: Units used to measure the amount of IR cone that is determined by the source size or aperture used. radiation absorbed by a sample. Absorbance is commonly The degree of collimation can affect the S/N and the used as the Y axis units in IR spectra. Absorbance is defined resolution. by Beer’s Law, and is linearly proportional to concentration. Constructive Interference: A phenomenon that occurs when Aliasing: If frequencies above the Nyquist Frequency are not two waves occupy the same space and are in phase with filtered out, energy in these will appear as spectral artefacts each other. Since the amplitudes of waves are additive, the below the Nyquist Frequency. Optical and electronic anti two waves will add together to give a resultant wave which is aliasing can be used to prevent this. Sometimes the higher more intense than either of the individual waves. -
Spectrum 100 Series User's Guide
MOLECULAR SPECTROSCOPY SPECTRUM 100 SERIES User’s Guide 2 . Spectrum 100 Series User’s Guide Release History Part Number Release Publication Date L1050021 A October 2005 Any comments about the documentation for this product should be addressed to: User Assistance PerkinElmer Ltd Chalfont Road Seer Green Beaconsfield Bucks HP9 2FX United Kingdom Or emailed to: [email protected] Notices The information contained in this document is subject to change without notice. Except as specifically set forth in its terms and conditions of sale, PerkinElmer makes no warranty of any kind with regard to this document, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. PerkinElmer shall not be liable for errors contained herein for incidental consequential damages in connection with furnishing, performance or use of this material. Copyright Information This document contains proprietary information that is protected by copyright. All rights are reserved. No part of this publication may be reproduced in any form whatsoever or translated into any language without the prior, written permission of PerkinElmer, Inc. Copyright © 2005 PerkinElmer, Inc. Trademarks Registered names, trademarks, etc. used in this document, even when not specifically marked as such, are protected by law. PerkinElmer is a registered trademark of PerkinElmer, Inc. Spectrum, Spectrum 100, and Spectrum 100N are trademarks of PerkinElmer, Inc. Spectrum 100 Series User’s Guide . 3 Contents Contents............................................................................................... -
Input-Output Transfer Function Analysis of a Photometer Circuit Based on an Operational Amplifier
Sensors 2008, 8, 35-50 sensors ISSN 1424-8220 © 2008 by MDPI www.mdpi.org/sensors Input-output Transfer Function Analysis of a Photometer Circuit Based on an Operational Amplifier Wilmar Hernandez Department of Circuits and Systems in the EUIT de Telecomunicacion at the Universidad Politecnica de Madrid (UPM), Campus Sur UPM, Ctra. Valencia km 7, Madrid 28031, Spain Phone: +34913367830. Fax: +34913367829. E-mail: [email protected] Received: 22 December 2007 / Accepted: 7 January 2008 / Published: 9 January 2008 Abstract: In this paper an input-output transfer function analysis based on the frequency response of a photometer circuit based on operational amplifier (op amp) is carried out. Op amps are universally used in monitoring photodetectors and there are a variety of amplifier connections for this purpose. However, the electronic circuits that are usually used to carry out the signal treatment in photometer circuits introduce some limitations in the performance of the photometers that influence the selection of the op amps and other electronic devices. For example, the bandwidth, slew-rate, noise, input impedance and gain, among other characteristics of the op amp, are often the performance limiting factors of photometer circuits. For this reason, in this paper a comparative analysis between two photodiode amplifier circuits is carried out. One circuit is based on a conventional current- to-voltage converter connection and the other circuit is based on a robust current-to-voltage converter connection. The results are satisfactory and show that the photodiode amplifier performance can be improved by using robust control techniques. Keywords: photometer circuit, current-to-voltage converter connection, frequency response, robust control Sensors 2008, 8 36 1. -
Modeling Gas Absorption
Project Number: WMC 4028 Modeling Gas Absorption A Major Qualifying Project Report submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Bachelor of Science by _______________________________________ Yaminah Z. Jackson Date: April 24, 2008 Approved: _________________________________________ Professor William M. Clark, Project Advisor ABSTRACT This project sought to analyze the gas absorption process as an efficient way in which to remove pollutants, such as carbon dioxide from gas streams. The designed absorption lab for CM 4402 was used to collect data based on the change in composition throughout the column. The recorded and necessary calculated values were then used to create a simulation model using COMSOL Multiphysics, as a supplemental learning tool for students in CM 4402. 2 TABLE OF CONTENTS ABSTRACT ................................................................................................................................................................. 2 TABLE OF CONTENTS ............................................................................................................................................ 3 INTRODUCTION ....................................................................................................................................................... 5 ANTHROPOGENIC SOURCES ..................................................................................................................................... 5 FINDING A SOLUTION