L-Methylfolate: a Vitamin for Your Monoamines

Total Page:16

File Type:pdf, Size:1020Kb

L-Methylfolate: a Vitamin for Your Monoamines L-Methylfolate: A Vitamin for Your Monoamines Stephen M. Stahl, M.D., Ph.D. Issue: Synthesis of the monoamine neurotransmitters serotonin, dopamine, and norepinephrine is regulated by L-methylfolate, a derivate of the vitamin folate. olate (vitamin B ) is well acid or dihydrofolate to a usable form 9 Figure 1. Synthesis of L-Methylfolate F known as one of the 13 essen- in the body, L-methylfolate, that can From Folate tial vitamins, but perhaps what is not then pass through the blood-brain bar- as well known is that a derivative of rier where it modulates the formation Folate folate—known as L-methylfolate—is of the monoamines serotonin, norepi- actually the active form of the vita- nephrine, and dopamine.1–7 min.1 –3 One of L-methylfolate’s critical roles is to regulate the synthesis of the How Does L-Methylfolate Regulate 3 monoamine neurotransmitters seroto- the Synthesis of Monoamines? 1–6 nin, dopamine, and norepinephrine. L-Methylfolate acts to modulate the Dihydrofolate synthesis of monoamines in a 3-step H H What Is L-Methylfolate? process (Figure 2). First, L-methyl- Folic acid is the synthetic form of folate assists in the formation of a MTHFR the vitamin folate and is present in arti- critical cofactor, known as tetrahydro- ficially enriched foods such as bread biopterin, or BH4 (Figure 2A), for the and in over-the-counter multivitamins synthesis of monoamines.4–6 Second, CH3 HH as well as in prescription vitamins.3 BH4 activates the rate-limiting en- Dihydrofolate is the dietary form of zymes tyrosine hydroxylase and tryp- L-Methylfolate folate, derived from green vegetables, tophan hydroxylase for the synthesis of 3 4–6 yeast, egg yolk, liver, and kidney. monoamines. Note that when these HH A key regulatory enzyme known as enzymes lack BH4 (shown as an empty Abbreviations: C = carbon, H = hydrogen, methylene tetrahydrofolate reductase “4” in the blue tyrosine hydroxylase MTHFR = methylene tetrahydrofolate or MTHFR (Figure 1)1–7 converts folic and tryptophan hydroxylase enzymes reductase. Figure 2. Regulation of Monoamine Synthesis by L-Methylfolate A. B. C. L-Methylfolate Assists in the Tyrosine Hydroxylase and Tryptophan Hydroxylase BH4 Activates the 2 Enzymes Formation of Tetrahydrobiopterin (BH4) Are Inactive in the Absence of BH4 to Synthesize the 3 Monoamines BH Dopamine CH3 BH HH Tyrosine BH Norepinephrine L-Methylfolate Tyrosine Hydroxylase Tyrosine Hydroxylase HH BH BH Serotonin Tr yptophan Tr yptophan Hydroxylase Tr yptophan Hydroxylase J Clin Psychiatry 69:9, September 2008 PSYCHIATRIST.COM 13531352 Table 1. Characteristics of Patients With Depression Who Might Be the Best TAKE-HOME POINTS Candidates for L-Methylfolate Treatment ◆ L-Methylfolate is the centrally active derivate of the vitamin folate and is Documented low levels of folate and its active utilized not only for neurotransmitter synthesis, but also for many vital metabolites such as L-methylfolate methylation reactions in all cells. Inadequate responses to a standard antidepressant ◆ L-Methylfolate regulates the availability of the critical enzyme cofactor High risk for low folate levels resulting from BH4 (tetrahydrobiopterin), required by tryptophan hydroxylase for serotonin • Alcoholism synthesis and by tyrosine hydroxylase for dopamine and norepinephrine • Eating disorders synthesis. • Pregnancy ◆ Low levels of folate and L-methylfolate are linked to some forms of depression • Gastrointestinal disorders and to some patients who fail to respond to antidepressants, suggesting that • Documented low levels of MTHFR augmentation of antidepressants with L-methylfolate may be a useful (methylene tetrahydrofolate reductase) or being from a group (Hispanic and treatment option in these cases. Mediterranean populations) at high risk for decreased levels of this enzyme • Documented high homocysteine levels, which tend to rise when folate falls therapeutic action of antidepressants REFERENCES • Drugs that can interfere with folate dependent upon adequate levels of conversion to L-methylfolate such as monoamines. 1. Stahl SM. Stahl’s Essential Psychopharmacol- lamotrigine and valproate So, who might be the best candi- ogy. 3rd ed. New York, NY: Cambridge Preference for a natural product approach with University Press; 2008 few or no side effects dates to receive L-methylfolate? Re- 2. Stahl SM. Novel therapeutics for depression: search is still trying to answer this L-methylfolate as a trimonoamine modulator and antidepressant-augmenting agent. CNS question, but the current evidence Spectr 2007 Oct;12(10):739–744 in Figure 2B), they are inactive and suggests that the best candidates for 3. Paul RT, McDonnell AP, Kelly CB. Folic acid: cannot bind to their amino acid sub- L-methylfolate treatment might be de- neurochemistry, metabolism and relationship to depression. Hum Psychopharmacol 2004 strates, tyrosine and tryptophan, which pressed patients who have documented Oct;19(7):477–488 are the precursors for the monoamines. low levels of folate and its active me- 4. Turner AJ. The relationship between brain fo- Third and finally, when L-methylfolate tabolites, including L-methylfolate, and late and monoamine metabolism. In: Botez MI, Reynolds EH, eds. Folic Acid in Neurology, forms the critical amount of BH4, BH4 who fail to respond to treatment with a Psychiatry and Internal Medicine. New York, 1–8 can activate these enzymes (Figure standard antidepressant. Investiga- NY: Raven Press; 1979:165–177 2C), and tyrosine hydroxylase and tors are also determining whether those 5. Hamon CG, Blair JA, Barford PA. The effect of tetrahydrofolate on tetrahydrobiopterin metabo- tryptophan hydroxylase can now form at risk for low L-methylfolate levels, lism. J Ment Defic Res 1986 Jun;30(pt 2): the trimonoamines serotonin, norepi- such as those who have certain con- 179–183 nephrine, and dopamine.4–6 Specifi- comitant illnesses, have certain genetic 6. Bottiglieri T, Hyland K, Laundry M, et al. Fo- late deficiency, biopterin and monoamine cally, tyrosine can now bind with risk factors for low L-methylfolate lev- metabolism in depression. Psychol Med 1992 tyrosine hydroxylase and ultimately els due to inheritance of low MTHFR Nov;22(4):871–876 be converted into both dopamine and enzyme activity, or are taking certain 7. Gilbody S, Lewis S, Lightfoot T. Methylene- tetrahydrofolate reductase (MTHFR) genetic norepinephrine, and tryptophan can drugs that interfere with L-methylfolate polymorphisms and psychiatric disorders: a now bind with tryptophan hydroxylase formation (Table 1), might also be re- HuGE review. Am J Epidemiol 2007 and ultimately be converted into sponsive to antidepressant augmenta- Jan;165(1):1–13 1–8 8. Gilbody S, Lightfoot T, Shelton T. Is low folate serotonin. tion with L-methylfolate. a risk factor for depression? a meta-analysis and exploration of heterogeneity. J Epidemiol Therapeutic Implications? Summary Community Health 2007 July;61(7):631–637 One practical application of the L-Methylfolate modulates the syn- central action of L-methylfolate may thesis of the monoamines serotonin, BRAINSTORMS is a section of The Journal be for depressed patients who have in- norepinephrine, and dopamine. Some of Clinical Psychiatry aimed at providing adequate monoamine neurotransmitter depressed patients may have their dis- updates of novel concepts emerging from the neurosciences that have relevance to the synthesis, especially if caused by an order or their lack of response to an an- practicing psychiatrist. actual or functional deficiency in brain tidepressant linked to low levels of fo- From the Neuroscience Education Institute L-methylfolate (Table 1).1–8 In such late and L-methylfolate. Research is in Carlsbad, Calif., and the Department of Psychiatry at the University of California cases, administration of L-methylfo- currently working to establish which San Diego. late could theoretically boost mono- patients with depression would be Reprint requests to: Stephen M. Stahl, M.D., Ph.D., Editor, BRAINSTORMS, Neuroscience amine synthesis to the necessary levels the best candidates for L-methylfolate Education Institute, 1930 Palomar Point Way, and either treat depression or boost the treatment. ◆ Ste. 101, Carlsbad, CA 92009. 13541353 PSYCHIATRIST.COM J Clin Psychiatry 69:9, September 2008.
Recommended publications
  • Diosynrhesis of Neopterin, Sepioprerin, Ond Diopterin in Rar Ond Humon Oculor Tissues
    768 INVESTIGATIVE OPHTHALMOLOGY b VISUAL SCIENCE / May 1985 Vol. 26 before and after the addition of beta-glucuronidase.4 ported by the Juvenile Diabetes Foundation and by the University In circumstances where the actual plasma free fluo- of London, Central Research Fund. The HPLC was purchased with an MRC grant to Dr. Michael J. Neal. Submitted for publi- rescein has not been measured, the term "plasma- cation: April 12, 1984. Reprint requests: Dr. P. S. Chahal, Depart- free fluorescence" should be quoted. It is then better ment of Medicine, Hammersmith Hospital, Du Cane Road, London to measure overall fluorescence (fluorescein and the W12 OHS, England. glucuronide metabolite) in protein-free plasma ultra- filtrate and the fluorescence appearing in the ocular References compartments using the same excitor and emission filters. 1. Araie M, Sawa M, Nagataki S, and Mishima S: Aqueous Fluorescein glucuronide is a potential source of humor dynamics in man as studied by oral fluorescein. Jpn J Ophthalmol 24:346, 1980. variability in studies of blood-ocular dynamics using 2. Zeimer RC, Blair NP, and Cunha-Vaz JG: Pharmacokinetic fluorescein. Its exact role has yet to be established. interpretation of vitreous fluorophotometry. Invest Ophthalmol VisSci 24:1374, 1983. Key words: Blood-ocular barriers, diabetes, plasma ultrafil- 3. Chen SC, Nakamura H, and Tamura Z: Studies on metabolite trate, fluorescein glucuronide, fluorescence, protein-binding of fluorescein in rabbit and human urine. Chem Pharmacol Acknowledgments. Technical assistance was given by Dr. Bull 28:1403, 1980. J. Cunningham, Ian Joy, and Margaret Foster. 4. Chen SC, Nakamura H, and Tamura Z: Determination of fluorescein and fluorescein monoglucuronide excreted in urine.
    [Show full text]
  • GCH1 Gene GTP Cyclohydrolase 1
    GCH1 gene GTP cyclohydrolase 1 Normal Function The GCH1 gene provides instructions for making an enzyme called GTP cyclohydrolase 1. This enzyme is involved in the first of three steps in the production of a molecule called tetrahydrobiopterin (BH4). Other enzymes help carry out the second and third steps in this process. Tetrahydrobiopterin plays a critical role in processing several protein building blocks ( amino acids) in the body. For example, it works with the enzyme phenylalanine hydroxylase to convert an amino acid called phenylalanine into another amino acid, tyrosine. Tetrahydrobiopterin is also involved in reactions that produce chemicals called neurotransmitters, which transmit signals between nerve cells in the brain. Specifically, tetrahydrobiopterin is involved in the production of two neurotransmitters called dopamine and serotonin. Among their many functions, dopamine transmits signals within the brain to produce smooth physical movements, and serotonin regulates mood, emotion, sleep, and appetite. Because it helps enzymes carry out chemical reactions, tetrahydrobiopterin is known as a cofactor. Health Conditions Related to Genetic Changes Dopa-responsive dystonia More than 140 mutations in the GCH1 gene have been found to cause dopa-responsive dystonia. This condition is characterized by a pattern of involuntary muscle contractions ( dystonia), tremors, and other uncontrolled movements and usually responds to treatment with a medication called L-Dopa. Dopa-responsive dystonia results when one copy of the GCH1 gene is mutated in each cell. Most GCH1 gene mutations that cause this condition change single amino acids in the GTP cyclohydrolase 1 enzyme. Researchers believe that the abnormal enzyme may interfere with the activity of the normal version of GTP cyclohydrolase 1 that is produced from the copy of the gene with no mutation.
    [Show full text]
  • 34Th International Winter Workshop Clinical, Chemical and Biochemical
    DOI 10.1515/pterid-2015-0007 Pteridines 2015; 26(3): 113–133 Abstracts*) 34th International Winter Workshop Clinical, Chemical and Biochemical Aspects of Pteridines and Related Topics Society for Exploitation of Education and Research in Immunology and Infectious Diseases, Innsbruck, Austria in collaboration with The International Society of Pteridinology and The Austrian Society of Laboratory Medicine and Clinical Chemistry Held in Innsbruck, Tyrol, Austria, February 24th–27th, 2015 Scientific committee: Dietmar Fuchs (Innsbruck), Andrea Griesmacher (Innsbruck), Bohuslav Melichar (Olomouc), Gilbert Reibnegger (Graz), Barbara Strasser (Hall), Guenter Weiss (Innsbruck) and Ernst R. Werner (Innsbruck) Organization: Dietmar Fuchs, Sektion für Biologische Chemie, Biozentrum, Medizinische Universität Innsbruck, Innrain 80, 6020 Innsbruck, Austria, e-mail: [email protected] *)These abstracts have been reproduced directly from the material supplied by the authors, without editorial alteration by the staff of this Journal. Insufficiencies of preparation, grammar, spelling, style, syntax, and usage are the authors’ responsibility. 114 34th International Winter Workshop Circulating neopterin and citrulline concentrations Influence of carbon nanotubes, ZnO and in patients with germ-cell tumors during gold-doped TiO2 nanoparticles on human PBMC chemotherapy in vitro Bartoušková M, Študentová H, Pejpková I, Zezulová M, Adam T, Becker K, Herlin N, Bouhadoun S, Gostner JM, Ueberall F, Schennach Melichar B H, Fuchs D Palacký University Medical School and Teaching Hospital, Olomouc, Divisions of Biological Chemistry and of Medical Biochemistry, Czech Republic Biocenter, Medical University, and Central Institute of Blood ([email protected]) Transfusion and Immunology, University Hospital, Innsbruck, Austria; Au Service des Photons, Atomes et Molécules - Laboratoire Francis Germ-cell tumors are relatively rare neoplasms that affect mostly Perrin, Gif-sur Yvette, France young adults.
    [Show full text]
  • Ability of RBL2H3 Cells to Lower Environmental Tetrahydrobiopterin Concentration 121
    :-! Hasegawa et a/: Ability of RBL2H3 cells to lower environmental tetrahydrobiopterin concentration 121 Ptendines Vol. 11,2000, pp. 121 - 125 Ability of RBL2H3 Cells to Lower Environmental Tetrahydrobiopterin concen­ tration] 2 2 Hiroyuki Hasegawa ." Kazumasa Yamamoto2J, Yoshie Matsuhashi>, Takahumi Miyazawa , Nobuo Nakanishi., 2 :lnd Kazuya OgUI0 ., :Department of Biosciences and 'Biotechnology Research Center, Teikyo University of Science and Technology. Cenohara, Yamanashi 409-0193, and 'Department of Biochemistry, Meikai University School of Dentistry, Sakado, Saitama 350-0248, Japan This research was supported by the Japan Private School Promotion Foundation, and a Grant-in-Aid for Advanced Scientific Research for Bioscience/Biotechnology areas from the Ministry of Education, Science, Sports and Culture of Japan. Introduction outside the cells. These studies were made by measur­ ing serotonin release with RBL2H3 cells, of a mast Tetrahydrobiopterin works as a redox-cofactor cell-like neoplastic cell origin, and serotorun-loaded inside cells for phenylalanine hydroxylase (1), tyrosine PC-12 cells, of a pheochromocytoma origin, both hav­ hydroxylase (2), tryptophan hydroxylase (3, 4), and ni­ ing ability to release monoamines in response to phys­ tric oxide synthetase (5, 6). Other functions oftetrahy­ iological stimulation. These cells have been employed drobiopterin so far proposed are modulation of more in many studies to explore generic functions of mast complex cellular functions such as mitosis (7, 8), apo­ cells and sympathetic neurons. Between these cells, no ptosis (9··11), and exocytotic release of dopamine (12- essential differences were found with respect to the 14) and serotonin (15). Within them, the suggested BH4-response. Therefore, these observations suggest­ stimulation of monoamine release by BH4, first ed that BH4 might work as a signal mediator to regu­ demonstrated in the rat brain using a microdialysis late cellular functions of a wide variety of cells in tis­ technique by Dr.
    [Show full text]
  • The Nitric Oxide System in Peripheral Artery Disease: Connection with Oxidative Stress and Biopterins
    antioxidants Article The Nitric Oxide System in Peripheral Artery Disease: Connection with Oxidative Stress and Biopterins Ahmed Ismaeel 1, Evlampia Papoutsi 1, Dimitrios Miserlis 2 , Ramon Lavado 3 , Gleb Haynatzki 4, George P. Casale 5, William T. Bohannon 6, Robert S. Smith 6, Jack Leigh Eidson 6, Robert Brumberg 7, Aaron Hayson 7, Jeffrey S. Kirk 8, Carlos Castro 8, Ian Sawicki 6, Charalambos Konstantinou 9 , Luke P. Brewster 10, Iraklis I. Pipinos 5,11 and Panagiotis Koutakis 1,* 1 Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL 32304, USA; [email protected] (A.I.); [email protected] (E.P.) 2 Department of Surgery, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; [email protected] 3 Department of Environmental Science, Baylor University, Waco, TX 76798, USA; [email protected] 4 Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE 68198, USA; [email protected] 5 Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA; [email protected] (G.P.C.); [email protected] (I.I.P.) 6 Department of Surgery, Baylor Scott & White Medical Center, Temple, TX 76508, USA; [email protected] (W.T.B.); [email protected] (R.S.S.); [email protected] (J.L.E.); [email protected] (I.S.) 7 Vascular Surgery Associates, Tallahassee, FL 32308, USA; rbrumberg@vsafl.com (R.B.); [email protected] (A.H.) 8 Department of Vascular Surgery, Capital Regional Medical Center, Tallahassee, FL 32308,
    [Show full text]
  • Neurological Aspects of Biopterin Metabolism
    Arch Dis Child: first published as 10.1136/adc.61.2.130 on 1 February 1986. Downloaded from Archives of Disease in Childhood, 1986, 61, 130-137 Neurological aspects of biopterin metabolism I SMITH, R J LEEMING, N P C CAVANAGH, AND K HYLAND Hospital for Sick Children and Institute of Child Health, London, and The General Hospital, Birmingham SUMMARY Plasma total biopterin concentration was measured by bioassay in 59 infants with hyperphenylalaninaemia and in 50 children with developmental regression and or movement disorder with normal plasma phenylalanine concentrations. In infants with raised phenylalanine concentrations plasma biopterin concentrations were significantly raised in proportion to the phenylalanine values. Five patients had plasma biopterin concentrations at the extremes of the range, and of these two had defective biopterin metabolism. One with low plasma biopterin concentration apparently had a partial defect of biopterin synthesis but died before investigations were complete. One with high plasma biopterin concentration, even when phenylalanine concentrations had fallen to the normal range, had dihydropteridine reductase deficiency. In this patient concentrations of homovanillic acid and 5-hydroxyindolacetic acid in the cerebrospinal fluid (CSF) were severely reduced. In children without hyperphenylalaninaemia plasma biopterin concentrations were normal. Twenty two patients were subjected to lumbar puncture, of whom six with developmental regression without movement disorder had normal CSF biopterin concentrations, and 11 withcopyright. movement disorder other than torsion dystonia had significantly lower CSF biopterin concentrations. Five patients with torsion dystonia had normal biopterin concentrations. Tetrahydrobiopterin is the essential cofactor for three hydroxylation reactions, the conversion of GTP http://adc.bmj.com/ phenylalanine to tyrosine, tyrosine to L-dopa, and tryptophan to 5-hydroxytryptophan.' These last two B, BH2 j reactions are the rate limiting steps of catecholamine Ne 2P3 --- NeH2 and serotonin synthesis.
    [Show full text]
  • GTP-Cyclohydrolase I Deficiency Presenting
    Dayasiri et al. BMC Pediatrics (2019) 19:199 https://doi.org/10.1186/s12887-019-1580-x CASE REPORT Open Access GTP-Cyclohydrolase I deficiency presenting as malignant hyperphenylalaninemia, recurrent hyperthermia and progressive neurological dysfunction in a South Asian child – a case report Kavinda Chandimal Dayasiri1*, Nayani Suraweera1, Deepal Nawarathne1, U. E. Senanayake2, B. K. T. P. Dayanath2, Eresha Jasinge1 and Kumudu Weerasekara1 Abstract Background: Tetrahydrobiopterin (BH4) deficiencies are disorders affecting phenylalanine homeostasis, and catecholamine and serotonin biosynthesis. GTP-Cyclohydrolase I deficiency (OMIM 600225) is an extremely rare variant of inborn error of BH4 synthesis which exists in recessive and dominant forms. The recessive form presents with complex neurological and autonomic dysfunction whilst the dominant form presents as Dopa-responsive dystonia. Case presentation: We describe a South Asian child who initially presented with neurological dysfunction and recurrent vomiting and later developed recurrent hyperthermia for several months. The child did not have screening for hyperphenylalaninemia at birth and was found to have marked hyperphenylalaninemia after clinical presentation at 5 months. Further evaluation revealed BH4 deficiency. GTP-Cyclohydrolase I deficiency (GTPCH) was identified based on normal dihydro pteridine reductase activity and markedly reduced neopterin in dried blood spot test. After institution of treatment and control of high phenylalanine levels, clinical deterioration decelerated yet with noticeable residual neurological dysfunction. Conclusion: To authors’ knowledge, this is first report of GTPCH deficiency in a South Asian child. The case highlights practical issues regarding diagnosis of GTPCH deficiency, especially in countries without broader universal newborn screening programs for early detection of inherited metabolic disorders. Testing for GTPCH deficiency should be considered for patients with unexplained neurological and autonomic symptoms following initial metabolic screen.
    [Show full text]
  • Tetrahydrobiopterin Is Present in High Quantity in Human Milk and Has a Vasorelaxing Effect on Newborn Rat Mesenteric Arteries
    0031-3998/11/6904-0325 Vol. 69, No. 4, 2011 PEDIATRIC RESEARCH Printed in U.S.A. Copyright © 2011 International Pediatric Research Foundation, Inc. Tetrahydrobiopterin Is Present in High Quantity in Human Milk and Has a Vasorelaxing Effect on Newborn Rat Mesenteric Arteries ANGELA WEINMANN, MARTIN POST, JINGYI PAN, MAHROUKH RAFII, DEBORAH L. O’CONNOR, SHARON UNGER, PAUL PENCHARZ, AND JAQUES BELIK Department of Pediatrics [A.W.], Santa Maria Federal University, Santa Maria, Rio Grande do Sul, 97.105-900, Brazil; Physiology and Experimental Medicine Program [M.P., J.P., M.R., D.O., P.P., J.B.], Department of Pediatrics [S.U., P.P., J.B.], The Hospital for Sick Children, Toronto, Ontario, M5G 1X8 Canada ABSTRACT: Breast milk reduces the incidence of necrotizing milk that contribute to its NEC preventive properties may enterocolitis (NEC). BH4 is a cofactor for endothelial NOS (eNOS). allow for the further refinement of infant formulas to attain Reduced BH4 levels, or its oxidation to dihydrobiopterin (BH2), similar beneficial effects as human milk. uncouple eNOS resulting in formation of reactive oxygen species Biopterins are present in breast milk and are previously (ROS) that have been implicated in the pathogenesis of NEC. We shown to enhance the mesenteric blood flow (5). Previous evaluated colostrum and mature breast milk, as well as infant for- reports suggest that when compared with bovine-derived for- mula, BH4 and BH2 content. In addition, we tested the BH4 effect on the newborn rat mesenteric arterial vascular tone. BH4 and BH2 mulas, breast milk has a higher content of total biopterins (6).
    [Show full text]
  • Defect in Pyruvoyl-Tetrahydropterin Synthase
    Defect in pyruvoyl-tetrahydropterin synthase Author: Professor Jean-Louis Dhondt1 Creation Date: April 2001 Updates: May 2003 February 2005 Scientific Editor: Professor Jean-Marie Saudubray 1Centre régional de dépistage néonatal, 68 Rue Sylvere Verhulst, 59000 Lille, France. [email protected] Abstract Keywords Disease name and synonyms Excluded diseases Diagnostic criteria/definition Differential diagnosis Prevalence Clinical description Management including treatment Diagnostic methods Genetic counseling Antenatal diagnosis References Abstract 6-pyruvoyl-tetrahydropterin synthase (PTPS) deficiency, an autosomal recessive genetic disorder, is one of the causes of malignant hyperphenylalaninemia due to tetrahydrobiopterin deficiency. Not only does tetrahydrobiopterin deficiency cause hyperphenylalaninemia, it is also responsible for defective neurotransmission of monoamines because of malfunctioning tyrosine and tryptophan hydroxylases, both tetrahydrobiopterin-dependent hydroxylases. PTPS deficiency should be suspected in all infants with a positive neonatal screening test for phenylketonuria, especially when hyperphenylalaninemia is moderate. The most effective way to diagnose the disorder is to measure pteridine levels in urine and to confirm the result by measuring neurotransmitters 5-hydroxyindolacetic acid (5-HIAA) and homovanillic acid (HVA) in cerebrospinal fluid and with by an oral tetrahydrobiopterin-loading test (20 mg/kg). When left untreated, the deficiency causes neurological signs at age 4 or 5 months, although clinical signs are often obvious from birth. The principal symptoms include psychomotor retardation, tonus disorders, convulsions, drowsiness, irritability, abnormal movements, hyperthermia, hypersalivation and difficulty swallowing. Treatment attempts to bring phenylalaninemia levels back to normal (diet with restricted phenylalanine intake or prescription of tetrahydrobiopterin) and to restore normal monoaminergic neurotransmission by administering precursors (L-dopa/carbidopa and 5-hydroxytryptophan).
    [Show full text]
  • Biopterin in Parkinson's Disease
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.50.1.85 on 1 January 1987. Downloaded from Journal of Neurology, Neurosurgery, and Psychiatry 1987;50:85-87 Short report Biopterin in Parkinson's disease A P MOORE,* P 0 BEHAN,* W JACOBSON,t W L F ARMAREGOt From the Institute ofNeurological Sciences, Southern General Hospital, Glasgow,* Department ofPaediatrics, University ofCambridge, Addenbrooke's Hospital, Cambridge,t Department ofBiochemistry, John Curtin School ofMedical Research, The Australian National University,: Canberra, Australia SUMMARY Tetrahydrobiopterin is an essential co-factor in the natural synthesis of dopamine. Oral tetrahydrobiopterin was given in small doses to four patients with early Parkinson's disease but had no discernible effect. The major pathology identified in Parkinson's disease treated with dopamine. Other workers have also doc- is a loss of nigrostriatal dopamine cells and a decrease umented a similar mild and short-lived effect of tetra- in striatal dopamine.' The low dopamine levels can be hydrobiopterin.6 The therapeutic trials producing corrected by giving levodopa, which is converted to benefit used a single-shot oral regime in patients who Protected by copyright. dopamine in the brain, and its administration reverses had already been treated with conventional dopami- many of the clinical features of Parkinsonism. nergic preparations. Unfortunately, although this replacement therapy is In a randomised double-blind placebo controlled now conventional, there are many problems associ- crossover trial, we investigated the effects of repeated ated with its use so that it is important to consider small doses of tetrahydrobiopterin in Parkinsonian alternative approaches. patients who had received no previous dopaminergic Tetrahydrobiopterin is an essential co-factor of therapy.
    [Show full text]
  • Defect in GTP-Cyclohydrolase
    Defect in GTP-cyclohydrolase Author: Professor Jean-Louis Dhondt 1 Creation Date: April 2001 Updates: May 2003 February 2005 Scientific Editor: Professor Jean-Marie Saudubray 1Centre régional de dépistage néonatal, 68 Rue Sylvere Verhulst, 59000 Lille, France. [email protected] Abstract Keywords Disease name and synonyms Excluded diseases Diagnostic criteria/definition Differential diagnosis Prevalence Clinical description Management including treatment Diagnostic methods Genetic counseling Antenatal diagnosis References Abstract GTP-cyclohydrolase I deficiency, an autosomal recessive genetic disorder, is one of the causes of malignant hyperphenylalaninemia due to tetrahydrobiopterin deficiency. Not only does tetrahydrobiopterin deficiency cause hyperphenylalaninemia, it is also responsible for defective neurotransmission of monoamines because of malfunctioning tyrosine and tryptophan hydroxylases, both tetrahydrobiopterin- dependent hydroxylases. GTP-cyclohydrolase I deficiency should be suspected in all infants with a positive neonatal screening test for phenylketonuria, especially when hyperphenylalaninemia is moderate. The most effective way to diagnose the disorder is to measure pteridine levels in urine and to confirm the result by measuring neurotransmitters (5-hydroxyindolacetic acid, homovanillic acid) in cerebrospinal fluid and with an oral tetrahydrobiopterin-loading test (20 mg/kg). When left untreated, the deficiency causes neurological signs at age 4 or 5 months, although clinical signs are often obvious
    [Show full text]
  • Consensus Guideline for the Diagnosis and Treatment of Tetrahydrobiopterin
    Opladen et al. Orphanet Journal of Rare Diseases (2020) 15:126 https://doi.org/10.1186/s13023-020-01379-8 REVIEW Open Access Consensus guideline for the diagnosis and treatment of tetrahydrobiopterin (BH4) deficiencies Thomas Opladen1*†, Eduardo López-Laso2†, Elisenda Cortès-Saladelafont3,4†, Toni S. Pearson5, H. Serap Sivri6, Yilmaz Yildiz6, Birgit Assmann1, Manju A. Kurian7,8, Vincenzo Leuzzi9, Simon Heales10, Simon Pope10, Francesco Porta11, Angeles García-Cazorla3, Tomáš Honzík12, Roser Pons13, Luc Regal14, Helly Goez15, Rafael Artuch16, Georg F. Hoffmann1, Gabriella Horvath17, Beat Thöny18, Sabine Scholl-Bürgi19, Alberto Burlina20, Marcel M. Verbeek21, Mario Mastrangelo9, Jennifer Friedman22, Tessa Wassenberg14, Kathrin Jeltsch1†, Jan Kulhánek12*†, Oya Kuseyri Hübschmann1† and on behalf of the International Working Group on Neurotransmitter related Disorders (iNTD) Abstract Background: Tetrahydrobiopterin (BH4) deficiencies comprise a group of six rare neurometabolic disorders characterized by insufficient synthesis of the monoamine neurotransmitters dopamine and serotonin due to a disturbance of BH4 biosynthesis or recycling. Hyperphenylalaninemia (HPA) is the first diagnostic hallmark for most BH4 deficiencies, apart from autosomal dominant guanosine triphosphate cyclohydrolase I deficiency and sepiapterin reductase deficiency. Early supplementation of neurotransmitter precursors and where appropriate, treatment of HPA results in significant improvement of motor and cognitive function. Management approaches differ across the world
    [Show full text]