RESEARCH ARTICLE The LINC complex transmits integrin- dependent tension to the nuclear lamina and represses epidermal differentiation Emma Carley1†, Rachel M Stewart1†, Abigail Zieman2†, Iman Jalilian1, Diane E King3, Amanda Zubek4, Samantha Lin2, Valerie Horsley2,4*, Megan C King1,2* 1Department of Cell Biology, Yale School of Medicine, New Haven, United States; 2Department of Molecular, Cell and Developmental Biology, Yale University, New Haven, United States; 3Sunnycrest Bioinformatics, Flemington, United States; 4Department of Dermatology, Yale School of Medicine, New Haven, United States Abstract While the mechanisms by which chemical signals control cell fate have been well studied, the impact of mechanical inputs on cell fate decisions is not well understood. Here, using the well-defined system of keratinocyte differentiation in the skin, we examine whether and how direct force transmission to the nucleus regulates epidermal cell fate. Using a molecular biosensor, we find that tension on the nucleus through linker of nucleoskeleton and cytoskeleton (LINC) complexes requires integrin engagement in undifferentiated epidermal stem cells and is released during differentiation concomitant with decreased tension on A-type lamins. LINC complex ablation in mice reveals that LINC complexes are required to repress epidermal differentiation in vivo and in vitro and influence accessibility of epidermal differentiation genes, suggesting that force transduction from engaged integrins to the nucleus plays a role in maintaining keratinocyte *For correspondence: progenitors. This work reveals a direct mechanotransduction pathway capable of relaying adhesion-
[email protected] (VH); specific signals to regulate cell fate.
[email protected] (MCK) †These authors contributed equally to this work Competing interest: See Introduction page 22 Physical forces and the architecture of the extracellular environment are an emerging area of cell Funding: See page 22 fate regulation (Discher et al., 2009).