Enhancing Separation of Concerns, Parallelism, and Formalism In

Total Page:16

File Type:pdf, Size:1020Kb

Enhancing Separation of Concerns, Parallelism, and Formalism In Enhancing Separation of Concerns, Parallelism, and Formalism in Distributed Software Deployment with Madeus Maverick Chardet, Hélène Coullon, Christian Pérez, Dimitri Pertin, Charlène Servantie, Simon Robillard To cite this version: Maverick Chardet, Hélène Coullon, Christian Pérez, Dimitri Pertin, Charlène Servantie, et al.. En- hancing Separation of Concerns, Parallelism, and Formalism in Distributed Software Deployment with Madeus. 2020. hal-02737859 HAL Id: hal-02737859 https://hal.inria.fr/hal-02737859 Preprint submitted on 2 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Enhancing Separation of Concerns, Parallelism, and Formalism in Distributed Software Deployment with Madeus Maverick Chardeta, Hélène Coullona, Christian Perezb, Dimitri Pertina, Charlène Servantiea, Simon Robillarda aIMT Atlantique, Inria, LS2N, UBL, F-44307 Nantes, France bUniv Lyon, Inria, EnsL, UCBL, CNRS, LIP, Lyon, France Abstract Complex distributed software systems are built by connecting software components across a large number of physical or virtual machines. Deploying such systems reliably and efficiently is a difficult task that involves multiple actors. Coordination mechanisms and programming support are needed. In this paper, we introduce Madeus, a component- based model that allows efficient and highly parallel deployment procedures for distributed software through a declarative approach. We describe the formal model of Madeus, its performance prediction model, and its concrete language and prototype. We evaluated Madeus on a complex real-world use case, the deployment of OpenStack, and measured a deployment time reduced by up to 71% compared to existing solutions. Keywords: Distributed software; deployment; component models; parallelism; separation of concerns; formal methods 1. Introduction systems. This last point is usually neglected in the litera- ture. As a result, complex systems such as OpenStack can Distributed software is designed in a modular archi- require in excess of one hour to deploy with existing solu- tectural style where each component (a term that, in this tions that do not take full advantage of the distributed na- paper, refers indifferently to a module, a service, or a mi- ture of the underlying hardware. This becomes especially croservice) is responsible for a specific part of the over- problematic in the context of continuous integration, with all objective, and collaborates at runtime with other com- systems being deployed up to several hundreds of times ponents that are potentially hosted on distant machines. every day. With the advents of IT hardware, distributed software has For these reasons, programming models and tools need become commonplace, whether it be executed in the cloud, to be developed to facilitate documented, verifiable and on personal computers, mobile phones or objects. efficient deployment procedures. To this end, we propose However, deploying a large distributed software system Madeus, a model that relies on a declarative description on distributed infrastructures poses multiple challenges. of dependencies to automate the execution of deployments Firstly, deployment involves a variety of actors with dif- with a high level of parallelism, both between components ferent roles and areas of expertise, from developers who and with them. Prior to execution, Madeus deployments are responsible for designing and coding the components, can also be analyzed for the purpose of verification and to sysadmins and sysops who are responsible for maintain- performance estimation, making it a useful tool during the ing, configuring, and testing multi-user computer systems, conception of the deployment. with devops engineers working between them to oversee In this paper, among the difficulties related to the de- code releases and deployments. Secondly, deployment is ployment of distributed software systems, we leave aside a complex task: components must be chosen, configured the mapping between pieces of software and the nodes of and mapped to infrastructure nodes, dependencies have to infrastructure, an optimization problem that is not in the be solved, virtualization layers handled, etc. The process scope of this paper [1,2,3,4,5]. Indeed, we restrict the is error-prone, and difficult to test because faults can be scope of this paper to the software commissioning part of caused by very specific hardware or software conditions the deployment, i.e., the procedure responsible for lead- in a heterogeneous environment. Lastly, deployment is an ing the set of components to a valid running state while often time-consuming process, owing to the scale of the guaranteeing correct configurations and interactions. In particular, three metrics are considered to measure the Email addresses: [email protected] (Maverick quality of automation of distributed software commission- Chardet), [email protected] (Hélène Coullon), ing: (1) separation of concerns between the different actors [email protected] (Christian Perez), of the commissioning procedure to enhance productivity, [email protected] (Dimitri Pertin), [email protected] (Charlène Servantie), maintainability and reusability of deployment code; (2) [email protected] (Simon Robillard) efficiency of the commissioning procedure in terms of par- Preprint submitted to Journal of Systems and Software April 30, 2020 allelism expressiveness; and (3) formalization of the solu- deployment is automated and written once. However, be- tion, such that formal properties can be proven on a given cause of the specificities of each infrastructure and applica- commissioning procedure. The contribution of this paper tion, these tools need to be parametric. Finding suitable improves upon the related work by succeeding in the com- scripts and images is often a challenge. For this reason, bination of these three metrics. deployment coordination procedures remain difficult even We have previously presented Madeus in [6]. This for a single component. When considering a complete dis- journal paper brings the following additional contributions tributed software composed of a set of components, the compared to our previous publication: picture becomes even more complex, because the commis- sioning procedures of various components, designed by dif- • an extended study of the related work (Section3); ferent developers and interacting with each other, must be • a concrete language and a prototype (presented in coordinated. For instance, when installing a very basic Section4, along with the overview of Madeus); Apache/MariaDB system, additional documentation is re- quired2 to combine the components. The commissioning • a revised and streamlined formal model that offers of Spark on top of Yarn3 is another example. This com- stronger guarantees (Section5); plex coordination is usually the work of a devops engineer. With the increasing complexity of distributed software de- • a theoretical performance prediction model (Section6); ployment, the number of languages and tools for the dev- • an extended reproducible evaluation on both syn- ops community has grown considerably in recent years. thetic use cases (Section7) and one large use case Efficiency is an often neglected aspect of commission- on real infrastructures (Section8). ing, but let us show that its importance should not to be underestimated. First, the commissioning of complex distributed software is very time-consuming. For example 2. Motivations OpenStack (Section8) can require in excess of one hour to deploy, because existing solutions do not favor paral- Distributed software deployment occurs between the lelism, and therefore exploit only a fraction of the capa- development of components (functional part) and the ex- bilities of the infrastructures that they target. Second, ecution of the distributed software on the infrastructure although common sense would dictate that commissioning (management part). As a result, commissioning relies on occurs only once, this is not the case. System adminis- information about both the behavior of the components trators perform the commissioning process every time a and the infrastructure on which they will be executed, a new machine or new cluster is installed in their infras- frontier that is often called the DevOps domain. Note that tructure, when errors occur, or when updates are needed. our definition of software commissioning does not include Furthermore, with Continuous Integration (CI), Continu- placement and scheduling optimization problems, nor re- ous Delivery (CD), and Continuous Deployment (CDep) of configuration aspects of the distributed software manage- companies, research or open source projects, software com- ment. missioning is executed repeatedly in order to test new fea- Commissioning distributed software requires coordina- tures continuously. For instance, the traces of the Open- ted interactions with various interfaces. Firstly, compo- Stack Continuous Integration platform4 show that over a nents have control interfaces provided
Recommended publications
  • Virtual Machine Technologies and Their Application in the Delivery of ICT
    Virtual Machine Technologies and Their Application In The Delivery Of ICT William McEwan accq.ac.nz n Christchurch Polytechnic Institute of Technology Christchurch, New Zealand [email protected] ABSTRACT related areas - a virtual machine or network of virtual machines can be specially configured, allowing an Virtual Machine (VM) technology was first ordinary user supervisor rights, and it can be tested implemented and developed by IBM to destruction without any adverse effect on the corporation in the early 1960's as a underlying host system. mechanism for providing multi-user facilities This paper hopes to also illustrate how VM in a secure mainframe computing configurations can greatly reduce our dependency on environment. In recent years the power of special purpose, complex, and expensive laboratory personal computers has resulted in renewed setups. It also suggests the important additional role interest in the technology. This paper begins that VM and VNL is likely to play in offering hands-on by describing the development of VM. It practical experience to students in a distance e- discusses the different approaches by which learning environment. a VM can be implemented, and it briefly considers the advantages and disadvantages Keywords: Virtual Machines, operating systems, of each approach. VM technology has proven networks, e-learning, infrastructure, server hosting. to be extremely useful in facilitating the Annual NACCQ, Hamilton New Zealand July, 2002 www. Annual NACCQ, Hamilton New Zealand July, teaching of multiple operating systems. It th offers an alternative to the traditional 1. INTRODUCTION approaches of using complex combinations Virtual Machine (VM) technology is not new. It was of specially prepared and configured OS implemented on mainframe computing systems by the images installed via the network or installed IBM Corporation in the early 1960’s (Varian 1997 pp permanently on multiple partitions or on 3-25, Gribben 1989 p.2, Thornton 2000 p.3, Sugarman multiple physical hard drives.
    [Show full text]
  • Virtual Alpha User Guide for Avanti, Avantiflex, & Freeaxp 05-JAN-2018 Version 3.0: This Manual Covers All Releases of Avanti™, Avantiflex™ and Freeaxp™
    Migration Specialties International, Inc. 217 West 2nd Street, Florence, CO 81226-1403 +1 719-784-9196 E-mail: [email protected] www.MigrationSpecialties.com Continuity in Computing Virtual Alpha User Guide for Avanti, AvantiFlex, & FreeAXP 05-JAN-2018 Version 3.0: This manual covers all releases of Avanti™, AvantiFlex™ and FreeAXP™. This manual describes how to install and use Avanti, AvantiFlex, and FreeAXP, Migration Specialties' AlphaServer 400 hardware emulators. AvantiFlex and Avanti are commercial products that require purchase of a product license. AvantiFlex and Avanti include 30 days of manufacturer support after purchase and the option to buy an extended support contract. FreeAXP can be used for personal and commercial purposes. FreeAXP is unsupported without purchase of a support contract. If you have questions or problems with FreeAXP and have not purchased a support contract, visit the FreeAXP forum at the OpenVMS Hobbyist web site. Avanti & Avanti Flex Links Product Info: http://www.migrationspecialties.com/Emulator-Alpha.html User Guide: http://www.migrationspecialties.com/pdf/VirtualAlpha_UserGuide.pdf Release Notes: http://www.migrationspecialties.com/pdf/VirtualAlpha_ReleaseNotes.pdf License: http://www.migrationspecialties.com/pdf/AvantiLicense.pdf SPD: http://www.migrationspecialties.com/pdf/Avanti_SPD.pdf Pricing Guide: http://www.migrationspecialties.com/pdf/VirtualAlphaPricingGuide.pdf FreeAXP Links Product Info: http://www.migrationspecialties.com/FreeAXP.html User Guide: http://www.migrationspecialties.com/pdf/VirtualAlpha_UserGuide.pdf Release Notes: http://www.migrationspecialties.com/pdf/VirtualAlpha_ReleaseNotes.pdf License: http://www.migrationspecialties.com/pdf/FreeAXP_License.pdf SPD: http://www.migrationspecialties.com/pdf/FreeAXP_SPD.pdf User Forum: http://www.vmshobbyist.com/forum/viewforum.php?forum_id=163 Download: http://www.migrationspecialties.com/FreeAXP.html Copyright 2018, Migration Specialties.
    [Show full text]
  • Virtualization Technologies Overview Course: CS 490 by Mendel
    Virtualization technologies overview Course: CS 490 by Mendel Rosenblum Name Can boot USB GUI Live 3D Snaps Live an OS on mem acceleration hot of migration another ory runnin disk alloc g partition ation system as guest Bochs partially partially Yes No Container s Cooperati Yes[1] Yes No No ve Linux (supporte d through X11 over networkin g) Denali DOSBox Partial (the Yes No No host OS can provide DOSBox services with USB devices) DOSEMU No No No FreeVPS GXemul No No Hercules Hyper-V iCore Yes Yes No Yes No Virtual Accounts Imperas Yes Yes Yes Yes OVP (Eclipse) Tools Integrity Yes No Yes Yes No Yes (HP-UX Virtual (Integrity guests only, Machines Virtual Linux and Machine Windows 2K3 Manager in near future) (add-on) Jail No Yes partially Yes No No No KVM Yes [3] Yes Yes [4] Yes Supported Yes [5] with VMGL [6] Linux- VServer LynxSec ure Mac-on- Yes Yes No No Linux Mac-on- No No Mac OpenVZ Yes Yes Yes Yes No Yes (using Xvnc and/or XDMCP) Oracle Yes Yes Yes Yes Yes VM (manage d by Oracle VM Manager) OVPsim Yes Yes Yes Yes (Eclipse) Padded Yes Yes Yes Cell for x86 (Green Hills Software) Padded Yes Yes Yes No Cell for PowerPC (Green Hills Software) Parallels Yes, if Boot Yes Yes Yes DirectX 9 Desktop Camp is and for Mac installed OpenGL 2.0 Parallels No Yes Yes No partially Workstati on PearPC POWER Yes Yes No Yes No Yes (on Hypervis POWER 6- or (PHYP) based systems, requires PowerVM Enterprise Licensing) QEMU Yes Yes Yes [4] Some code Yes done [7]; Also supported with VMGL [6] QEMU w/ Yes Yes Yes Some code Yes kqemu done [7]; Also module supported
    [Show full text]
  • State of the Port to X86-64
    OpenVMS State of the Port to x86-64 October 6, 2017 1 Executive Summary - Development The Development Plan consists of five strategic work areas for porting the OpenVMS operating system to the x86-64 architecture. • OpenVMS supports nine programming languages, six of which use a DEC-developed proprietary backend code generator on both Alpha and Itanium. A converter is being created to internally connect these compiler frontends to the open source LLVM backend code generator which targets x86-64 as well as many other architectures. LLVM implements the most current compiler technology and associated development tools and it provides a direct path for porting to other architectures in the future. The other three compilers have their own individual pathways to the new architecture. • Operating system components are being modified to conform to the industry standard AMD64 ABI calling conventions. OpenVMS moved away from proprietary conventions and formats in porting from Alpha to Itanium so there is much less work in these areas in porting to x86-64. • As in any port to a new architecture, a number of architecture-defined interfaces that are critical to the inner workings of the operating system are being implemented. • OpenVMS is currently built for Alpha and Itanium from common source code modules. Support for x86-64 is being added, so all conditional assembly directives must be verified. • The boot manager for x86-64 has been upgraded to take advantage of new features and methods which did not exist when our previous implementation was created for Itanium. This will streamline the entire boot path and make it more flexible and maintainable.
    [Show full text]
  • QEMU As a Platform for PLC Virtualization an Analysis from a Cyber Security Perspective
    QEMU as a platform for PLC virtualization An analysis from a cyber security perspective HANNES HOLM, MATS PERSSON FOI Swedish Defence Research Agency Phone: +46 8 555 030 00 www.foi.se FOI-R--4576--SE SE-164 90 Stockholm Fax: +46 8 555 031 00 ISSN 1650-1942 April 2018 Hannes Holm, Mats Persson QEMU as a platform for PLC virtualization An analysis from a cyber security perspective Bild/Cover: Hannes Holm FOI-R--4576--SE Titel QEMU as a platform for PLC virtualization Title Virtualisering av PLC:er med QEMU Rapportnr/Report no FOI-R--4576--SE Månad/Month April Utgivningsår/Year 2018 Antal sidor/Pages 36 ISSN 1650-1942 Kund/Customer MSB Forskningsområde 4. Informationssäkerhet och kommunikation FoT-område Projektnr/Project no E72086 Godkänd av/Approved by Christian Jönsson Ansvarig avdelning Ledningssytem Detta verk är skyddat enligt lagen (1960:729) om upphovsrätt till litterära och konstnärliga verk, vilket bl.a. innebär att citering är tillåten i enlighet med vad som anges i 22 § i nämnd lag. För att använda verket på ett sätt som inte medges direkt av svensk lag krävs särskild överenskommelse. This work is protected by the Swedish Act on Copyright in Literary and Artistic Works (1960:729). Citation is permitted in accordance with article 22 in said act. Any form of use that goes beyond what is permitted by Swedish copyright law, requires the written permission of FOI. FOI-R--4576--SE Sammanfattning IT-säkerhetsutvärderingar är ofta svåra att genomföra inom operativa industriella informations- och styrsystem (ICS) då de medför risk för avbrott, vilket kan få mycket stor konsekvens om tjänsten som ett system realiserar är samhällskritisk.
    [Show full text]
  • VAX MP Technical Overview
    To the light of extinguished STAR VAX MP A multiprocessor VAX simulator Technical Overview Sergey Oboguev [email protected] Initial edition: November 21, 2012 Last update: December 31, 2012 (rev. 3) Content and intended audience: This document describes internal design of VAX MP multiprocessor simulator. It is intended for VAX MP developers or those interested in VAX MP internal architecture, not for end users. End users should refer to “VAX MP OpenVMS User Manual”. This document discusses VAX MP design principles and decisions, key problems met during VAX MP design and implementation, their possible solutions and rationales for chosen and rejected solutions. The document does not attempt to describe VAX MP internal interfaces, data structures or other internal details, since that would have required a much longer document. Only a brief description is made of some basic interfaces introduced in the portability layer and key interfaces changed compared to the original uniprocessor SIMH, as well as interfaces relevant for modifying SIMH virtual device handlers for multiprocessing environment. 2 Introduction VAX MP is a derivative variant of popular SIMH simulator1 that extends original SIMH to simulate multiprocessor VAX system. The intent of VAX MP is to run OpenVMS and perhaps in the future also BSD Unix in SMP (symmetric shared-memory multiprocessor) mode. In technical parlance this is also known as SMP virtualization. VAX MP targets primarily hobbyist use of OpenVMS and possibly BSD Unix for the purposes of retro- computing, i.e. preservation of computer history and the past of computer and software technology. While the intent of VAX MP is to provide reasonably stable SMP VAX system simulation environment for hobbyist purposes, multiprocessing poses unique challenges to quality assurance, as explained below – challenges that go well beyond the resources available within a single-developer free-time non- commercial project.
    [Show full text]
  • SIMH FAQ 6-May-2019
    SIMH FAQ 6-May-2019 COPYRIGHT NOTICE The following copyright notice applies to the SIMH source, binary, and documentation: Original code published in 1993-2005, written by Robert M Supnik Copyright (c) 1993-2005, Robert M Supnik Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Except as contained in this notice, the name of Robert M Supnik shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization from Robert M Supnik. 1 GENERAL QUESTIONS 1.1 WHAT IS SIMH? 1.2 WHY WAS SIMH WRITTEN? 1.3 WHAT IS THE HISTORY OF SIMH? 1.4
    [Show full text]
  • VAX Solution for ANO Plant Process Computer Station Info
    VAX Solution for ANO Plant Process Computer Station Info ANO1 – B&W Two Loop PWR Once Through Steam Generators Power: 2568 MWt / 883 MWe Heat Sink – Lake Dardanelle Commercial Operation: 12/19/74 ANO2 – CE Two Loop PWR U-Tube Steam Generators Power: 3026 MWt / 1040 MWe Heat Sink - Cooling Tower (Lake/Closed) Commercial Operation: 03/26/80 Arkansas Nuclear One has been steadily improving Unit 1 and Unit 2 Simulators over the last several years with upgrades and improvements in: Simulator Executive, I/O Replacement, Model Upgrades …and having great success! Yet risk to PIs exist due to legacy systems… …one being our early 1990s vintage Plant Monitoring Systems (PMS) on DEC VAX 4000 series hardware and legacy VMS 5.5 Operating System Legacy System challenges: Risk of simulator failure or availability delays due to service lifetime of components. VAX spare parts availability and repair options limited and with much higher cost-to-value position than modern technology solutions. Legacy System challenges: Declining access to technical associates and vendors with deep knowledge of legacy hardware and software due to age of solutions Plant PMS computer upgrades several years away, because… Legacy System challenges: …DEC and our PMS software vendors made a solid workhorse of a solution Improvement Opportunity: Identify options for rehosting PMS solution on virtual VAX technologies Aware that industry, for over a decade, has had mature commercial offerings from a few vendors, and also open source emulators to preserve VAX investments. What we were able to accomplish: Successfully researched and tested SimH software as an open source option for rehosting our Unit 1 and Unit 2 Simulator PMS servers onto virtual VAXes running in a modern hardware and software environment.
    [Show full text]
  • The Computer History Simulation Project
    The Computer History Simulation Project The Computer History Simulation Project The Computer History Simulation Project is a loose Internet-based collective of people interested in restoring historically significant computer hardware and software systems by simulation. The goal of the project is to create highly portable system simulators and to publish them as freeware on the Internet, with freely available copies of significant or representative software. Simulators SIMH is a highly portable, multi-system simulator. ● Download the latest sources for SIMH (V3.5-1 updated 15-Oct-2005 - see change log). ● Download a zip file containing Windows executables for all the SIMH simulators. The VAX and PDP-11 are compiled without Ethernet support. Versions with Ethernet support are available here. If you download the executables, you should download the source archive as well, as it contains the documentation and other supporting files. ● If your host system is Alpha/VMS, and you want Ethernet support, you need to download the VMS Pcap library and execlet here. SIMH implements simulators for: ● Data General Nova, Eclipse ● Digital Equipment Corporation PDP-1, PDP-4, PDP-7, PDP-8, PDP-9, PDP-10, PDP-11, PDP- 15, VAX ● GRI Corporation GRI-909 ● IBM 1401, 1620, 1130, System 3 ● Interdata (Perkin-Elmer) 16b and 32b systems ● Hewlett-Packard 2116, 2100, 21MX ● Honeywell H316/H516 ● MITS Altair 8800, with both 8080 and Z80 ● Royal-Mcbee LGP-30, LGP-21 ● Scientific Data Systems SDS 940 Also available is a collection of tools for manipulating simulator file formats and for cross- assembling code for the PDP-1, PDP-7, PDP-8, and PDP-11.
    [Show full text]
  • Technical Notes All Changes in Fedora 13
    Fedora 13 Technical Notes All changes in Fedora 13 Edited by The Fedora Docs Team Copyright © 2010 Red Hat, Inc. and others. The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-sa/3.0/. The original authors of this document, and Red Hat, designate the Fedora Project as the "Attribution Party" for purposes of CC-BY-SA. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version. Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law. Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity Logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries. For guidelines on the permitted uses of the Fedora trademarks, refer to https:// fedoraproject.org/wiki/Legal:Trademark_guidelines. Linux® is the registered trademark of Linus Torvalds in the United States and other countries. Java® is a registered trademark of Oracle and/or its affiliates. XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries. All other trademarks are the property of their respective owners. Abstract This document lists all changed packages between Fedora 12 and Fedora 13.
    [Show full text]
  • VAX MP a Multiprocessor VAX Simulator
    VAX MP A multiprocessor VAX simulator OpenVMS user manual Sergey Oboguev [email protected] September 12, 2012 Legal notice A VAX MP is a derived work developed initially by Sergey Oboguev, based on SIMH project by Robert Supnik. As such it is covered by legal terms consisting of two parts, one covering the original SIMH codebase, and the other part covering changes to SIMH for VAX MP. Legal terms for the original SIMH are reproduced below, as found in SIMH files: Copyright (c) 1993-2008, Robert M Supnik Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Except as contained in this notice, the name of Robert M Supnik shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization from Robert M Supnik.
    [Show full text]
  • Emulation – a Viable Preservation Strategy
    Emulation – a viable preservation strategy Authors : Jeffrey van der Hoeven, Hilde van Wijngaarden (KB) : Remco Verdegem, Jacqueline Slats (Nationaal Archief) Organisations : The National Library of the Netherlands/Koninklijke Bibliotheek : Nationaal Archief of the Netherlands Date of creation : 18 January 2005 Date of last update : 20 June 2005 Version : 1.4 2 I. Table of contents 1. Introduction .................................................................................................................................... 3 2. Current situation ............................................................................................................................. 5 2.1. The National Library of the Netherlands ............................................................................... 5 2.2. The Nationaal Archief of the Netherlands ............................................................................. 6 2.3. What is emulation? ................................................................................................................ 7 2.3.1. Emulation levels............................................................................................................ 7 2.3.2. Practices ........................................................................................................................ 8 3. The emulation project................................................................................................................... 10 3.1. Criteria for the project.........................................................................................................
    [Show full text]