Guideline on Alcohol Withdrawal Management

Total Page:16

File Type:pdf, Size:1020Kb

Guideline on Alcohol Withdrawal Management Approved Draft 3/19/2020 1 ASAM Guideline on Alcohol Withdrawal Management 2 3 Guideline Committee Members (alpha order): 4 Anika Alvanzo, MD, MS, DFASAM, FACP 5 Kurt Kleinschmidt, MD, FASAM 6 Julie A. Kmiec, DO, FASAM 7 George Kolodner, MD, DLFAPA, FASAM 8 Gerald E. Marti, MD, PhD 9 Lorraine A. Milio, MD, FASAM 10 William F. Murphy, DO, MS, DFASAM 11 Carlos F. Tirado, MD, FASAM 12 Corey Waller, MD, MS, DFASAM, FACEP 13 Lewis S. Nelson, MD, FASAM (Moderator) 14 15 Clinical Champions (alpha order): 16 Stephen Holt, MD, MS, FACP 17 Darius Rastegar, MD, FASAM 18 Richard Saitz, MD, MPH, FACP, DFASAM 19 Michael F. Weaver, MD, DFASAM 20 21 ASAM Quality Improvement Council (alpha order): 22 John Femino, MD, DFASAM 23 Kenneth Freedman, MD, DFASAM (Chair) 24 R. Jeffrey Goldsmith, MD, DLFAPA, DFASAM 25 Barbara Herbert, MD, DFASAM 26 Margaret Jarvis, MD, DFASAM 27 Margaret Kotz, DO, DFASAM 28 P. Stephen Novack, DO 29 David R. Pating, MD 30 Sandrine Pirard, MD, PhD, MPH, FAPA, FASAM 31 32 ASAM Staff: 33 Maureen Boyle, PhD, Chief Quality and Science Officer 34 Leah White, MPH, Director of Quality Improvement 35 Taleen Safarian, Manager of Science and Dissemination 36 37 Institute for Research Education and Training in Addictions (IRETA) Team Members: 38 Dawn Lindsay, PhD, Project Director 39 Jessica Williams, MPH, Assistant Project Director 40 Piper Lincoln, MS, Senior Research Associate 1 AUTHORS Approved Draft 3/19/2020 1 Jackie Jones, MS, Research Associate 2 Peter F. Luongo, PhD, Executive Director 3 ASAM is honored that this guideline has been endorsed by: 4 5 American College of Preventive Medicine 6 American Osteopathic Academy of Addiction Medicine 7 Federation of State Physician Health Programs 8 National Association of Addiction Treatment Providers 9 National Association of Clinical Nurse Specialists 10 National Commission on Correctional Health Care 2 AUTHORS 1 2 Glossary of Terms 3 Below are terms that are used throughout the guideline. Note that some terms listed below are used to 4 convey a specific meaning for the purposes of this guideline (e.g., “clinicians”). 5 Abstinence: Intentional and consistent restraint from the pathological pursuit of reward and/or relief that 6 involves the use of substances and other behaviors. These behaviors may involve, but are not necessarily 7 limited to substance use, gambling, video gaming, or compulsive sexual behaviors. Use of FDA approved 8 medications for the treatment of substance use disorder is consistent with abstinence. 9 Addiction Specialist Physician: Addiction specialist physicians include addiction medicine physicians 10 and addiction psychiatrists who hold either a subspecialty board certification in addiction medicine by the 11 American Board of Preventative Medicine, a board certification in addiction medicine from the American 12 Board of Addiction Medicine, a subspecialty board certification in addiction psychiatry from the 13 American Board of Psychiatry and Neurology, a subspecialty board certification in addiction medicine 14 from the American Osteopathic Association, or certification in addiction medicine from the American 15 Society of Addiction Medicine. 16 Adjunct therapy (see also monotherapy): A pharmaceutical drug used together with a primary 17 pharmaceutical drug whose purpose is to assist the primary treatment.1 18 Alcohol Hallucinosis/Alcohol-induced Psychotic Disorder: See Special Terms. 19 ASAM Criteria dimensions: The ASAM Criteria use six dimensions to define a holistic biopsychosocial 20 assessment of an individual to be used for service and treatment planning including acute intoxication or 21 withdrawal potential; biomedical conditions and complications; emotional, behavioral, or cognitive 22 conditions or complications; readiness for change; continued use or continued problem potential; and 23 recovery/living environment. 24 CIWA-Ar: The Clinical Institute Withdrawal Assessment of Alcohol Scale, Revised, is a reliable, valid, 25 and reproducible scale that measures the severity of alcohol withdrawal once a diagnosis has been made.2 26 Complicated alcohol withdrawal: See Special Terms. 27 Clinicians (Healthcare providers): Used throughout the guideline, this term is intentionally broad. It 28 encompasses anyone who participates in providing care to patients with substance use disorders, 29 including staff at specialty addiction treatment centers or other healthcare settings that provide substance 30 use disorder treatment.3 31 Fixed-dosing: See Special Terms. 32 Front loading: See Special Terms. 33 GABAergic agents: Drugs that affect the neurotransmitter GABA or its receptors. These include 34 agonists, antagonists, modulators, reuptake inhibitors and enzymes. Examples include benzodiazepines, 35 phenobarbital, and carbamazepine. 36 Inpatient Withdrawal Management: See Special Terms. 3 GLOSSARY 1 Kindling: The relationship between repeated episodes of alcohol withdrawal which become progressively 2 more severe is referred to as the kindling effect or process.4 The effect is theorized to be the result of 3 increased neuronal excitability and sensitivity with repeated episodes of withdrawal and has been 4 demonstrated to result in increased craving for alcohol and decreased responsiveness to treatment with 5 benzodiazepines.5–7 6 Level of Care: See Special Terms. 7 Monotherapy (see also adjunct therapy): The use of a single drug to treat a disorder or disease. 8 Patients: Used throughout the guideline, this term is intentionally broad. It encompasses anyone who 9 receives care for a Substance Use Disorder (SUD) in a specialty SUD treatment center or other healthcare 10 setting.3 11 Pharmacotherapy: Therapy (medical treatment) using pharmaceutical drugs. 12 Recovery capital: The breadth and depth of internal and external resources that can be drawn upon to 13 initiate and sustain recovery from alcohol and other drug problems. It can be found at the personal, social, 14 community and cultural levels. Examples of recovery capital include physical health, financial assets, 15 supportive social relationships, visible local recovery role models, and accessible/affordable community 16 resources.8 17 Substance use: Used instead of “drug use” or “drug and alcohol use,” this term refers to the use of 18 psychotropic substances, which may include illegal drugs, medications or alcohol. This does not refer to 19 nicotine.3 20 Substance Use Disorder (SUD): Substance use disorder is marked by a cluster of cognitive, behavioral, 21 and physiological symptoms indicating that the individual continues to use alcohol, nicotine, and/or other 22 drugs despite significant related problems. Diagnostic criteria are given in the DSM-5. Substance use 23 disorder is the new nomenclature for what was included as substance dependence and substance abuse in 24 the DSM-4. 25 Supportive care: Treatment given to prevent, control, or relieve complications and side effects and to 26 improve the patient's comfort, quality of life and safety. This can include reassurance, orientation, general 27 nursing care, and adherence to safety measures and protocols (e.g., risk for fall/syncope). 28 Symptom-triggered dosing: See Special Terms. 29 Therapeutic window: Range of drug dose amount needed to maintain therapeutic effect yet avoid 30 adverse events. A drug with a narrower therapeutic window requires greater precision to be dosed 31 correctly and safely compared to a drug with a broader therapeutic window. A drug’s therapeutic window 32 is taken into account when modifying dose amount due to patient variability and exposure to other 33 substances including adjunt medications.9 34 Treatment plan: A therapeutic strategy that may incorporate patient education, drug therapy, and the 35 participation of health professionals. Treatment plans are especially important in the optimal management 36 of complex or chronic illnesses such as SUDs.3 37 Unhealthy alcohol use: Includes the following patterns of alcohol use: 1) Binge drinking (defined as 38 consuming 4 or more alcoholic beverages per occasion for women or 5 or more drinks per occasion for 39 men); 2) Heavy drinking (defined as consuming 8 or more alcoholic beverages per week for women or 15 4 GLOSSARY 1 or more alcoholic beverages per week for men); 3) Any drinking by pregnant women or those younger 2 than age 21.10 3 Withdrawal Management: This term has replaced the formerly used “detoxification.” Withdrawal 4 management refers to the medical and psychological care of patients who are experiencing withdrawal 5 symptoms as a result of ceasing or reducing their substance use.11 The process of withdrawal management 6 includes not only attenuation of the physiological and psychological features of withdrawal, but also 7 interrupting the momentum of habitual compulsive use in persons with SUD.12 5 GLOSSARY 1 Abbreviations and Acronyms 2 A2AA Alpha-2 adrenergic agonists 3 ALT Alanine aminotransferase 4 AUDIT-PC Alcohol Use Disorder Identification Test – Primary Care 5 ASAM American Society of Addiction Medicine 6 ASSIST Alcohol, Smoking and Substance Involvement Screening Test 7 AST Aspartate aminotransferase 8 AUD Alcohol Use Disorder 9 BAC Blood Alcohol Concentration or Content 10 BAWS Brief Alcohol Withdrawal Scale 11 CCU Cardiac/Coronary Care Unit 12 CIWA-Ar Clinical Institute Withdrawal Assessment for Alcohol, Revised 13 CNS Central Nervous System 14 DSM-5 Diagnostic and Statistical Manual – 5 15 ED Emergency Department 16 EEG Electroencephalogram 17 FAS Fetal Alcohol Syndrome 18 FASD Fetal Alcohol Spectrum Disorders 19 FDA Food and Drug
Recommended publications
  • WELLBUTRIN SR Safely and Effectively
    HIGHLIGHTS OF PRESCRIBING INFORMATION psychosis, hallucinations, paranoia, delusions, homicidal ideation, These highlights do not include all the information needed to use aggression, hostility, agitation, anxiety, and panic, as well as suicidal WELLBUTRIN SR safely and effectively. See full prescribing ideation, suicide attempt, and completed suicide. Observe patients information for WELLBUTRIN SR. attempting to quit smoking with bupropion for the occurrence of such symptoms and instruct them to discontinue bupropion and contact a WELLBUTRIN SR (bupropion hydrochloride) sustained-release tablets, healthcare provider if they experience such adverse events. (5.2) for oral use • Initial U.S. Approval: 1985 Seizure risk: The risk is dose-related. Can minimize risk by gradually increasing the dose and limiting daily dose to 400 mg. Discontinue if WARNING: SUICIDAL THOUGHTS AND BEHAVIORS seizure occurs. (4, 5.3, 7.3) See full prescribing information for complete boxed warning. • Hypertension: WELLBUTRIN SR can increase blood pressure. Monitor blood pressure before initiating treatment and periodically during • Increased risk of suicidal thinking and behavior in children, treatment. (5.4) adolescents and young adults taking antidepressants. (5.1) • Activation of mania/hypomania: Screen patients for bipolar disorder and • Monitor for worsening and emergence of suicidal thoughts and monitor for these symptoms. (5.5) behaviors. (5.1) • Psychosis and other neuropsychiatric reactions: Instruct patients to contact a healthcare professional if such reactions occur. (5.6) --------------------------- INDICATIONS AND USAGE ---------------------------- • Angle-closure glaucoma: Angle-closure glaucoma has occurred in WELLBUTRIN SR is an aminoketone antidepressant, indicated for the patients with untreated anatomically narrow angles treated with treatment of major depressive disorder (MDD). (1) antidepressants.
    [Show full text]
  • Phencyclidine: an Update
    Phencyclidine: An Update U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES • Public Health Service • Alcohol, Drug Abuse and Mental Health Administration Phencyclidine: An Update Editor: Doris H. Clouet, Ph.D. Division of Preclinical Research National Institute on Drug Abuse and New York State Division of Substance Abuse Services NIDA Research Monograph 64 1986 DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Alcohol, Drug Abuse, and Mental Health Administratlon National Institute on Drug Abuse 5600 Fishers Lane Rockville, Maryland 20657 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, DC 20402 NIDA Research Monographs are prepared by the research divisions of the National lnstitute on Drug Abuse and published by its Office of Science The primary objective of the series is to provide critical reviews of research problem areas and techniques, the content of state-of-the-art conferences, and integrative research reviews. its dual publication emphasis is rapid and targeted dissemination to the scientific and professional community. Editorial Advisors MARTIN W. ADLER, Ph.D. SIDNEY COHEN, M.D. Temple University School of Medicine Los Angeles, California Philadelphia, Pennsylvania SYDNEY ARCHER, Ph.D. MARY L. JACOBSON Rensselaer Polytechnic lnstitute National Federation of Parents for Troy, New York Drug Free Youth RICHARD E. BELLEVILLE, Ph.D. Omaha, Nebraska NB Associates, Health Sciences Rockville, Maryland REESE T. JONES, M.D. KARST J. BESTEMAN Langley Porter Neuropsychiatric lnstitute Alcohol and Drug Problems Association San Francisco, California of North America Washington, D.C. DENISE KANDEL, Ph.D GILBERT J. BOTV N, Ph.D. College of Physicians and Surgeons of Cornell University Medical College Columbia University New York, New York New York, New York JOSEPH V.
    [Show full text]
  • Alcohol Withdrawal
    Alcohol withdrawal TERMINOLOGY CLINICAL CLARIFICATION • Alcohol withdrawal may occur after cessation or reduction of heavy and prolonged alcohol use; manifestations are characterized by autonomic hyperactivity and central nervous system excitation 1, 2 • Severe symptom manifestations (eg, seizures, delirium tremens) may develop in up to 5% of patients 3 CLASSIFICATION • Based on severity ○ Minor alcohol withdrawal syndrome 4, 5 – Manifestations occur early, within the first 48 hours after last drink or decrease in consumption 6 □ Manifestations develop about 6 hours after last drink or decrease in consumption and usually peak about 24 to 36 hours; resolution occurs in 2 to 7 days 7 if withdrawal does not progress to major alcohol withdrawal syndrome 4 – Characterized by mild autonomic hyperactivity (eg, tachycardia, hypertension, diaphoresis, hyperreflexia), mild tremor, anxiety, irritability, sleep disturbances (eg, insomnia, vivid dreams), gastrointestinal symptoms (eg, anorexia, nausea, vomiting), headache, and craving alcohol 4 ○ Major alcohol withdrawal syndrome 5, 4 – Progression and worsening of withdrawal manifestations, usually after about 24 hours from the onset of initial manifestations 4 □ Manifestations often peak around 50 hours before gradual resolution or may continue to progress to severe (complicated) withdrawal, particularly without treatment 4 – Characterized by moderate to severe autonomic hyperactivity (eg, tachycardia, hypertension, diaphoresis, hyperreflexia, fever); marked tremor; pronounced anxiety, insomnia,
    [Show full text]
  • Effect of Bupropion on Seizure Threshold in Depressed Patients Study Protocol and Statistical Analysis Plan
    Effect of Bupropion on Seizure Threshold in Depressed Patients Study Protocol and Statistical Analysis Plan NCT03126682 Document Date: May 2, 2017 Effect of Bupropion on Seizure Threshold in Depressed Patients 1. Protocol Title – Effect of Bupropion on Seizure Threshold in Depressed Patients 2. Purpose of the study Aim: Evaluate the effects of bupropion on seizure duration and seizure threshold during ultra brief right unilateral (RUL) electroconvulsive therapy (ECT). Hypothesis: Addition of Bupropion will increase seizure duration and lower seizure threshold. 3. Background and Significance Depression is the leading cause of disability in individuals aged 15-44, resulting in 400 million disability days in a year (1). The total economic burden of the disease is estimated to be composed of $26.1 billion in direct medical costs, $5.4 billion in suicide-related mortality costs, and $51.5 billion in indirect workplace cost (1). Electroconvulsive therapy (ECT) is the gold-standard treatment for major depressive disorder (MDD) that is severe (2-5). The standard method of ECT used in the US now is right unilateral ultra-brief study. RUL ECT uses a pulse width of </= 0.3 ms, this optimizes electrical dosing and causes decreased severity of cognitive side effects. With right unilateral ECT it is essential for the stimulus to be above seizure threshold. The stimulus dosing is titrated to establish what seizure threshold is and this is titrated over the course of ECT sessions (6). Because the maximum ECT output is limited by FDA, a frequent problem encountered by ECT clinicians is high seizure threshold which at times cannot be provided by the ECT device and this compromises efficacy (7).
    [Show full text]
  • Phencyclidine Intoxication and Adverse Effects: a Clinical and Pharmacological Review of an Illicit Drug
    The California Journal of Emergency Medicine VIII: February 2007 Page 9 Clinical Review Phencyclidine Intoxication and Adverse Effects: A Clinical and Pharmacological Review of an Illicit Drug Tareg Bey, MD and Anar Patel, MD Department of Emergency Medicine, University of California, Irvine, Medical Center Orange, California. Correspondence: Tareg Bey, MD, FACEP, FAAEM Department of Emergency Medicine University of California, Irvine Medical Center 101 The City Drive, Rte 128 Orange, CA 92868 Tel: (714) 456.5239 Fax: (714) 456.5390 E-mail: [email protected] INTRODUCTION varied forms, it can be snorted, smoked, ingested or injected intravenously or subcutaneously.1, 7, 8 Phencyclidine (PCP, “angel dust”) is an infamous A typical PCP-laced marijuana cigarette contains to 0mg hallucinogenic sought for its ability to induce the illusion of of the drug. The average tablet varies in weight from to 6 mg.3, euphoria, omnipotence, superhuman strength, and social and 9 Only 0.25 mg of IV solution is required to produce sedation, sexual prowess. The acronym PCP stems from its organic compared to 0mg required via ingestion or inhalation.0 name -(-phenylcyclohexyl) piperidine, which alludes to its Inhalation accounts for 70% of usage, however, because relatively simple production from the arylcyclohexylamine onset of action occurs in 2-5 minutes, without the complications , 2 piperidine. of injection. Effects may take 5 to 60 minutes when ingested More than 60 designer analogs more toxic than PCP, but orally.3, 6, 11, 2 Phencyclidine is a weak base that is lipid, water, able to escape clinical detection, were common before the sale and alcohol soluble, giving it an extraordinary volume of of piperidine and its derivatives became illegal in the United distribution of 6.2 L/kg.2 Thus, the relationship between dose, States in 1978.
    [Show full text]
  • The Effects of Naloxone, Diazepam, and Quercetin on Seizure and Sedation in Acute on Chronic Tramadol Administration: an Experimental Study
    The effects of naloxone, diazepam, and quercetin on seizure and sedation in acute on chronic tramadol administration: An experimental study Samaneh Nakhaee Birjand University of Medical Sciences Khadijeh Farrokhfall Birjand University of Medical Sciences Ebrahim Miri-Moghaddam Birjand University of Medical Sciences Mohsen Foadoddini Birjand University of Medical Sciences Masoumeh Askari Birjand University of Medical Sciences Alireza Amirabadizadeh Birjand University of Medical Sciences Jeffrey Brent University of Colorado Bruno Megarbane University of Paris omid Mehrpour ( [email protected] ) Birjand University of Medical Sciences https://orcid.org/0000-0002-1070-8841 Research Keywords: quercetin, diazepam, naloxone, neurotoxicity, tramadol Posted Date: January 15th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-137088/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/17 Abstract Background: Tramadol is a widely used synthetic opioid. Substantial research has previously focused on the neurological effects of this drug, while the ecacy of various treatments to reduce the associated side effects has not been well studied. This study aimed to evaluate the protective effects of naloxone, diazepam, and quercetin on tramadol induced seizure and sedation level in male rats. Methods: The project was performed with 72 male Wistar rats with an average weight of 200-250 g. The rats were randomly assigned to 8 groups. Tramadol was administered intraperitoneally at an initial dose of 25 mg/kg/day. On the 14th day, tramadol was injected at 75 mg/kg, either alone or together with naloxone, diazepam, and quercetin (acute and chronic) in different combinations.
    [Show full text]
  • Drugs That Lower the Seizure Threshold
    Drugs that lower the seizure threshold Andrew W Hitchings Senior lecturer in clinical pharmacology and honorary consultant in neuro-intensive care St George’s, University of London and St George’s University Hospitals NHS Foundation Trust Cranmer Terrace, London, SW17 0RE Email [email protected] Summary Drugs with potential to lower the seizure threshold are numerous and diverse. Whether they contribute to clinically overt seizures depends on the dosage in which they are taken, the time-course of their effects, and the susceptibility of the patient. Crucially, however, their contribution to seizure risk is potentially modifiable. Seizures and the seizure threshold Terminology A seizure is the clinical manifestation of abnormal, excessive or synchronous neuronal firing in the brain.1 The clinical features of seizures may include abnormalities of consciousness, movement, sensation, behaviour and autonomic function. Epilepsy is the enduring tendency to experience seizures. The seizure threshold describes the minimum intensity of a stimulus required to induce a seizure. It is clinically evident in the context of electroconvulsive therapy, but is otherwise primarily an experimental phenomenon, in which seizures are induced by electrical or chemical stimuli (e.g. with pentylenetetrazole). It is often evaluated during drug development to quantify the extent to which a drug prevents seizures (if this is the intended therapeutic effect) or induces them (as an unwanted effect). As a broader concept, it is useful in clinical practice as a framework to help understand the complex interplay between the patient, their medicines, and their risk of seizures. Pathophysiology and pharmacology Seizures occur when there is an excess of excitatory activity relative to inhibitory activity.
    [Show full text]
  • A Pharmacological Evaluation of Seizures Induced by Electrical Stimulation of the Hippocampus
    70-26,392 YEOH, Peng Nam, 1941- A PHARMACOLOGICAL EVALUATION OF SEIZURES INDUCED BY ELECTRICAL STIMULATION OF THE HIPPOCAMPUS. The Ohio State University, Ph.D., 1970 Pharmacology University Microfilms, A XEROX Company, Ann Arbor, Michigan THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED A PHARMACOLOGICAL EVALUATION OF SEIZURES INDUCED BY ELECTRICAL STIMULATION OF THE HIPPOCAMPUS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Peng Nam Yeoh, B. Pharm., M.Sc. I.,.s The Ohio State University 1970 Approved by ft*#*Adviser wA V College of Pharmacy ACKNOWLEDGMENTS I wish to thank Dr. Harold H. Wolf for his advice, help and encouragement. The critical appraisal of the manuscript by Drs. Allan M. Burkman, Michael C. Gerald, Popat N. Patil and John W. Nelson and their helpful suggestions are appreciated. I am also grateful to the Fulbright-Hays program and the College of Pharmacy of The Ohio State University for making this work possible. VITA December 16, 1941 . Born - Mentakab, Pahang, Malaysia 1964............... B. Pharm., University of Singapore, Singapore 1966 ............... M. Sc., The Ohio State University, Columbus Ohio 196 7 ............... Teaching Assistant, Division of Pharmacology, College of Pharmacy, The Ohio State Univer­ sity, Columbus, Ohio 1967-1970 .......... Research Associate, Division of Pharmacology, College of Pharmacy, The Ohio State Univer­ sity, Columbus, Ohio PUBLICATIONS Yeoh, P.N. and Wolf, H.H. : Effects of some adrenergic agents on low frequency electroshock seizures. J. Pharm. Sci. 57: 340, 1968. Yeoh, P.N. and Wolf, H.H. : The effect of some adrenergic agents on electrically induced hippocampal seizures.
    [Show full text]
  • Intravenous Tramadol-Induced Seizure: Two Case Reports
    1735-2657/05/42-146-147 IRANIAN JOURNAL OF PHARMACOLOGY & THERAPEUTICS Copyright © 2005 by Razi Institute for Drug Research (RIDR) IJPT 4:146-147, 2005 Intravenous Tramadol-Induced Seizure: Two Case Reports MASSOUD MEHRPOUR Department of Neurology, Iran University of Medical Sciences, Tehran, Iran. Received May 6, 2005; Revised May 29, 2005; Accepted June 5, 2005 This paper is available online at http://ijpt.iums.ac.ir ABSTRACT There are a few reports of seizure induced by tramadol at therapeutic dose. Two case reports of repeated seizures with following agitation due to treatment with tramadol are presented here. Both of them have similar presentation and tramadol was injected intravenously at therapeutic doses. Tramadol prescription especially intravenously can evoke seizure with agitation or even status epilepticus. Tramadol should be cautiously prescribed especially for patients with history of epilepsy, addiction and old ages. Keywords: Tramadol, Seizure Tramadol is a new synthetic, centrally acting analge- epilepsy or taken with other drugs that reduce the sei- sic agent.The mechanism of action of tramadol has yet zure threshold [ 4 ]. to be fully elucidated, but it is believed to work through The smallest amount of tramadol associated with modulation of the gamma-aminobutyric acid (GABA)- seizure was 200 mg, and 84.6% of seizures occurred ergic, noradrenergic and serotonergic systems. within 6 hours administration. In a general population, Tramadol, and its metabolite, known as M1, have been there is association between seizures and tramadol use found to bind to μ-opioid receptors thus exerting their in males, long-term therapy, suicide attempts, inten- effect on GABAergic transmission, and to inhibit tional abuse or misuse, and tachycardia [ 5 ].
    [Show full text]
  • Extended-Release Bupropion–Induced Grand Mal Seizures
    CASE REPORT Extended-Release Bupropion–Induced Grand Mal Seizures David J. Rissmiller, DO Thomas Campo, DO Bupropion hydrochloride is currently available in three for- eration antidepressants. Most seizures occurred within the mulations: immediate-release, sustained-release, and first 6 weeks of treatment.1 Seizures were especially prominent extended-release (ER). Several published reports exist con- when patients took single doses greater than 150 mg or daily cerning bupropion’s history of inducing seizures in both the doses greater than 450 mg. The mean ingested daily dose in immediate- and sustained-release formulations. Although patients who had seizures was 8.3 mg per kilogram of body the potential of the ER formulation for causing seizures is weight.2 In addition, electroencephalographic abnormalities (eg, noted in the drug’s prescribing information, there is no pre- epileptiform discharges) were reported in some patients on viously published report of bupropion ER inducing seizures. bupropion IR therapy.3 In the case reported, a 27-year-old woman who was pre- At dosages of 450 mg/d or less, the incidence rate of scribed bupropion ER as well as clonazepam and lamot- seizures ranged from 0.35% to 0.44%, compared with a first- rigine (anticonvulsants), hydrocodone bitartrate (for irri- seizure incidence of 0.07% to 0.09% in the general popula- table bowel syndrome), and zolipidem tartrate (for tion.4 The estimated seizure incidence was found to increase depression and associated anxiety and insomnia) experi- tenfold at dosages of more than 450 mg/d,5 and the number enced a grand mal seizure 6 months after beginning bupro- of seizure occurrences were twice as high in patients who pion ER therapy.
    [Show full text]
  • Prevention, Treatment, and Monitoring of Seizures in the Intensive Care Unit
    Journal of Clinical Medicine Review Prevention, Treatment, and Monitoring of Seizures in the Intensive Care Unit Micheal Strein 1, John P. Holton-Burke 2, LaTangela R. Smith 2 and Gretchen M. Brophy 1,* 1 Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University School of Pharmacy, Richmond, VA 23298-0533, USA 2 Department of Neurology, Virginia Commonwealth University Health System, Richmond, VA 23298-0599, USA * Correspondence: [email protected] Received: 19 June 2019; Accepted: 1 August 2019; Published: 7 August 2019 Abstract: The diagnosis and management of seizures in the critically ill patient can sometimes present a unique challenge for practitioners due to lack of exposure and complex patient comorbidities. The reported incidence varies between 8% and 34% of critically ill patients, with many patients often showing no overt clinical signs of seizures. Outcomes in patients with unidentified seizure activity tend to be poor, and mortality significantly increases in those who have seizure activity longer than 30 min. Prompt diagnosis and provision of medical therapy are crucial in order to attain successful seizure termination and prevent poor outcomes. In this article, we review the epidemiology and pathophysiology of seizures in the critically ill, various seizure monitoring modalities, and recommended medical therapy. Keywords: neurocritical care; critical care; seizures; status epilepticus; electroencephalography; antiepileptic therapy 1. Introduction Seizures and status epilepticus (SE) have a large clinical and economic impact on the care of critically ill patients worldwide as they are often associated with complicated and lengthy hospital and intensive care unit (ICU) stays [1]. Neurocritical care (NCC) is a rapidly growing specialty that specializes in the care of critically ill patients presenting with primary neurological injuries [2].
    [Show full text]
  • Brain Serotonin Content Regulates the Manifestation of Tramadol-Induced Seizures in Rats Disparity Between Tramadol-Induced Seizure and Serotonin Syndrome
    Brain Serotonin Content Regulates the Manifestation of Tramadol-induced Seizures in Rats Disparity between Tramadol-induced Seizure and Serotonin Syndrome Yohei Fujimoto, M.D., Tomoharu Funao, M.D., Ph.D., Koichi Suehiro, M.D., Ph.D., Ryota Takahashi, M.D., Ph.D., Takashi Mori, M.D., Ph.D., Kiyonobu Nishikawa, M.D., Ph.D. ABSTRACT Background: Tramadol-induced seizures might be pathologically associated with serotonin syndrome. Here, the authors Downloaded from http://pubs.asahq.org/anesthesiology/article-pdf/122/1/178/485379/20150100_0-00030.pdf by guest on 26 September 2021 investigated the relationship between serotonin and the seizure-inducing potential of tramadol. Methods: Two groups of rats received pretreatment to modulate brain levels of serotonin and one group was treated as a sham control (n = 6 per group). Serotonin modulation groups received either para-chlorophenylalanine or benserazide + 5-hydroxy- tryptophan. Serotonin, dopamine, and histamine levels in the posterior hypothalamus were then measured by microdialysis, while simultaneously infusing tramadol until seizure onset. In another experiment, seizure threshold with tramadol was investi- gated in rats intracerebroventricularly administered with either a serotonin receptor antagonist (methysergide) or saline (n = 6). Results: Pretreatment significantly affected seizure threshold and serotonin fluctuations. The threshold was lowered in para- chlorophenylalanine group and raised in benserazide + 5-hydroxytryptophan group (The mean ± SEM amount of tramadol needed to induce seizures; sham: 43.1 ± 4.2 mg/kg, para-chlorophenylalanine: 23.2 ± 2.8 mg/kg, benserazide + 5-hydroxytryp- tophan: 59.4 ± 16.5 mg/kg). Levels of serotonin at baseline, and their augmentation with tramadol infusion, were less in the para-chlorophenylalanine group and greater in the benserazide + 5-hydroxytryptophan group.
    [Show full text]