A Pharmacological Evaluation of Seizures Induced by Electrical Stimulation of the Hippocampus

Total Page:16

File Type:pdf, Size:1020Kb

A Pharmacological Evaluation of Seizures Induced by Electrical Stimulation of the Hippocampus 70-26,392 YEOH, Peng Nam, 1941- A PHARMACOLOGICAL EVALUATION OF SEIZURES INDUCED BY ELECTRICAL STIMULATION OF THE HIPPOCAMPUS. The Ohio State University, Ph.D., 1970 Pharmacology University Microfilms, A XEROX Company, Ann Arbor, Michigan THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED A PHARMACOLOGICAL EVALUATION OF SEIZURES INDUCED BY ELECTRICAL STIMULATION OF THE HIPPOCAMPUS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Peng Nam Yeoh, B. Pharm., M.Sc. I.,.s The Ohio State University 1970 Approved by ft*#*Adviser wA V College of Pharmacy ACKNOWLEDGMENTS I wish to thank Dr. Harold H. Wolf for his advice, help and encouragement. The critical appraisal of the manuscript by Drs. Allan M. Burkman, Michael C. Gerald, Popat N. Patil and John W. Nelson and their helpful suggestions are appreciated. I am also grateful to the Fulbright-Hays program and the College of Pharmacy of The Ohio State University for making this work possible. VITA December 16, 1941 . Born - Mentakab, Pahang, Malaysia 1964............... B. Pharm., University of Singapore, Singapore 1966 ............... M. Sc., The Ohio State University, Columbus Ohio 196 7 ............... Teaching Assistant, Division of Pharmacology, College of Pharmacy, The Ohio State Univer­ sity, Columbus, Ohio 1967-1970 .......... Research Associate, Division of Pharmacology, College of Pharmacy, The Ohio State Univer­ sity, Columbus, Ohio PUBLICATIONS Yeoh, P.N. and Wolf, H.H. : Effects of some adrenergic agents on low frequency electroshock seizures. J. Pharm. Sci. 57: 340, 1968. Yeoh, P.N. and Wolf, H.H. : The effect of some adrenergic agents on electrically induced hippocampal seizures. In : Abstracts symposia and contributed papers presented to the A.Ph.A Academy of Pharma­ ceutical Sciences at 116th. Annual Meeting of the American Pharma­ ceutical Association at Montreal. 105, 1969. Yeoh, P.N. and Wolf, H.H. : A pharmacological evaluation of seizures induced by electrical stimulation of the hippocampus. In Press. iii CONTENTS Page ACKNOWLEDGMENTS ..................................... ii VITA ............................................. Ill LIST OF TABLES...................................... vi LIST OF ILLUSTRATIONS............................... vii Chapter I. GENERAL INTRODUCTION............................ 1 A. Literature Review B. Basis for the Present Study C. Statement of the Problem II. GENERAL PROCEDURES.............................. 18 III. EFFECT OF PROTOTYPE ANTICONVULSANTS ON SEIZURES INDUCED BY ELECTRICAL STIMULATION OF THE HIPPOCAMPUS. 21 A. Introduction B. Methods C. Results and Discussion IV. THE IMPORTANCE OF ADRENERGIC TONE ON SEIZURES INDUCED BY ELECTRICAL STIMULATION OF THE HIPPOCAMPUS. 52 A. Introduction B. Methods C. Results D. Discussion V. GENERAL DISCUSSION.............................. 153 VI. SUMMARY AND C O N C L U S I O N S......................... 160 iv APPENDIX 162 A. Electrode Implantation B. Verification of Electrode Site and Tissue Damage C. Histochemical Assay for Norepinephrine D. Radiometric Assay for Norepinephrine BIBLIOGRAPHY 173 LIST OF TABLES Table Page 1. Neurotoxicity of drugs........................... 20 2. The Stability of Rat Resistance................... 35 3. Effects of Reserpine, c* -Methyl-p-Tyrosine and DL-threo-DOPS on Norepinephrine Levels in Dif­ ferent Brain Areas in the R a t ...................... 104 4. Effects of Reserpine, oL-Methyl-p-Tyrosine and DL-threo-DOPS on Norepinephrine Levels in Dif­ ferent Brain Areas in the R a t ...................... 105 vi LIST OF ILLUSTRATIONS Figure Page 1. Circuit diagram ......................... 31 2. Stability of seizure threshold over time..... 37 3. Effect of diphenylhydantoin on seizure t h r e s h o l d.............................. 44 4. Effect of trimethadione on seizure threshold. .. 47 5. The importance of adrenergic tone to seizure t h r e s h o l d.............................. 86 6. Effect of phentolamine on seizure threshold .... 108 7. Effect of phenoxybenzamine on seizure threshold . Ill 8. Effect of propranolol on seizure threshold. 114 9. Effect of pronethalol on seizure threshold. 117 10. Effect of sotalol (MJ1999) on seizure threshold . 119 11. Effect of INPEA on seizure threshold...... 121 12. Effect of phenoxybenzamine and phentolamine on seizure thresholds in animals with altered catecholamine levels..................... 145 13. A representative norepinephrine standard curve. 171 Plate I Minimal and maximal extent of the brain lesions projected on frontal sections (A-D) and saggital section (E) at the stated distances from frontal and saggital zeros, respectively ................. 41 vi i PI ate Page II. Histochemical studies of drug effects on central norepinephrine neurons . .................. 91 III. Histochemical studies of drug effects on central norepinephrine neurons ..................... 93 IV. Histochemical studies of drug effects on central norepinephrine neurons. ..................... 95 V. Histochemical studies of drug effects on central norepinephrine neurons . .................. 97 VI. Histochemical studies of drug effects on central norepinephrine neurons ..................... 99 viii I. GENERAL INTRODUCTION A. Literature Review The history of the seizure state is as old as man. In the past, patients suffering from epileptic convulsions were thought to be pos­ sessed by devine or evil forces. Hippocrates was, perhaps, the first investigator to associate the disease with a disfunction of the brain. At present, we recognize that seizures are varied in type and can result from "occasional, sudden, excessive, rapid and local discharges of gray matter" (for reviews see Streeter, 1931; Penfield and Erickson, 1941; Temkin, 1945; Tower, 1960; Millichap, 1965). The classification of seizures clinically is based on the patient's abnormal electroencephalogram (EEG) and the presence and nature of subject-auras. Seizures are generally treated by selective drug therapy and/or surgical removal of the epileptogenic focus (foci). Over the last 3 decades, a large number of laboratory tests have been developed for routine screening of potential anticonvulsant agents. This development has contributed to the availability of drugs for the management of epileptic seizures. In the laboratory, electrically- induced seizures were employed by some investigators (Putnum and Merritt, 1937; Merritt and Putnum, 1938), whose work resulted in the in­ troduction of diphenylhydantoin for the treatment of grand mal epilepsy. Similar laboratory studies yielded trimethadione as an effective agent 1 2 against petit mal epilepsies (Everett and Richards, 1944; Goodman et al., 1946; Richards and Everett, 1946; Richards and Perl stein, 1946). Electrical stimuli may be applied via corneal electrodes to induce a minimal electroshock seizure, or a maximal hind limb "flexor-extensor" seizure (Goodman et al., 1949; Swinyard, 1949; Swinyard et al., 1952). Direct electrical stimulationsof specific cortical or subcortical regions have also been employed in producing experimental seizures in the laboratory (Millichap, 1965; Swinyard, 1969). Stimuli other than elec­ trical current have also been used. For example, chemicals like metrazol, methionine sulfoximine, thiosemicarbazide, strychnine and picrotoxin have been used and are generally administered systemically. Other compounds (e.g., penicillin, metals, alumina cream) can induce the formation of chronic epileptogenic foci when placed directly into brain substance. Sensory stimulation has also been employed to induce audiogenic seizures in mice and rats (Plotnikoff and Green, 1957; Plotnikoff, 1958; Fink and Swinyard, 1959) and light-induced seizures in rabbits (Barnes, 1954) and in baboons (Killam, 1967; 1969; Killam et al., 1967). Still other techniques involve manipulations of body metabolism, e.g., imbalance of water and electrolytes in vivo, induced by administration of vasopressin or glucose CSwinyard, 1949; Swinyard et al., 1952), by carbon-dioxide withdrawal (Woodbury et al., 1952) and hyperthermia (Millichap, 1958; Millichap et al., 1960; Millichap, 1965). Furthermore, seizures have also been produced by hypophysectomy, or administration of insulin (DeSalva, 1962; 1963; Kreindler, 1965). The majority of laboratory studies use intact animals. Mice and rats are the most common animals employed, but cats, hamsters, rabbits and baboons have also been studied (Swinyard et al., 1952; Barnes, 1954; Esplin, 1957; Killam, 1967). In addition, other biological systems have also been used. These include the response of single neurons in different brain areas, isolated nerves, nerve-muscle preparations, tissue slices, cortical slabs and the spinal cord (Swinyard, 1969). Seizures produced in the laboratory are generally classified into minimal and maximal seizures. A minimal seizure is characterized by a "stun" response (a period of immobility and "frozen" behavior), facial clonus (including eye twitching and rhythmic jaw movements) and continuous flexion and extension of the fore limbs. In addition, when seizures are induced by sound, there is present a phase of "wild running" (Millichap, 1965). A maximal seizure occurs when tonic flexion and extension of both the fore and hind limbs are exhibited. This can be followed by unconsciousness and death due to respiratory failure (Millichap, 1965). Both minimal and maximal seizures may be induced by the same type of stimulus by varying its strength, duration and the route of applica­
Recommended publications
  • WELLBUTRIN SR Safely and Effectively
    HIGHLIGHTS OF PRESCRIBING INFORMATION psychosis, hallucinations, paranoia, delusions, homicidal ideation, These highlights do not include all the information needed to use aggression, hostility, agitation, anxiety, and panic, as well as suicidal WELLBUTRIN SR safely and effectively. See full prescribing ideation, suicide attempt, and completed suicide. Observe patients information for WELLBUTRIN SR. attempting to quit smoking with bupropion for the occurrence of such symptoms and instruct them to discontinue bupropion and contact a WELLBUTRIN SR (bupropion hydrochloride) sustained-release tablets, healthcare provider if they experience such adverse events. (5.2) for oral use • Initial U.S. Approval: 1985 Seizure risk: The risk is dose-related. Can minimize risk by gradually increasing the dose and limiting daily dose to 400 mg. Discontinue if WARNING: SUICIDAL THOUGHTS AND BEHAVIORS seizure occurs. (4, 5.3, 7.3) See full prescribing information for complete boxed warning. • Hypertension: WELLBUTRIN SR can increase blood pressure. Monitor blood pressure before initiating treatment and periodically during • Increased risk of suicidal thinking and behavior in children, treatment. (5.4) adolescents and young adults taking antidepressants. (5.1) • Activation of mania/hypomania: Screen patients for bipolar disorder and • Monitor for worsening and emergence of suicidal thoughts and monitor for these symptoms. (5.5) behaviors. (5.1) • Psychosis and other neuropsychiatric reactions: Instruct patients to contact a healthcare professional if such reactions occur. (5.6) --------------------------- INDICATIONS AND USAGE ---------------------------- • Angle-closure glaucoma: Angle-closure glaucoma has occurred in WELLBUTRIN SR is an aminoketone antidepressant, indicated for the patients with untreated anatomically narrow angles treated with treatment of major depressive disorder (MDD). (1) antidepressants.
    [Show full text]
  • Picrotoxin-Like Channel Blockers of GABAA Receptors
    COMMENTARY Picrotoxin-like channel blockers of GABAA receptors Richard W. Olsen* Department of Molecular and Medical Pharmacology, Geffen School of Medicine, University of California, Los Angeles, CA 90095-1735 icrotoxin (PTX) is the prototypic vous system. Instead of an acetylcholine antagonist of GABAA receptors (ACh) target, the cage convulsants are (GABARs), the primary media- noncompetitive GABAR antagonists act- tors of inhibitory neurotransmis- ing at the PTX site: they inhibit GABAR Psion (rapid and tonic) in the nervous currents and synapses in mammalian neu- system. Picrotoxinin (Fig. 1A), the active rons and inhibit [3H]dihydropicrotoxinin ingredient in this plant convulsant, struc- binding to GABAR sites in brain mem- turally does not resemble GABA, a sim- branes (7, 9). A potent example, t-butyl ple, small amino acid, but it is a polycylic bicyclophosphorothionate, is a major re- compound with no nitrogen atom. The search tool used to assay GABARs by compound somehow prevents ion flow radio-ligand binding (10). through the chloride channel activated by This drug target appears to be the site GABA in the GABAR, a member of the of action of the experimental convulsant cys-loop, ligand-gated ion channel super- pentylenetetrazol (1, 4) and numerous family. Unlike the competitive GABAR polychlorinated hydrocarbon insecticides, antagonist bicuculline, PTX is clearly a including dieldrin, lindane, and fipronil, noncompetitive antagonist (NCA), acting compounds that have been applied in not at the GABA recognition site but per- huge amounts to the environment with haps within the ion channel. Thus PTX major agricultural economic impact (2). ͞ appears to be an excellent example of al- Some of the other potent toxicants insec- losteric modulation, which is extremely ticides were also radiolabeled and used to important in protein function in general characterize receptor action, allowing and especially for GABAR (1).
    [Show full text]
  • The Anxiomimetic Properties of Pentylenetetrazol in the Rat
    University of Rhode Island DigitalCommons@URI Open Access Dissertations 1980 THE ANXIOMIMETIC PROPERTIES OF PENTYLENETETRAZOL IN THE RAT Gary Terence Shearman University of Rhode Island Follow this and additional works at: https://digitalcommons.uri.edu/oa_diss Recommended Citation Shearman, Gary Terence, "THE ANXIOMIMETIC PROPERTIES OF PENTYLENETETRAZOL IN THE RAT" (1980). Open Access Dissertations. Paper 165. https://digitalcommons.uri.edu/oa_diss/165 This Dissertation is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Dissertations by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. THE ANXIOMIMETIC PROPERTIES OF PENTYLENETETRAZOL IN THE RAT BY GARY TERENCE SHEARMAN A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN PHARMACEUTICAL SCIENCES (PHARMACOLOGY AND TOXICOLOGY) UNIVERSITY OF RHODE ISLAND 19 80 DOCTOR OF PHILOSOPHY DISSERT.A.TION OF GARY TERENCE SHEAffiil.AN Approved: Dissertation Cormnittee \\ Major Professor ~~-L_-_._dd__· _... _______ _ -~ar- Dean of the Graduate School UNIVERSITY OF RHODE ISLAND 1980 ABSTRACT Investigation of the biological basis of anxiety is ham­ pered by the lack of an appropriate animal model for research purposes. There are no known drugs that cause anxiety in laboratory animals. Pentylenetetrazol (PTZ) produces intense anxiety in human volunteers (Rodin, 1958; Rodin and Calhoun, 1970). Therefore, it was the major objective of this disser- tation to test the hypothesis that the discriminative stimu­ lus produced by PTZ in the rat was related to its anxiogenic action in man. It was also an objective to suggest the neuro- chemical basis for the discriminative stimulus property of PTZ through appropriate drug interactions.
    [Show full text]
  • Dynamic Regulation of Synaptic GABA Release by the Glutamate-Glutamine Cycle in Hippocampal Area CA1
    The Journal of Neuroscience, August 16, 2006 • 26(33):8537–8548 • 8537 Development/Plasticity/Repair Dynamic Regulation of Synaptic GABA Release by the Glutamate-Glutamine Cycle in Hippocampal Area CA1 Shu-Ling Liang,1 Gregory C. Carlson,1 and Douglas A. Coulter1,2 1Division of Neurology and the Pediatric Regional Epilepsy Program, Children’s Hospital of Philadelphia, and 2Departments of Pediatrics, Neurology, and Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104 Vesicular GABA and intraterminal glutamate concentrations are in equilibrium, suggesting inhibitory efficacy may depend on glutamate availability. Two main intraterminal glutamate sources are uptake by neuronal glutamate transporters and glutamine synthesized through the astrocytic glutamate-glutamine cycle. We examined the involvement of the glutamate-glutamine cycle in modulating GABAergic synaptic efficacy. In the absence of neuronal activity, disruption of the glutamate-glutamine cycle by blockade of neuronal glutamine transport with ␣-(methylamino) isobutyric acid (MeAIB; 5 mM) or inhibition of glutamine synthesis in astrocytes with methionine sulfoximine (MSO; 1.5 mM) had no effect on miniature IPSCs recorded in hippocampal area CA1 pyramidal neurons. How- ever, after a period of moderate synaptic activity, application of MeAIB, MSO, or dihydrokainate (250 ␮M; an astrocytic glutamate transporter inhibitor) significantly reduced evoked IPSC (eIPSC) amplitudes. The MSO effect could be reversed by exogenous application of glutamine (5 mM), whereas glutamine could not rescue the eIPSC decreases induced by the neuronal glutamine transporter inhibitor MeAIB. The activity-dependent reduction in eIPSCs by glutamate-glutamine cycle blockers was accompanied by an enhanced blocking effect of the low-affinity GABAA receptor antagonist, TPMPA [1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid], consistent with diminished GABA release.
    [Show full text]
  • Methionine Sulfoximine: a Novel Anti Inflammatory Agent
    Wayne State University Wayne State University Dissertations January 2018 Methionine Sulfoximine: A Novel Anti Inflammatory Agent Tyler Peters Wayne State University, [email protected] Follow this and additional works at: https://digitalcommons.wayne.edu/oa_dissertations Part of the Biochemistry Commons Recommended Citation Peters, Tyler, "Methionine Sulfoximine: A Novel Anti Inflammatory Agent" (2018). Wayne State University Dissertations. 2124. https://digitalcommons.wayne.edu/oa_dissertations/2124 This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState. METHIONINE SULFOXIMINE: A NOVEL ANTI-INFLAMMATORY AGENT by TYLER J. PETERS DISSERTATION Submitted to the Graduate School of Wayne State University – School of Medicine Detroit, Michigan in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOHPY 2018 MAJOR: BIOCHEMISTRY & MOL. BIOLOGY Approved By: __________________________________________ Advisor Date DEDICATION This work is dedicated to my family. I wouldn’t have made it this far without your unconditional love and support. ii ACKNOWLEDGEMENTS Thank you Dr. Brusilow, I consider myself very fortunate for having the privilege of working in the laboratory of Dr. William S.A. Brusilow these past few years. Under his mentorship, my scientific autonomy was always respected, and my opinions were always valued with consideration. I am thankful for his guidance and support as an advisor; I truly admire his patience and envy his calm demeanor. He exemplifies scientific integrity, and his dedication to develop MSO has inspired me. I had never experienced consistent failure in any aspect of life before encountering scientific research; at times I felt that Dr.
    [Show full text]
  • Glutamate and GABA Dynamics in Early Ischaemia of Rat
    J. Physiol. (2002). 543.P Research Symposium – Mechanisms of Ischaemic Cell Death 25S ATP occurring in ischaemia may prevent a protective uptake of glutamate into glia in early ischaemia: with glutamine synthetase Glutamate and GABA dynamics in early ischaemia of rat inhibited, uptake of only a little glutamate released from neurons hippocampal slices may be sufficient to raise [glutamate]i in glia sufficiently to D. Attwell, N.J. Allen, M. Hamman and D.J. Rossi inhibit further uptake. Department of Physiology, University College London, Gower Street, Hamann, M. et al. (2002). Eur. J. Neurosci. 15, 308–314. London WC1E 6BT, UK Rossi, D.J. et al. (2000). Nature 403, 316–321. During brain ischaemia, the run-down of transmembrane ion gradients caused by the fall of ATP levels occurring leads to a rise This work was supported by The Wellcome Trust. in extracellular glutamate and GABA concentrations. The rise of glutamate concentration triggers neuronal death. In simulated All procedures accord with current local guidelines. ischaemia of hippocampal slices, taken from rats humanely killed in accordance with UK animal use legislation, we have used receptors in whole-cell patch-clamped CA1 pyramidal cells to sense released glutamate and GABA. ECl was set to 0 mV, so that currents mediated by ionotropic GABA receptors were inward, Cation channels: a radical way of killing cells and membrane current was recorded at _30 mV to allow glutamate sensing by NMDA and AMPA receptors. Mike Ashford On applying superfusion solution mimicking the energy University of Dundee deprivation occurring during severe ischaemia (no oxygen and glucose, cyanide and iodoacetate present), a slow small increase of inward current occurred over the first few minutes, followed by a sudden massive inward current (nanoamps) which then sagged back to a less inward plateau (Rossi et al.
    [Show full text]
  • Aldrich Raman
    Aldrich Raman Library Listing – 14,033 spectra This library represents the most comprehensive collection of FT-Raman spectral references available. It contains many common chemicals found in the Aldrich Handbook of Fine Chemicals. To create the Aldrich Raman Condensed Phase Library, 14,033 compounds found in the Aldrich Collection of FT-IR Spectra Edition II Library were excited with an Nd:YVO4 laser (1064 nm) using laser powers between 400 - 600 mW, measured at the sample. A Thermo FT-Raman spectrometer (with a Ge detector) was used to collect the Raman spectra. The spectra were saved in Raman Shift format. Aldrich Raman Index Compound Name Index Compound Name 4803 ((1R)-(ENDO,ANTI))-(+)-3- 4246 (+)-3-ISOPROPYL-7A- BROMOCAMPHOR-8- SULFONIC METHYLTETRAHYDRO- ACID, AMMONIUM SALT PYRROLO(2,1-B)OXAZOL-5(6H)- 2207 ((1R)-ENDO)-(+)-3- ONE, BROMOCAMPHOR, 98% 12568 (+)-4-CHOLESTEN-3-ONE, 98% 4804 ((1S)-(ENDO,ANTI))-(-)-3- 3774 (+)-5,6-O-CYCLOHEXYLIDENE-L- BROMOCAMPHOR-8- SULFONIC ASCORBIC ACID, 98% ACID, AMMONIUM SALT 11632 (+)-5-BROMO-2'-DEOXYURIDINE, 2208 ((1S)-ENDO)-(-)-3- 97% BROMOCAMPHOR, 98% 11634 (+)-5-FLUORODEOXYURIDINE, 769 ((1S)-ENDO)-(-)-BORNEOL, 99% 98+% 13454 ((2S,3S)-(+)- 11633 (+)-5-IODO-2'-DEOXYURIDINE, 98% BIS(DIPHENYLPHOSPHINO)- 4228 (+)-6-AMINOPENICILLANIC ACID, BUTANE)(N3-ALLYL)PD(II) CL04, 96% 97 8167 (+)-6-METHOXY-ALPHA-METHYL- 10297 ((3- 2- NAPHTHALENEACETIC ACID, DIMETHYLAMINO)PROPYL)TRIPH 98% ENYL- PHOSPHONIUM BROMIDE, 12586 (+)-ANDROSTA-1,4-DIENE-3,17- 99% DIONE, 98% 13458 ((R)-(+)-2,2'- 963 (+)-ARABINOGALACTAN BIS(DIPHENYLPHOSPHINO)-1,1'-
    [Show full text]
  • 4 Supplementary File
    Supplemental Material for High-throughput screening discovers anti-fibrotic properties of Haloperidol by hindering myofibroblast activation Michael Rehman1, Simone Vodret1, Luca Braga2, Corrado Guarnaccia3, Fulvio Celsi4, Giulia Rossetti5, Valentina Martinelli2, Tiziana Battini1, Carlin Long2, Kristina Vukusic1, Tea Kocijan1, Chiara Collesi2,6, Nadja Ring1, Natasa Skoko3, Mauro Giacca2,6, Giannino Del Sal7,8, Marco Confalonieri6, Marcello Raspa9, Alessandro Marcello10, Michael P. Myers11, Sergio Crovella3, Paolo Carloni5, Serena Zacchigna1,6 1Cardiovascular Biology, 2Molecular Medicine, 3Biotechnology Development, 10Molecular Virology, and 11Protein Networks Laboratories, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, 34149, Trieste, Italy 4Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy 5Computational Biomedicine Section, Institute of Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany 6Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy 7National Laboratory CIB, Area Science Park Padriciano, Trieste, 34149, Italy 8Department of Life Sciences, University of Trieste, Trieste, 34127, Italy 9Consiglio Nazionale delle Ricerche (IBCN), CNR-Campus International Development (EMMA- INFRAFRONTIER-IMPC), Rome, Italy This PDF file includes: Supplementary Methods Supplementary References Supplementary Figures with legends 1 – 18 Supplementary Tables with legends 1 – 5 Supplementary Movie legends 1, 2 Supplementary Methods Cell culture Primary murine fibroblasts were isolated from skin, lung, kidney and hearts of adult CD1, C57BL/6 or aSMA-RFP/COLL-EGFP mice (1) by mechanical and enzymatic tissue digestion. Briefly, tissue was chopped in small chunks that were digested using a mixture of enzymes (Miltenyi Biotec, 130- 098-305) for 1 hour at 37°C with mechanical dissociation followed by filtration through a 70 µm cell strainer and centrifugation.
    [Show full text]
  • TRIDIONE® (Trimethadione) Tablets
    TRIDIONE® (trimethadione) Tablets BECAUSE OF ITS POTENTIAL TO PRODUCE FETAL MALFORMATIONS AND SERIOUS SIDE EFFECTS, TRIDIONE (trimethadione) SHOULD ONLY BE UTILIZED WHEN OTHER LESS TOXIC DRUGS HAVE BEEN FOUND INEFFECTIVE IN CONTROLLING PETIT MAL SEIZURES. DESCRIPTION TRIDIONE (trimethadione) is an antiepileptic agent. An oxazolidinedione compound, it is chemically identified as 3,5,5-trimethyloxozolidine-2,4-dione, and has the following structural formula: TRIDIONE is a synthetic, water-soluble, white, crystalline powder. It is supplied in tablets for oral use only. Inactive Ingredients 150 mg Dulcet Tablet: Corn starch, lactose, magnesium stearate, magnesium trisilicate, sucrose and natural/synthetic flavor. CLINICAL PHARMACOLOGY TRIDIONE has been shown to prevent pentylenetetrazol-induced and thujone-induced seizures in experimental animals; the drug has a less marked effect on seizures induced by picrotoxin, procaine, cocaine, or strychnine. Unlike the hydantoins and antiepileptic barbiturates, TRIDIONE does not modify the maximal seizure pattern in patients undergoing electroconvulsive therapy. TRIDIONE has a sedative effect that may increase to the point of ataxia when excessive doses are used. A toxic dose of the drug in animals (approximately 2 g/kg) produced sleep, unconsciousness, and respiratory depression. Trimethadione is rapidly absorbed from the gastrointestinal tract. It is demethylated by liver microsomes to the active metabolite, dimethadione. Approximately 3% of a daily dose of TRIDIONE is recovered in the urine as unchanged drug. The majority of trimethadione is excreted slowly by the kidney in the form of dimethadione. INDICATIONS TRIDIONE (trimethadione) is indicated for the control of petit mal seizures that are refractory to treatment with other drugs. CONTRAINDICATIONS TRIDIONE is contraindicated in patients with a known hypersensitivity to the drug.
    [Show full text]
  • Pentetrazol for Idiopathic Hypersomnia and Narcolepsy Type 2 NIHRIO (HSRIC) ID: 11738 NICE ID: 9624
    NIHR Innovation Observatory Evidence Briefing: February 2018 Pentetrazol for idiopathic hypersomnia and narcolepsy type 2 NIHRIO (HSRIC) ID: 11738 NICE ID: 9624 LAY SUMMARY Hypersomnia means excessive sleepiness and sleeping, when the person struggles to stay awake during the day and has great difficulty being awakened from sleep. When there is no clear cause, this condition is called idiopathic hypersomnia (IH). Narcolepsy is a rare long-term brain disorder that causes a person to suddenly fall asleep at inappropriate times. Sometimes narcolepsy is associated with temporary loss of muscle control that causes weakness and possible collapse (cataplexy). This type of narcolepsy is called Type 1 narcolepsy. When narcolepsy is not associated with cataplexy is called type 2 narcolepsy. Narcolepsy and IH are very similar conditions. Pentetrazol is a medicinal product that is being developed for the treatment of IH and narcolepsy type 2. Pentetrazol is administered orally and it acts by blocking the effect of a chemical substance called Gamma-Aminobutyric Acid (GABA). GABA is thought to play a role in promoting sleeping and is believed to be elevated in people with IH. If licensed, Pentetrazol will offer a new treatment option for patients with IH or narcolepsy type 2. This briefing reflects the evidence available at the time of writing. A version of the briefing was sent to the company for a factual accuracy check. The company was unavailable to provide comment. It is not intended to be a definitive statement on the safety, efficacy or effectiveness of the health technology covered and should not be used for commercial purposes or commissioning without additional information.
    [Show full text]
  • Phencyclidine: an Update
    Phencyclidine: An Update U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES • Public Health Service • Alcohol, Drug Abuse and Mental Health Administration Phencyclidine: An Update Editor: Doris H. Clouet, Ph.D. Division of Preclinical Research National Institute on Drug Abuse and New York State Division of Substance Abuse Services NIDA Research Monograph 64 1986 DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Alcohol, Drug Abuse, and Mental Health Administratlon National Institute on Drug Abuse 5600 Fishers Lane Rockville, Maryland 20657 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, DC 20402 NIDA Research Monographs are prepared by the research divisions of the National lnstitute on Drug Abuse and published by its Office of Science The primary objective of the series is to provide critical reviews of research problem areas and techniques, the content of state-of-the-art conferences, and integrative research reviews. its dual publication emphasis is rapid and targeted dissemination to the scientific and professional community. Editorial Advisors MARTIN W. ADLER, Ph.D. SIDNEY COHEN, M.D. Temple University School of Medicine Los Angeles, California Philadelphia, Pennsylvania SYDNEY ARCHER, Ph.D. MARY L. JACOBSON Rensselaer Polytechnic lnstitute National Federation of Parents for Troy, New York Drug Free Youth RICHARD E. BELLEVILLE, Ph.D. Omaha, Nebraska NB Associates, Health Sciences Rockville, Maryland REESE T. JONES, M.D. KARST J. BESTEMAN Langley Porter Neuropsychiatric lnstitute Alcohol and Drug Problems Association San Francisco, California of North America Washington, D.C. DENISE KANDEL, Ph.D GILBERT J. BOTV N, Ph.D. College of Physicians and Surgeons of Cornell University Medical College Columbia University New York, New York New York, New York JOSEPH V.
    [Show full text]
  • Alcohol Withdrawal
    Alcohol withdrawal TERMINOLOGY CLINICAL CLARIFICATION • Alcohol withdrawal may occur after cessation or reduction of heavy and prolonged alcohol use; manifestations are characterized by autonomic hyperactivity and central nervous system excitation 1, 2 • Severe symptom manifestations (eg, seizures, delirium tremens) may develop in up to 5% of patients 3 CLASSIFICATION • Based on severity ○ Minor alcohol withdrawal syndrome 4, 5 – Manifestations occur early, within the first 48 hours after last drink or decrease in consumption 6 □ Manifestations develop about 6 hours after last drink or decrease in consumption and usually peak about 24 to 36 hours; resolution occurs in 2 to 7 days 7 if withdrawal does not progress to major alcohol withdrawal syndrome 4 – Characterized by mild autonomic hyperactivity (eg, tachycardia, hypertension, diaphoresis, hyperreflexia), mild tremor, anxiety, irritability, sleep disturbances (eg, insomnia, vivid dreams), gastrointestinal symptoms (eg, anorexia, nausea, vomiting), headache, and craving alcohol 4 ○ Major alcohol withdrawal syndrome 5, 4 – Progression and worsening of withdrawal manifestations, usually after about 24 hours from the onset of initial manifestations 4 □ Manifestations often peak around 50 hours before gradual resolution or may continue to progress to severe (complicated) withdrawal, particularly without treatment 4 – Characterized by moderate to severe autonomic hyperactivity (eg, tachycardia, hypertension, diaphoresis, hyperreflexia, fever); marked tremor; pronounced anxiety, insomnia,
    [Show full text]