The Indonesian Throughflow)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Banda Islands, Indonesia
INSULARITY AND ADAPTATION INVESTIGATING THE ROLE OF EXCHANGE AND INTER-ISLAND INTERACTION IN THE BANDA ISLANDS, INDONESIA Emily J. Peterson A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2015 Reading Committee: Peter V. Lape, Chair James K. Feathers Benjamin Marwick Program Authorized to Offer Degree: Anthropology ©Copyright 2015 Emily J. Peterson University of Washington Abstract Insularity and Adaptation Investigating the role of exchange and inter-island interaction in the Banda Islands, Indonesia Emily J. Peterson Chair of the Supervisory Committee: Professor Peter V. Lape Department of Anthropology Trade and exchange exerted a powerful force in the historic and protohistoric past of Island Southeast Asian communities. Exchange and interaction are also hypothesized to have played an important role in the spread of new technologies and lifestyles throughout the region during the Neolithic period. Although it is clear that interaction has played an important role in shaping Island Southeast Asian cultures on a regional scale, little is known about local histories and trajectories of exchange in much of the region. This dissertation aims to improve our understanding of the adaptive role played by exchange and interaction through an exploration of change over time in the connectedness of island communities in the Banda Islands, eastern Indonesia. Connectedness is examined by measuring source diversity for two different types of archaeological materials. Chemical characterization of pottery using LA-ICP-MS allows the identification of geochemically different paste groups within the earthenware assemblages of two Banda Islands sites. Source diversity measures are employed to identify differences in relative connectedness between these sites and changes over time. -
Ambon – Banda Sea – Alor- Maumere
DAY ITINERARY WITH MV MERMAID I BIODIVERSITY SPECIAL RING DIVES OF FIRE – AMBON – BANDA SEA – ALOR- MAUMERE DAY 1 Check-in on board Mermaid I. After arriving at Ambon and a safety briefing. You will do dives two dives at Ambon Bay in some fabulous muck dives with critters galore. This area is known for many rare and unusual species including the psychedelic frogfish and 2 Rhinopias. DAY 2-3 The next two days will be spent in the Banda Islands, formerly known as the Spice dives Islands. Many of the dive sites around the Banda islands are wall dives. The walls are covered in massive gorgonians, soft corals, barrel sponges and have some very 7 interesting swim throughs. But there are other attractive dive sites such as pinnacles with enormous groups of schooling pyramid butterflyfish, triggerfish and pelagic fishes such as tunas passing through, spectacular hard coral reefs next to the volcano, and great muck dives with lots of mandarin fish at the local jetty. The Banda Islands are much more than diving. It is also a cultural and historical experience. You will spend one morning walking around the village of Banda Neira the main island, with a local guide, visiting the local museum, the old Dutch fort, the old colonial governor’s house, the local fish market and a nutmeg plantation, where you will have breakfast. DAY 4 Manuk – Snake Volcano – sometimes has more snakes than Gunung Api. Still no need dives to be afraid! The site also offers a black sand reef dive with loads of fish and pretty hard corals. -
Ocean Wave Characteristics in Indonesian Waters for Sea Transportation Safety and Planning
IPTEK, The Journal for Technology and Science, Vol. 26, No. 1, April 2015 19 Ocean Wave Characteristics in Indonesian Waters for Sea Transportation Safety and Planning Roni Kurniawan1 and Mia Khusnul Khotimah2 AbstractThis study was aimed to learn about ocean wave characteristics and to identify times and areas with vulnerability to high waves in Indonesian waters. Significant wave height of Windwaves-05 model output was used to obtain such information, with surface level wind data for 11 years period (2000 to 2010) from NCEP-NOAA as the input. The model output data was then validated using multimission satellite altimeter data obtained from Aviso. Further, the data were used to identify areas of high waves based on the high wave’s classification by WMO. From all of the processing results, the wave characteristics in Indonesian waters were identified, especially on ALKI (Indonesian Archipelagic Sea Lanes). Along with it, which lanes that have high potential for dangerous waves and when it occurred were identified as well. The study concluded that throughout the years, Windwaves-05 model had a magnificent performance in providing ocean wave characteristics information in Indonesian waters. The information of height wave vulnerability needed to make a decision on the safest lanes and the best time before crossing on ALKI when the wave and its vulnerability is likely low. Throughout the years, ALKI II is the safest lanes among others since it has been identified of having lower vulnerability than others. The knowledge of the wave characteristics for a specific location is very important to design, plan and vessels operability including types of ships and shipping lanes before their activities in the sea. -
Guest Experience
Guest Experience Contents The Amanwana Experience 3 Spa & Wellness 29 During Your Stay 5 Amanwana Spa Facilities 29 A New Spa Language 30 Aman Signature Rituals 32 Amanwana Dive Centre 7 Nourishing 33 Grounding 34 Diving at Amanwana Bay 7 Purifying 35 Diving at the Outer Reefs 8 Body Treatments 37 Diving at Satonda Island 10 Massages 38 Night Diving 13 Courses & Certifications 14 Moyo Conservation Fund 41 At Sea & On Land 17 Island Conservation 41 Species Protection 42 Water Sports 17 Community Outreach & Excursions 18 Camp Responsibility 43 On the Beach 19 Trekking & Cycling 20 Amanwana Kids 45 Leisure Cruises & Charters 23 Little Adventurers 45 Leisure Cruises 23 Fishing 24 Charters 25 Dining Experiences 27 Memorable Moments 27 2 The Amanwana Experience Moyo Island is located approximately eight degrees south of the equator, within the regency of Nusa Tenggara Barat. The island has been a nature reserve since 1976 and measures forty kilometres by ten kilometres, with a total area of 36,000 hectares. Moyo’s highest point is 600 meters above the Flores Sea. The tropical climate provides a year-round temperature of 27-30°C and a consistent water temperature of around 28°C. There are two distinct seasons. The monsoon or wet season is from December to March and the dry season from April to November. The vegetation on the island ranges from savannah to dense jungle. The savannah land dominates the plateaus and the jungle the remaining areas. Many varieties of trees are found on the island, such as native teak, tamarind, fig, coral and banyan. -
The Seasonal Variability of Sea Surface Temperature and Chlorophyll-A Concentration in the South of Makassar Strait
Available online at www.sciencedirect.com ScienceDirect Procedia Environmental Sciences 33 ( 2016 ) 583 – 599 The 2nd International Symposium on LAPAN-IPB Satellite for Food Security and Environmental Monitoring 2015, LISAT-FSEM 2015 The seasonal variability of sea surface temperature and chlorophyll-a concentration in the south of Makassar Strait Bisman Nababan*, Novilia Rosyadi, Djisman Manurung, Nyoman M. Natih, and Romdonul Hakim Department of Marine Science and Technology, Bogor Agricultural University, Jl. Lingkar Akademik, Kampus IPB Darmaga, Bogor 16680, Indonesia Abstract The sea surface temperature (SST) and chlorophyll-a (Chl-a) variabilities in the south of Makassar Strait were mostly affected by monsoonal wind speed/directions and riverine freshwater inflows. The east-southeast (ESE) wind (May-October) played a major role in an upwelling formation in the region starting in the southern tip of the southern Sulawesi Island. Of the 17 years time period, the variability of the SST values ranged from 25.7°C (August 2004) - 30.89°C (March 2007). An upwelling initiation typically occurred in early May when ESE wind speed was at <5 m/s, a fully developed upwelling event usually occurred in June when ESE wind speed reached >5 m/s, whereas the largest upwelling event always occurred in August of each year. Upwelling event generally diminished in September and terminated in October. At the time of the maximum upwelling events (August), the formation of upwelling could be observed up to about 330 km toward the southwest of the southern tip of the Sulawesi island. Interannually, El Niño Southern Oscillation (ENSO) intensified the upwelling event during the east season through an intensification of the ESE wind speed. -
Indonesian Seas by Global Ocean Associates Prepared for Office of Naval Research – Code 322 PO
An Atlas of Oceanic Internal Solitary Waves (February 2004) Indonesian Seas by Global Ocean Associates Prepared for Office of Naval Research – Code 322 PO Indonesian Seas • Bali Sea • Flores Sea • Molucca Sea • Banda Sea • Java Sea • Savu Sea • Cream Sea • Makassar Strait Overview The Indonesian Seas are the regional bodies of water in and around the Indonesian Archipelago. The seas extend between approximately 12o S to 3o N and 110o to 132oE (Figure 1). The region separates the Pacific and Indian Oceans. Figure 1. Bathymetry of the Indonesian Archipelago. [Smith and Sandwell, 1997] Observations Indonesian Archipelago is most extensive archipelago in the world with more than 15,000 islands. The shallow bathymetry and the strong tidal currents between the islands give rise to the generation of internal waves throughout the archipelago. As a result there are a very 453 An Atlas of Oceanic Internal Solitary Waves (February 2004) Indonesian Seas by Global Ocean Associates Prepared for Office of Naval Research – Code 322 PO large number of internal wave sources throughout the region. Since the Indonesian Seas boarder the equator, the stratification of the waters in this sea area does not change very much with season, and internal wave activity is expected to take place all year round. Table 2 shows the months of the year during which internal waves have been observed in the Bali, Molucca, Banda and Savu Seas Table 1 - Months when internal waves have been observed in the Bali Sea. (Numbers indicate unique dates in that month when waves have been noted) Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec 12111 11323 Months when Internal Waves have been observed in the Molucca Sea. -
Summary: This Manuscript Contributes a Reconstruction of Paleo Sea-Level Position at 24 Points in Time Throughout the Mid to Late Holocene
cp-2019-63 Review Feb. 2020 Late Holocene (0-6ka) sea-level changes in the Makassar Strait, Indonesia (Bender et al.) Summary: This manuscript contributes a reconstruction of paleo sea-level position at 24 points in time throughout the mid to late Holocene. Authors interpret the new sea-level index points from the age, elevation, and paleo-water depth interpretation of fossil fringing reefs across SE Sulawesi near Makassar, Indonesia. In contrast to other coral-based reconstructions of past sea- level changes, but in keeping with other Holocene reconstructions from the SW Pacific (e.g. Hallmann et al., 2018), authors evaluate fossil reef growth in a fascinating morphology – microatolls – highlighting the potential for reconstructing past sea-level in great detail using this approach. Additionally, authors combine new data with previous data from two other islands near Makassar (recalculated results of three previous studies to directly compare them), which demonstrate higher-than-present relative (local) sea-level (RSL) during the late Holocene. Results and methods described here underscore the importance of evaluating fossil microatolls in the context of nearby living microatolls. Authors directly compare the elevations of fossil microatolls with their modern counterparts to evaluate the relationship between highest living coral (HLC) and the tidal cycle. Similar to previous works, this study finds that this relationship varies greatly on small spatial scales. To reconstruct paleo sea-level from fossil microatoll elevation requires the assumption that the relationship between HLC and the tidal cycle at that site has remained the same since the microatoll formed. Wisely, this study does not attempt to “connect the dots” and provide an RSL curve, but instead provides sea-level index points that can be compared with other Holocene RSL reconstructions and RSL predictions from GIA modeling. -
Bay of Bengal: from Monsoons to Mixing Ocethe Officiala Magazinen Ogof the Oceanographyra Societyphy
The Oceanography Society Non Profit Org. THE OFFICIAL MAGAZINE OF THE OCEANOGRAPHY SOCIETY P.O. Box 1931 U.S. Postage Rockville, MD 20849-1931 USA PAID Washington, DC ADDRESS SERVICE REQUESTED Permit No. 251 OceVOL.29, NO.2,a JUNEn 2016 ography Register now to attend this conference for international scientific profes- sionals and students. Virtually every facet of ocean color remote sensing and optical oceanography will be presented, including basic research, technological development, environmental management, and policy. October 23–28, 2016 | Victoria, BC, Canada Registration is open! The oral presentation schedule is available on the conference website Submission of abstracts for poster presentation remains open through summer 2016. www.oceanopticsconference.org Bay of Bengal: From Monsoons to Mixing OceTHE OFFICIALa MAGAZINEn ogOF THE OCEANOGRAPHYra SOCIETYphy CITATION Susanto, R.D., Z. Wei, T.R. Adi, Q. Zheng, G. Fang, B. Fan, A. Supangat, T. Agustiadi, S. Li, M. Trenggono, and A. Setiawan. 2016. Oceanography surrounding Krakatau Volcano in the Sunda Strait, Indonesia. Oceanography 29(2):264–272, http://dx.doi.org/10.5670/oceanog.2016.31. DOI http://dx.doi.org/10.5670/oceanog.2016.31 COPYRIGHT This article has been published in Oceanography, Volume 29, Number 2, a quarterly journal of The Oceanography Society. Copyright 2016 by The Oceanography Society. All rights reserved. USAGE Permission is granted to copy this article for use in teaching and research. Republication, systematic reproduction, or collective redistribution of any portion of this article by photocopy machine, reposting, or other means is permitted only with the approval of The Oceanography Society. Send all correspondence to: [email protected] or The Oceanography Society, PO Box 1931, Rockville, MD 20849-1931, USA. -
05. Dida Kusnida.Cdr
Geo-Science J.G.S.M. Vol. 17 No. 2 Mei 2016 hal. 99 - 106 Depositional Modification in Seram Trough, Eastern Indonesia Modifikasi Pengendapan di Palung Seram, Indonesia Timur Dida Kusnida, Tommy Naibaho, and Yulinar Firdaus Marine Geological Institute of Indonesia, Jl. Dr. Djundjunan 236, Bandung-40174 [email protected] Naskah diterima : 1 Maret 2016, Revisi terakhir : 3 Mei 2016, Disetujui : 4 Mei 2016 Abstract - Seismic reflection profiles considered to Abstrak - Penampang rekaman seismik yang dianggap represent the morphotectonics of the study area and mewakili morfotektonik daerah studi dan diverifikasi verified by surficial sedimentary data presented in this dengan data sedimen permukaan yang disajikan dalam paper directed to understand the sedimentary depositional tulisan ini diarahkan untuk memahami dinamika dynamics. Seismic data interpretation results show the pengendapan sedimen. Hasil penafsiran data seismik gradation and sediment facies cycles in accordance with menunjukan gradasi dan siklus fasies sedimen sesuai the episode of tectonic activities, which is characterized by dengan episod aktivitas tektonik yang dicirikan oleh the avalanche of the Seram Trough base-of slopes longsoran material lereng Palung Seram. Data seismik materials. Seismic data reveal more than 1250 meters menunjukan lebih dari 1250 meter sedimen secara akustik acoustically chaotic to laminated, indicate fine-grained kaotik hingga berlapis, mencirikan sedimen berbutir sediments between slumps at its base of slope and fine halus antara slam pada lereng bagian bawah dan sedimen marine sediments at the trough floor. Thus, it suggests that marin halus pada lantai palung. Dengan demikian, diduga the Seram Trough is in the process of differential vertical bahwa Palung Seram berada dalam proses pergerakan movement causing depositional modification due to the vertikal diferensial yang menyebabkan terjadinya accretionary prism growths. -
VIII-16 Sulu-Celebes Sea: LME #37
VIII East Asian Seas 309 VIII-16 Sulu-Celebes Sea: LME #37 S. Heileman The Sulu-Celebes Sea LME is comprised of the Sulu and Celebes Seas, which are separated from each other by a deep trough and a chain of islands known as the Sulu Archipelago. The LME is bounded by northern Borneo (Malaysia), the southwest coast of the Philippines and Sulawesi Island (northern coast of Indonesia), but most of the LME falls within the archipelagic waters of either the Philippines or Indonesia. The LME covers an area of about one million km2, of which 1.03% is protected, and contains 6.17% and 0.22% of the world’s coral reefs and sea mounts, respectively (Sea Around Us 2007). A complex oceanography results from the Celebes’ strong currents, deep sea trenches, seamounts and active volcanic islands. The LME’s tropical climate is governed by the monsoon regime. During the southwest monsoon months, the northern and central parts of the region are affected by typhoons, which bring intense rains and destructive winds to coastal areas. There are more than 300 major watersheds and 14 major estuaries in the region. A report pertaining to this LME is UNEP (2005). I. Productivity The Sulu-Celebes Sea LME is considered a Class II, moderate productivity ecosystem (150-300 gCm-2yr-1). The tropical climate, warm waters, ocean currents and upwellings make this LME one of the world’s most biologically diverse marine environments. Located near the confluence of three major biogeographic zones and within the Indo- West Pacific centre of biodiversity, the region supports mega-diversity (Roberts et al. -
Reprinted from the Proceedings of the 4Th Pacific Science Congress, Java, 1929; from Vol
Reprinted from the Proceedings of the 4th Pacific Science Congress, Java, 1929; from Vol. III, 1930, pp. 1-6 (preprint, pp. 1-6, issued at Congress, May, 1929). The Hydrographic and Faunal Independence of certain isolated deepwater seas in Eastern Asia. by CARL L. HUBBS University of Michigan, U. S. A. One of the most fascinating phases of zoogeography, since the publication of WALLACE'S "Island Life", has been a comparison of the faunas of isolated regions. The faunas of islands are not the only ones segregated from one another : so also are those of mountain tops, of rivers, of continents and oceans themselves. Among the most interesting cases are those of isolated deepwater basins-freshwater lakes, saline inland seas, deep fjords, and partially enclosed seas, such as the Black Sea and the Mediterranean Sea. It is probable that a number of such seas exist in the highly complicated Indopacific region. Two seas of this sort have interested me, and they form a striking contrast with one another. The Sea of Japan, nearly enclosed by land or by straits which nowhere are depressed as much as 180 meters below sea level, receives through Chosen Strait at its south end a branch of the warm Kuro Shiwo, and through its northern straits cold subarctic waters, which of course dip down beneath the warm layers coming up from the south. DR. CHARLES HENRY GILBERT, whose recent death was a severe blow to the zoology of the Pacific, has related to me the taking by the Albatross during its 1906 cruise in Japan, of tropical pelagic animals over a subarctic bottom fauna. -
Origin of Marginal Basins of the NW Pacific and Their Plate Tectonic
Earth-Science Reviews 130 (2014) 154–196 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Origin of marginal basins of the NW Pacificandtheirplate tectonic reconstructions Junyuan Xu a,⁎, Zvi Ben-Avraham b,TomKeltyc, Ho-Shing Yu d a Department of Petroleum Geology, China University of Geosciences, Wuhan, 430074, China. b Department of Geophysics and Planetary Sciences, Tel Aviv University, Ramat Aviv 69978, Israel c Department of Geological Sciences, California State University, Long Beach, CA 90840, USA d Institute of Oceanography, National Taiwan University, Taipei, Taiwan article info abstract Article history: Geometry of basins can indicate their tectonic origin whether they are small or large. The basins of Bohai Gulf, Received 4 March 2013 South China Sea, East China Sea, Japan Sea, Andaman Sea, Okhotsk Sea and Bering Sea have typical geometry Accepted 3 October 2013 of dextral pull-apart. The Java, Makassar, Celebes and Sulu Seas basins together with grabens in Borneo also com- Available online 16 October 2013 prise a local dextral, transform-margin type basin system similar to the central and southern parts of the Shanxi Basin in geometry. The overall configuration of the Philippine Sea resembles a typical sinistral transpressional Keywords: “pop-up” structure. These marginal basins except the Philippine Sea basin generally have similar (or compatible) Marginal basins of the NW Pacific Dextral pull-apart rift history in the Cenozoic, but there do be some differences in the rifting history between major basins or their Sinistral transpressional pop-up sub-basins due to local differences in tectonic settings. Rifting kinematics of each of these marginal basins can be Uplift of Tibetan Plateau explained by dextral pull-apart or transtension.