Tree Physiology 40, 433–444 doi:10.1093/treephys/tpaa006 Research paper Dynamic surface tension of xylem sap lipids Downloaded from https://academic.oup.com/treephys/article-abstract/40/4/433/5728682 by guest on 24 April 2020 Jinlong Yang1, Joseph M. Michaud2, Steven Jansen3, H. Jochen Schenk2,5 and Yi Y. Zuo1,4,5 1Department of Mechanical Engineering, University of Hawaii at Manoa, 2540 Dole Street, Holmes Hall 302, Honolulu, HI 96822, USA; 2Department of Biological Science, California State University, 800 N. State College Blvd., Fullerton, CA 92831, USA; 3Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, Ulm D-89081, Germany; 4Department of Pediatrics, John A. Burns School of Medicine, University of Hawaii, 1319 Punahou Street, Honolulu, HI 96826, USA; 5Corresponding authors H.J. Schenk (
[email protected]); Y.Y.Zuo (
[email protected]) Received August 10, 2019; accepted January 13, 2020; handling Editor Kathy Steppe The surface tension of xylem sap has been traditionally assumed to be close to that of the pure water because decreasing surface tension is thought to increase vulnerability to air seeding and embolism. However, xylem sap contains insoluble lipid-based surfactants, which also coat vessel and pit membrane surfaces, where gas bubbles can enter xylem under negative pressure in the process known as air seeding. Because of the insolubility of amphiphilic lipids, the surface tension influencing air seeding in pit pores is not the equilibrium surface tension of extracted bulk sap but thelocal surface tension at gas–liquid interfaces, which depends dynamically on the local concentration of lipids per surface area.