A Physiologically Explicit Morphospace for Tracheid-Based Water Transport in Modern and Extinct Seed Plants
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Variation in Xylem Structure from Tropics to Tundra: Evidence from Vestured Pits
Variation in xylem structure from tropics to tundra: Evidence from vestured pits Steven Jansen*†, Pieter Baas‡, Peter Gasson§, Frederic Lens*, and Erik Smets* *Laboratory of Plant Systematics, Institute of Botany and Microbiology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium; ‡Nationaal Herbarium Nederland, Universiteit Leiden Branch, P.O. Box 9514, 2300 RA Leiden, The Netherlands; and §Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, United Kingdom Communicated by David L. Dilcher, University of Florida, Gainesville, FL, April 13, 2004 (received for review December 4, 2003) Bordered pits play an important role in permitting water flow among adjacent tracheary elements in flowering plants. Variation in the bordered pit structure is suggested to be adaptive in optimally balancing the conflict between hydraulic efficiency (con- ductivity) and safety from air entry at the pit membrane (air seeding). The possible function of vestured pits, which are bor- dered pits with protuberances from the secondary cell wall of the pit chamber, could be increased hydraulic resistance or minimized vulnerability to air seeding. These functional hypotheses have to be harmonized with the notion that the vestured or nonvestured nature of pits contains strong phylogenetic signals (i.e., often characterize large species-rich clades with broad ecological ranges). A literature survey of 11,843 species covering 6,428 genera from diverse climates indicates that the incidence of vestured pits considerably decreases from tropics to tundra. The highest fre- quencies of vestured pits occur in deserts and tropical seasonal woodlands. Moreover, a distinctly developed network of branched vestures is mainly restricted to warm habitats in both mesic and dry (sub)tropical lowlands, whereas vestures in woody plants from Fig. -
FOLIAR MORPHOLOGY and ANATOMY of the GIGANTOPTERID PLANT DELNORTEA ABBOTTIAE, from the LOWER PERMIAN of WEST Texasl
Arner. J. Bot. 75(9): 1409-1433. 1988. FOLIAR MORPHOLOGY AND ANATOMY OF THE GIGANTOPTERID PLANT DELNORTEA ABBOTTIAE, FROM THE LOWER PERMIAN OF WEST TEXASl SERGIUS H. MAMAY,2 JOHN M. MILLER,3 DAVID M. ROHR,4 AND WILLIAM E. STEIN, JR.5 'Department of Paleobiology, Smithsonian Institution, Washington, DC 20560; 'Department of Botany, Oregon State University, Corvallis, Oregon 97331; 4Department ofGeology, SuI Ross State University, Alpine, Texas 79832; and 'Museum of Paleontology, University of Michigan, Ann Arbor, Michigan 48109 ABSTRACT Delnortea is a monotypic genus (type-species: D. abbottiae) ofLower Permian gymnosperms based on leaves from uppermost Leonardian deltaic sediments exposed in the Del Norte Moun tains, West Texas. The leaves are simple, symmetrical, mostly oblong or elliptical, and vary in length from 1.2 to about 35 ern. The petioles are short and stout, with a basally enlarged abscission zone. The margins are crenate, with a narrow, indurated border. Venation is in 4 orders: the secondaries and tertiaries are robust, unbranched, and pinnately arranged in a precise "herringbone" pattern, with the secondaries ending in the marginal sinuses; the quaternaries divide sparingly and fuse with others to form a dense reticulum ofsmall meshes. Permineralized petiole and midrib material reflects a bifacial cambium, shown by a semicircular vascular arc, irregularly divided into several collateral bundles with secondary xylem and phloem. Delnortea is referable to the Gigantopteridaceae, a probably artificial family of gymnosperms incertae sedis with important venation features in common, but without known diagnostic reproductive organs. With Delnortea. the North American gigantopterids now include 5 genera, but Gigan topteris itselfis lacking. -
Maximum Height in a Conifer Is Associated with Conflicting Requirements for Xylem Design
Maximum height in a conifer is associated with conflicting requirements for xylem design Jean-Christophe Domec*†, Barbara Lachenbruch†‡, Frederick C. Meinzer†§, David R. Woodruff§, Jeffrey M. Warren¶, and Katherine A. McCulloh‡ *Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27795; ‡Department of Wood Science and Engineering, Oregon State University, Corvallis, OR 97331; §Forestry Sciences Laboratory, United States Department of Agriculture Forest Service, 3200 SW Jefferson Way, Corvallis, OR 97331; and ¶Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 Edited by Michelle Holbrook, Harvard University, and accepted by the Editorial Board June 5, 2008 (received for review November 1, 2007) Despite renewed interest in the nature of limitations on maximum creases with height, trees must strike a balance between limiting tree height, the mechanisms governing ultimate and species- the risk of embolism and maintaining adequate capacity for specific height limits are not yet understood, but they likely involve water transport to the leaves. This tradeoff of xylem safety water transport dynamics. Tall trees experience increased risk of against efficiency may impose structural limits on tree height xylem embolism from air-seeding because tension in their water concomitant with reduced capacity of processes, such as photo- column increases with height because of path-length resistance synthesis and growth, to adjust to vertical gradients of increasing and gravity. We used morphological measurements to estimate the xylem tension (9, 10). hydraulic properties of the bordered pits between tracheids in Douglas-fir tracheids are elongate dead cells Ϸ1–4 mm long Douglas-fir trees along a height gradient of 85 m. -
A Physiologically Explicit Morphospace for Tracheid-Based Water Transport in Modern and Extinct Seed Plants
A Physiologically Explicit Morphospace for Tracheid-based Water Transport in Modern and Extinct Seed Plants The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Wilson, Jonathan P., and Andrew H. Knoll. 2010. A physiologically explicit morphospace for tracheid-based water transport in modern and extinct seed plants. Paleobiology 36(2): 335-355. Published Version doi:10.1666/08071.1 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:4795216 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP Wilson - 1 A Physiologically Explicit Morphospace for Tracheid-Based Water Transport in Modern and Extinct Seed Plants Jonathan P. Wilson* Andrew H. Knoll September 7, 2009 RRH: PHYSIOLOGICALLY EXPLICIT MORPHOSPACE LRH: JONATHAN P. WILSON AND ANDREW H. KNOLL Wilson - 2 Abstract We present a morphometric analysis of water transport cells within a physiologically explicit three-dimensional space. Previous work has shown that cell length, diameter, and pit resistance govern the hydraulic resistance of individual conducting cells; thus, we use these three parameters as axes for our morphospace. We compare living and extinct plants within this space to investigate how patterns of plant conductivity have changed over evolutionary time. Extinct coniferophytes fall within the range of living conifers, despite differences in tracheid-level anatomy. Living cycads, Ginkgo biloba, the Miocene fossil Ginkgo beckii, and extinct cycadeoids overlap with both conifers and vesselless angiosperms. -
University of Birmingham an Anatomically Advanced Species Of
University of Birmingham An anatomically advanced species of the fern Botryopteris Renault from the Permian of southwestern China He, Xiao-Yuan; Wang, Shi-Jun; Hilton, Jason; Galtier, Jean; Jiang, Hong-Guan DOI: 10.1016/j.revpalbo.2019.104136 License: Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) Document Version Peer reviewed version Citation for published version (Harvard): He, X-Y, Wang, S-J, Hilton, J, Galtier, J & Jiang, H-G 2020, 'An anatomically advanced species of the fern Botryopteris Renault from the Permian of southwestern China', Review of Palaeobotany and Palynology, vol. 273, 104136, pp. 1-13. https://doi.org/10.1016/j.revpalbo.2019.104136 Link to publication on Research at Birmingham portal General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain. Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. -
VERTEBRATE DISPERSAL of SEED PLANTS THROUGH TIME Bruce H
6 Oct 2004 19:41 AR AR229-ES35-01.tex AR229-ES35-01.sgm LaTeX2e(2002/01/18) P1: GJB 10.1146/annurev.ecolsys.34.011802.132535 Annu. Rev. Ecol. Evol. Syst. 2004. 35:1–29 doi: 10.1146/annurev.ecolsys.34.011802.132535 Copyright c 2004 by Annual Reviews. All rights reserved First published online as a Review in Advance on May 25, 2004 VERTEBRATE DISPERSAL OF SEED PLANTS THROUGH TIME Bruce H. Tiffney Department of Geological Sciences, University of California, Santa Barbara, California 93106; email: [email protected] KeyWords angiosperm, gymnosperm, fossil seed, fossil fruit, evolution, coevolution ■ Abstract Vertebrate dispersal of fruits and seeds is a common feature of many modern angiosperms and gymnosperms, yet the evolution and frequency of this fea- ture in the fossil record remain unclear. Increasingly complex information suggests that (a) plants had the necessary morphological features for vertebrate dispersal by the Pennsylvanian, but possibly in the absence of clear vertebrate dispersal agents; (b)vertebrate herbivores first diversified in the Permian, and consistent dispersal re- lationships became possible; (c) the Mesozoic was dominated by large herbivorous dinosaurs, possible sources of diffuse, whole-plant dispersal; (d) simultaneously, sev- eral groups of small vertebrates, including lizards and, in the later Mesozoic, birds and mammals, could have established more specific vertebrate-plant associations, but supporting evidence is rudimentary; and (e) the diversification of small mammals and birds in the Tertiary established a consistent basis for organ-level interactions, allowing for the widespread occurrence of biotic dispersal in gymnosperms and angiosperms. INTRODUCTION The dispersal of seeds and fruits by vertebrates (Corlett 1998, Wenny 2001, Clark et al. -
University of Birmingham Gigantopteris Schenk Ex Yabe in the Capitanian–Wuchiapingian
University of Birmingham Gigantopteris Schenk ex Yabe in the Capitanian–Wuchiapingian (middle-late Permian) ora of central Shanxi in North China He, Xue-Zhi; Wang, Shi-Jun; Wan, Ming-Li; Hilton, Jason; Wang, Jun DOI: 10.1016/j.jseaes.2015.11.009 License: None: All rights reserved Document Version Peer reviewed version Citation for published version (Harvard): He, X-Z, Wang, S-J, Wan, M-L, Hilton, J & Wang, J 2016, 'Gigantopteris Schenk ex Yabe in the Capitanian–Wuchiapingian (middle-late Permian) ora of central Shanxi in North China: palaeobiogeographical and palaeoecological implications', Journal of Asian Earth Sciences, vol. 116, pp. 115-121. https://doi.org/10.1016/j.jseaes.2015.11.009 Link to publication on Research at Birmingham portal General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain. Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. -
Pits with Aspiration Explain Life Expectancy of a Conifer Species
COMMENTARY Pits with aspiration explain life expectancy of a conifer species COMMENTARY Steven Jansena,1 and Scott McAdama,b Considerable attention has been given to the well- growth rate and longevity of P. ponderosa within and known growth–longevity trade-off in biology, but mech- between populations. Large torus overlap values were anistic explanations for this trade-off remain incompletely found in both young and old slow-growing trees, the understood. While a life history trade-off is generally oldest of which had lived for 450 y, while fast-growing assumed to result from resource allocation conflicts (1), trees showed narrower torus overlap and reached a Roskilly et al. (2) provide convincing evidence that a maximum age of 125 y only. Although Roskilly et al. single trait of xylem anatomy governs the growth– do not include hydraulic or gas exchange measure- longevity trade-off in the conifer species Pinus ponder- ments, it is likely that the difference in torus overlap osa. By applying a dendrochronological approach to between these 2 cohorts has major consequences for uncouple the effects of xylem anatomy on tree age the hydraulic safety and efficiency of the xylem, and and size, the authors show that the micromorphology consequently photosynthetic capacity and growth rates of bordered pits may provide a mechanistic explanation (Fig. 1). While torus overlap is known to be the main for why fast-growing trees of P. ponderosa have a much determinant of embolism resistance, it is less clear how shorter life span than their slow-growing counterparts. torus overlap relates to hydraulic efficiency. -
Generating and Testing Hypotheses About the Fossil Record of Insect
bioRxiv preprint doi: https://doi.org/10.1101/2021.07.16.452692; this version posted July 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Generating and testing hypotheses about the 2 fossil record of insect herbivory with a 3 theoretical ecospace 1,* 1 1 2,3,4 4 Sandra R. Schachat , Jonathan L. Payne , C. Kevin Boyce , Conrad C. Labandeira 5 1. Department of Geological Sciences, Stanford University, Stanford, CA, United States 6 2. Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, 7 DC, United States 8 3. Department of Entomology, University of Maryland, College Park, College Park, MD, United States 9 4. College of Life Sciences, Academy for Multidisciplinary Studies, Capital Normal University, Beijing, China 10 * Author for correspondence: [email protected] 11 Abstract 12 A typical fossil flora examined for insect herbivory contains a few hundred leaves and a dozen or two 13 insect damage types. Paleontologists employ a wide variety of metrics to assess differences in herbivory 14 among assemblages: damage type diversity, intensity (the proportion of leaves, or of leaf surface area, 15 with insect damage), the evenness of diversity, and comparisons of the evenness and diversity of the flora 16 to the evenness and diversity of damage types. Although the number of metrics calculated is quite large, 17 given the amount of data that is usually available, the study of insect herbivory in the fossil record still 18 lacks a quantitative framework that can be used to distinguish among different causes of increased insect 19 herbivory and to generate null hypotheses of the magnitude of changes in insect herbivory over time. -
A Molecular Biomarker for End-Permian Plant Extinction In
https://doi.org/10.1130/G49123.1 Manuscript received 6 April 2021 Revised manuscript received 27 June 2021 Manuscript accepted 1 July 2021 © 2021 The Authors. Gold Open Access: This paper is published under the terms of the CC-BY license. A molecular biomarker for end-Permian plant extinction in South China Chunjiang Wang1* and Henk Visscher2* 1 College of Geosciences, and State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China 2 Faculty of Geosciences, Utrecht University, 3584CS Utrecht, The Netherlands ABSTRACT remaining islands were the domain of the clas- To help resolve current controversies surrounding the fundamental question of synchrony sic late Permian Gigantopteris wetland flora, the between end-Permian mass extinction on land and in the sea, we examined the marine Perm- final phase in the development of the Pennsyl- ian–Triassic reference section at Meishan (southeastern China) for land-derived molecular vanian–Permian Cathaysian floral province of degradation products of pentacyclic triterpenoids with oleanane carbon skeletons, diagnostic East Asia. Macrofossil and spore-pollen records for the Permian plant genus Gigantopteris. We identified a continuous quantitative record of have been analyzed from multiple boundary sec- mono-aromatic des-A-oleanane, which abruptly ends in the main marine extinction interval tions deposited in fluvial and coastal settings, just below the Permian-Triassic boundary. This taxon-specific molecular biomarker, therefore, particularly in the provinces of Guizhou and reveals in unmatched detail the timing and tempo of the demise of one of the most distinc- Yunnan in southwestern China (e.g., Ouyang, tive Permian plants and provides evidence of synchronous extinction among continental and 1982; Peng et al., 2006; Yu et al., 2015; Chu marine organisms. -
The Fossil Record of Plant-Insect Dynamics
EA41CH12-Labandeira ARI 19 April 2013 15:52 The Fossil Record of Plant-Insect Dynamics Conrad C. Labandeira1,2,3,4 and Ellen D. Currano5 1Department of Paleobiology, National Museum of Natural History, Washington, District of Columbia 20013; email: [email protected] 2Department of Geology, Rhodes University, Grahamstown 6140, South Africa 3College of Life Sciences, Capital Normal University, Beijing 100048, China 4Department of Entomology and BEES Program, University of Maryland, College Park, Maryland 20742 5Department of Geology and Environmental Earth Science, Miami University, Oxford, Ohio 45056; email: [email protected] Annu. Rev. Earth Planet. Sci. 2013. 41:287–311 Keywords First published online as a Review in Advance on damage type, end-Cretaceous event, functional feeding group, herbivory, March 7, 2013 Paleocene-Eocene Thermal Maximum, pollination The Annual Review of Earth and Planetary Sciences is online at earth.annualreviews.org Abstract This article’s doi: Progress toward understanding the dynamics of ancient plant-insect associa- 10.1146/annurev-earth-050212-124139 tions has addressed major patterns in the ecology and evolution of herbivory Copyright c 2013 by Annual Reviews. and pollination. This advancement involves development of more analyti- All rights reserved Annu. Rev. Earth Planet. Sci. 2013.41:287-311. Downloaded from www.annualreviews.org cal ways of describing plant-insect associational patterns in time and space and an assessment of the role that the environment and internal biologi- cal processes have in their control. Current issues include the deep origins of terrestrial herbivory, the spread of herbivory across late Paleozoic land- by Smithsonian Institution Libraries - National Museum of Natural History Library on 06/05/13. -
Natural Selection Drives the Evolution of Ant Life Cycles
PERSPECTIVE PERSPECTIVE Natural selection drives the evolution of ant life cycles Edward O. Wilsona,1 and Martin A. Nowakb aMuseum of Comparative Zoology, Harvard University, Cambridge, MA 02138; and bProgram for Evolutionary Dynamics, Department of Organismic and Evolutionary Biology, and Department of Mathematics, Harvard University, Cambridge, MA 02138 Contributed by Edward O. Wilson, June 9, 2014 (sent for review December 17, 2013) The genetic origin of advanced social organization has long been one of the outstanding problems of evolutionary biology. Here we present an analysis of the major steps in ant evolution, based for the first time, to our knowledge, on combined recent advances in paleontology, phylogeny, and the study of contemporary life histories. We provide evidence of the causal forces of natural selection shaping several key phenomena: (i) the relative lateness and rarity in geological time of the emergence of eusociality in ants and other animal phylads; (ii) the prevalence of monogamy at the time of evolutionary origin; and (iii) the female-biased sex allocation observed in many ant species. We argue that a clear understanding of the evolution of social insects can emerge if, in addition to relatedness-based arguments, we take into account key factors of natural history and study how natural selection acts on alleles that modify social behavior. sociobiology | claustrality | adaptive radiation | inadequacy of inclusive fitness Comparative studies have revealed that from in the primitive termite species Zootermopsis insects, especially ants, leading to super- the moment of the evolutionary origin of nevadensis. During encounters of two adja- organisms (10–14). However, in almost all animal eusociality, which is at first facultative cent unrelated colonies nesting under bark, cases precise models of social interactions in nature, each worker is in a tug-of-war be- the single or multiple queens and kings of and evolutionary dynamics have not been tween it and the colony of which it is a part.