Cd300f Associates with IL-4 Receptor Α and Amplifies IL-4–Induced Immune Cell Responses

Total Page:16

File Type:pdf, Size:1020Kb

Cd300f Associates with IL-4 Receptor Α and Amplifies IL-4–Induced Immune Cell Responses CD300f associates with IL-4 receptor α and amplifies IL-4–induced immune cell responses Itay Moshkovitsa, Danielle Karo-Atara, Michal Itana, Hadar Reichmana, Perri Rozenberga, Netali Morgenstern-Ben-Barucha, Dana Shika, Aroa Ejarque-Ortizb, Alon Y. Hershkoc, Linjie Tiand, John E. Coligand, Joan Sayósb, and Ariel Munitza,1 aDepartment of Clinical Microbiology and Immunology, The Sackler School of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel; bImmunobiology Group, Centre d’Investigacions en Bioquímica i BiologiaMolecular en Nanomedicina-Nanomedicine Program, Hospital Universitari Vall d’Hebrón, Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona 08035, Spain; cLaboratory of Allergy and Clinical Immunology, Department of Medicine, The Herbert Center of Mast Cell Disorders, Meir Medical Center, Kfar Saba 44261, Israel; and dReceptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852 Edited by Warren J. Leonard, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, and approved June 4, 2015 (received for review April 24, 2015) IL-4 receptor (R) α, the common receptor chain for IL-4 and IL-13, is IL-4Rα chain possesses an intrinsic immunoreceptor tyrosine- a critical component in IL-4– and IL-13–mediated signaling and sub- based inhibitory motif (ITIM), which can suppress IL-4 (and sequent effector functions such as those observed in type 2 in- likely IL-13) signaling (8). In addition, stress-induced phospho- flammatory responses. Nonetheless, the existence of intrinsic protein 1 (STIP1) homology and U box-containing protein 1 pathways capable of amplifying IL-4Rα–induced responses remains (STUB1) interacts with IL-4Rα and targets it for degradation, thus unknown. In this study, we identified the myeloid-associated Ig re- terminating IL-4 or IL-13 signaling (9). It is unknown whether an ceptor CD300f as an IL-4–induced molecule in macrophages. Subse- additional receptor system exists that may act to amplify IL-4Rα quent analyses demonstrated that CD300f was colocalized and signaling and subsequent IL-4/IL-13–induced responses. −/− physically associated with IL-4Rα. Using Cd300f cells and recep- CD300 family members consist of nine transmembrane gly- tor cross-linking experiments, we established that CD300f ampli- coprotein receptors, which are expressed by a variety of immune fied IL-4Rα–induced responses by augmenting IL-4/IL-13–induced cells including eosinophils, dendritic cells, macrophages, and B signaling, mediator release, and priming. Consistently, IL-4– and −/− cells (10). The only CD300 family members that possess ITIMs aeroallergen-treated Cd300f mice displayed decreased IgE pro- in their intracellular domains are CD300f and CD300a, and are duction, chemokine expression, and inflammatory cell recruitment. thus potentially capable of suppressing immune cell activation Cd300f−/− Impaired responses in mice were not due to the inability by recruitment of phosphatases (10). Importantly, despite its to generate a proper Th2 response, because IL-4/IL-13 levels were known inhibitory activities (11, 12), CD300f can also exert cel- Cd300f−/− markedly increased in allergen-challenged mice, a finding lular activation and is required for phagocytosis of apoptotic cells that is consistent with decreased cytokine consumption. Finally, via recruitment of p85α of the PI3K signaling pathway (13, 14). CD300f expression was increased in monocytes and eosinophils The finding that the genetic loci (human chromosome 17q22-25) obtained from allergic rhinitis patients. Collectively, our data high- α– of CD300 members are under strong positive evolutionary se- light a previously unidentified role for CD300f in IL-4R induced lection suggests potent immune regulatory roles for these mole- − − immune cell responses. These data provide new insights into the mo- cules (15). Indeed, recent studies using Cd300f / mice revealed lecular mechanisms governing IL-4Rα–induced responses, and may key roles for CD300f in governing the activation of inflam- provide new therapeutic tools to target IL-4 in allergy and asthma. matory myeloid cells, mast cells, and eosinophils (11, 12, 16). However, the overall physiological function of CD300f is still IL-4 receptor | eosinophil | macrophage | CD300f | inflammation largely unknown. nterleukin (IL) 4 and IL-13 play pivotal roles in shaping the Significance Inature of type 2 immune responses. IL-4 is required for in- duction of IgE antibodies by B cells and the subsequent de- + α – – velopment of naïve CD4 T cells into Th2 cells (1). Furthermore, IL-4 receptor (R) is a critical component in IL-4 and IL-13 IL-4 and IL-13 can activate multiple cells of the myeloid lineage, mediated signaling and subsequent effector functions such as those including macrophages, dendritic cells, and eosinophils (2, 3). observed in allergy. Thus, it is a primary therapeutic target in For example, IL-4/IL-13–activated myeloid cells display an al- diseases such as atopic dermatitis and asthma. Despite extensive studies, it is unknown whether an additional receptor system ternatively activated phenotype, which is associated with the in- α duction of a distinct genetic signature, including the expression exists that may act to amplify IL-4R signaling and subsequent IL-4/IL-13–induced responses. We now report that CD300f is of specific mediators and enzymes (4). Furthermore, IL-4 in- α α– duces rapid eosinophil mediator release and priming (5). Thus, physically associated with IL-4R and potently amplifies IL-4R induced responses in vitro and in vivo. Our results establish IL-4 and IL-13 are primary therapeutic targets in Th2 diseases α such as allergy and asthma. CD300f as a previously unidentified IL-4R coreceptor. To the The majority of studies concerning IL-4 and/or IL-13 have best of our knowledge, this is the first report of an additional focused either on defining the cellular source for these cytokines receptor that serves to amplify the IL-4 signaling pathway. or on the respective expression and function of their receptor Author contributions: I.M., D.K.-A., A.E.-O., L.T., J.E.C., J.S., and A.M. designed research; chains. These studies revealed that the biological functions of I.M., D.K.-A., M.I., H.R., P.R., N.M.-B.-B., D.S., A.E.-O., A.Y.H., L.T., J.E.C., J.S., and A.M. IL-4 largely overlap with those of IL-13 due to the utilization of performed research; I.M., D.K.-A., M.I., H.R., P.R., N.M.-B.-B., D.S., A.E.-O., L.T., J.E.C., shared signaling components such as IL-4Rα, IL-13Rα1, and J.S., and A.M. analyzed data; and I.M., J.E.C., J.S., and A.M. wrote the paper. STAT-6 (6). Importantly, signaling elicited by these receptor The authors declare no conflict of interest. chains is regulated by various mechanisms. For example, differ- This article is a PNAS Direct Submission. ential expression of the common γ-chain and IL-13Rα1 chains in 1To whom correspondence should be addressed. Email: [email protected]. distinct cells renders them responsive to IL-4, IL-13, or both (7). This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. Furthermore, biochemical studies have demonstrated that the 1073/pnas.1507625112/-/DCSupplemental. 8708–8713 | PNAS | July 14, 2015 | vol. 112 | no. 28 www.pnas.org/cgi/doi/10.1073/pnas.1507625112 Downloaded by guest on September 23, 2021 (Fig. 1E and SI Appendix, Fig. S1). Thus, CD300f is an IL-4– induced molecule in macrophages. CD300f Is Physically Associated with IL-4Rα. Next, we examined the spatial distribution of CD300f in macrophages using confocal microscopy. CD300f was strongly codistributed, and associated with IL-4Rα both under baseline conditions and following IL-4 stimulation (Fig. 2A). Quantitation of colocalized pixels of CD300f and IL-4Rα revealed that 78.85 ± 13.49% of detected CD300f was colocalized with IL-4Rα and, vice versa, 51.55 ± 15.62% of IL-4Rα colocalized to the same region as CD300f (Fig. 2B). A similar colocalization pattern was demonstrated in BM-derived dendritic cells that highly express CD300f (SI Ap- pendix, Fig. S3). Although IL-4 activation increased the expres- sion of CD300f in macrophages, it did not increase the level of colocalization, which was observed under baseline conditions (Fig. 2 and SI Appendix, Fig. S3). Notably, and despite our efforts to precipitate CD300f or IL-4Rα from BM-derived macro- phages, we were unable to pull down any of these proteins (even Fig. 1. IL-4 up-regulates the expression of CD300f in macrophages. (A and B) WT and Cd300f−/− bone marrow-derived macrophages (BMMΦs) were alone) with the currently available commercial antibodies. As an stained for CD300f expression at baseline (A) and following cytokine ac- alternative approach, to definitely demonstrate the physical as- tivation (10 ng/mL, 24 h; A and B). (C and D) Time kinetics and dose- sociation between CD300f and IL-4Rα, we cotransfected HEK- dependent effects of IL-4 on CD300f expression. NA, nonactivated. 293T cells with IL-4Rα– (Fig. 2C; transfected cells are marked (E) Expression of CD300f by naïve and IL-4–treated peritoneal macro- as “+”; nontransfected cells are marked as “-”) and c-Myc–tagged + + phages (CD11b /F4/80 cells) is shown. Data represent n = 3; *P < 0.05, CD300f constructs or empty vectors. Subsequently, the cells were < < ± **P 0.01, ***P 0.001; error bars are mean SEM. lysed, c-Myc–precipitated (IP: anti–c-Myc), and blotted with anti–IL-4Rα (IB: anti–IL-4Rα) or anti–c-Myc (IB: anti–c-Myc) INFLAMMATION – as a surrogate tag for CD300f expression. Notably, c-Myc IMMUNOLOGY AND In this study, we demonstrate that CD300f is an IL-4 induced α molecule in macrophages that is physically associated with IL- coprecipitated with IL-4R only in cells that were cotransfected α with CD300f and IL-4Rα (Fig.
Recommended publications
  • Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
    Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only.
    [Show full text]
  • Tools for Cell Therapy and Immunoregulation
    RnDSy-lu-2945 Tools for Cell Therapy and Immunoregulation Target Cell TIM-4 SLAM/CD150 BTNL8 PD-L2/B7-DC B7-H1/PD-L1 (Human) Unknown PD-1 B7-1/CD80 TIM-1 SLAM/CD150 Receptor TIM Family SLAM Family Butyrophilins B7/CD28 Families T Cell Multiple Co-Signaling Molecules Co-stimulatory Co-inhibitory Ig Superfamily Regulate T Cell Activation Target Cell T Cell Target Cell T Cell B7-1/CD80 B7-H1/PD-L1 T cell activation requires two signals: 1) recognition of the antigenic peptide/ B7-1/CD80 B7-2/CD86 CTLA-4 major histocompatibility complex (MHC) by the T cell receptor (TCR) and 2) CD28 antigen-independent co-stimulation induced by interactions between B7-2/CD86 B7-H1/PD-L1 B7-1/CD80 co-signaling molecules expressed on target cells, such as antigen-presenting PD-L2/B7-DC PD-1 ICOS cells (APCs), and their T cell-expressed receptors. Engagement of the TCR in B7-H2/ICOS L 2Ig B7-H3 (Mouse) the absence of this second co-stimulatory signal typically results in T cell B7-H1/PD-L1 B7/CD28 Families 4Ig B7-H3 (Human) anergy or apoptosis. In addition, T cell activation can be negatively regulated Unknown Receptors by co-inhibitory molecules present on APCs. Therefore, integration of the 2Ig B7-H3 Unknown B7-H4 (Mouse) Receptors signals transduced by co-stimulatory and co-inhibitory molecules following TCR B7-H5 4Ig B7-H3 engagement directs the outcome and magnitude of a T cell response Unknown Ligand (Human) B7-H5 including the enhancement or suppression of T cell proliferation, B7-H7 Unknown Receptor differentiation, and/or cytokine secretion.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Flow Reagents Single Color Antibodies CD Chart
    CD CHART CD N° Alternative Name CD N° Alternative Name CD N° Alternative Name Beckman Coulter Clone Beckman Coulter Clone Beckman Coulter Clone T Cells B Cells Granulocytes NK Cells Macrophages/Monocytes Platelets Erythrocytes Stem Cells Dendritic Cells Endothelial Cells Epithelial Cells T Cells B Cells Granulocytes NK Cells Macrophages/Monocytes Platelets Erythrocytes Stem Cells Dendritic Cells Endothelial Cells Epithelial Cells T Cells B Cells Granulocytes NK Cells Macrophages/Monocytes Platelets Erythrocytes Stem Cells Dendritic Cells Endothelial Cells Epithelial Cells CD1a T6, R4, HTA1 Act p n n p n n S l CD99 MIC2 gene product, E2 p p p CD223 LAG-3 (Lymphocyte activation gene 3) Act n Act p n CD1b R1 Act p n n p n n S CD99R restricted CD99 p p CD224 GGT (γ-glutamyl transferase) p p p p p p CD1c R7, M241 Act S n n p n n S l CD100 SEMA4D (semaphorin 4D) p Low p p p n n CD225 Leu13, interferon induced transmembrane protein 1 (IFITM1). p p p p p CD1d R3 Act S n n Low n n S Intest CD101 V7, P126 Act n p n p n n p CD226 DNAM-1, PTA-1 Act n Act Act Act n p n CD1e R2 n n n n S CD102 ICAM-2 (intercellular adhesion molecule-2) p p n p Folli p CD227 MUC1, mucin 1, episialin, PUM, PEM, EMA, DF3, H23 Act p CD2 T11; Tp50; sheep red blood cell (SRBC) receptor; LFA-2 p S n p n n l CD103 HML-1 (human mucosal lymphocytes antigen 1), integrin aE chain S n n n n n n n l CD228 Melanotransferrin (MT), p97 p p CD3 T3, CD3 complex p n n n n n n n n n l CD104 integrin b4 chain; TSP-1180 n n n n n n n p p CD229 Ly9, T-lymphocyte surface antigen p p n p n
    [Show full text]
  • Phosphatidylethanolamine Phosphatidylserine and Cd300a
    The Biology and Disease Relevance of CD300a, an Inhibitory Receptor for Phosphatidylserine and Phosphatidylethanolamine This information is current as of September 30, 2021. Olatz Zenarruzabeitia, Joana Vitallé, Cristina Eguizabal, Venkateswara R. Simhadri and Francisco Borrego J Immunol 2015; 194:5053-5060; ; doi: 10.4049/jimmunol.1500304 http://www.jimmunol.org/content/194/11/5053 Downloaded from References This article cites 85 articles, 27 of which you can access for free at: http://www.jimmunol.org/content/194/11/5053.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 30, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2015 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Th eJournal of Brief Reviews Immunology The Biology and Disease Relevance of CD300a, an Inhibitory Receptor for Phosphatidylserine and Phosphatidylethanolamine ´ † ‡ Olatz Zenarruzabeitia,*x Joana Vitalle,* Cristina Eguizabal, Venkateswara R. Simhadri, and Francisco Borrego*, The CD300a inhibitory receptor belongs to the the association with adaptor proteins carrying ITAMs or CD300 family of cell surface molecules that regulate a PI3K-binding motif (YxxM) (1, 2).
    [Show full text]
  • Supplementary Material DNA Methylation in Inflammatory Pathways Modifies the Association Between BMI and Adult-Onset Non- Atopic
    Supplementary Material DNA Methylation in Inflammatory Pathways Modifies the Association between BMI and Adult-Onset Non- Atopic Asthma Ayoung Jeong 1,2, Medea Imboden 1,2, Akram Ghantous 3, Alexei Novoloaca 3, Anne-Elie Carsin 4,5,6, Manolis Kogevinas 4,5,6, Christian Schindler 1,2, Gianfranco Lovison 7, Zdenko Herceg 3, Cyrille Cuenin 3, Roel Vermeulen 8, Deborah Jarvis 9, André F. S. Amaral 9, Florian Kronenberg 10, Paolo Vineis 11,12 and Nicole Probst-Hensch 1,2,* 1 Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; [email protected] (A.J.); [email protected] (M.I.); [email protected] (C.S.) 2 Department of Public Health, University of Basel, 4001 Basel, Switzerland 3 International Agency for Research on Cancer, 69372 Lyon, France; [email protected] (A.G.); [email protected] (A.N.); [email protected] (Z.H.); [email protected] (C.C.) 4 ISGlobal, Barcelona Institute for Global Health, 08003 Barcelona, Spain; [email protected] (A.-E.C.); [email protected] (M.K.) 5 Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain 6 CIBER Epidemiología y Salud Pública (CIBERESP), 08005 Barcelona, Spain 7 Department of Economics, Business and Statistics, University of Palermo, 90128 Palermo, Italy; [email protected] 8 Environmental Epidemiology Division, Utrecht University, Institute for Risk Assessment Sciences, 3584CM Utrecht, Netherlands; [email protected] 9 Population Health and Occupational Disease, National Heart and Lung Institute, Imperial College, SW3 6LR London, UK; [email protected] (D.J.); [email protected] (A.F.S.A.) 10 Division of Genetic Epidemiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; [email protected] 11 MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, W2 1PG London, UK; [email protected] 12 Italian Institute for Genomic Medicine (IIGM), 10126 Turin, Italy * Correspondence: [email protected]; Tel.: +41-61-284-8378 Int.
    [Show full text]
  • Multiomics of Azacitidine-Treated AML Cells Reveals Variable And
    Multiomics of azacitidine-treated AML cells reveals variable and convergent targets that remodel the cell-surface proteome Kevin K. Leunga, Aaron Nguyenb, Tao Shic, Lin Tangc, Xiaochun Nid, Laure Escoubetc, Kyle J. MacBethb, Jorge DiMartinob, and James A. Wellsa,1 aDepartment of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143; bEpigenetics Thematic Center of Excellence, Celgene Corporation, San Francisco, CA 94158; cDepartment of Informatics and Predictive Sciences, Celgene Corporation, San Diego, CA 92121; and dDepartment of Informatics and Predictive Sciences, Celgene Corporation, Cambridge, MA 02140 Contributed by James A. Wells, November 19, 2018 (sent for review August 23, 2018; reviewed by Rebekah Gundry, Neil L. Kelleher, and Bernd Wollscheid) Myelodysplastic syndromes (MDS) and acute myeloid leukemia of DNA methyltransferases, leading to loss of methylation in (AML) are diseases of abnormal hematopoietic differentiation newly synthesized DNA (10, 11). It was recently shown that AZA with aberrant epigenetic alterations. Azacitidine (AZA) is a DNA treatment of cervical (12, 13) and colorectal (14) cancer cells methyltransferase inhibitor widely used to treat MDS and AML, can induce interferon responses through reactivation of endoge- yet the impact of AZA on the cell-surface proteome has not been nous retroviruses. This phenomenon, termed viral mimicry, is defined. To identify potential therapeutic targets for use in com- thought to induce antitumor effects by activating and engaging bination with AZA in AML patients, we investigated the effects the immune system. of AZA treatment on four AML cell lines representing different Although AZA treatment has demonstrated clinical benefit in stages of differentiation. The effect of AZA treatment on these AML patients, additional therapeutic options are needed (8, 9).
    [Show full text]
  • Apoptotic Cells Suppress Mast Cell Inflammatory Responses Via the Cd300a Immunoreceptor
    Published July 23, 2012 Article Apoptotic cells suppress mast cell inflammatory responses via the CD300a immunoreceptor Chigusa Nakahashi-Oda,1,3 Satoko Tahara-Hanaoka,1,3 Masamichi Shoji,1 Yasushi Okoshi,1 Takako Nakano-Yokomizo,1 Nobuhiro Ohkohchi,2 Teruhito Yasui,4 Hitoshi Kikutani,4 Shin-ichiro Honda,1,3 Kazuko Shibuya,1 Shigekazu Nagata,5,6 and Akira Shibuya1,3 1Department of Immunology and 2Department of Surgery, Division of Biomedical Sciences, Faculty of Medicine, 3Japan Science and Technology Agency, Core Research for Evolutional Science and Technology (CREST), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan 4 Laboratory of Molecular Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan Downloaded from 5Department of Medical Chemistry, Graduate School of Medicine, 6Japan Science and Technology Agency, CREST, Kyoto University, Kyoto 606-8501, Japan When a cell undergoes apoptosis, phosphatidylserine (PS) is exposed on the outer leaflet of the plasma membrane. PS acts as an “eat-me” signal to direct phagocytes expressing PS receptors to engulf the apoptotic cell. We recently reported that the immunoreceptor CD300a, which is expressed on myeloid cells, is a PS receptor. We show that CD300a does jem.rupress.org not facilitate macrophage phagocytosis of apoptotic cells. Instead, CD300a delivers an inhibitory signal in mast cells to suppress production of LPS-induced inflammatory cytokines and chemokines. After cecal ligation and puncture (CLP), when a large number of cells undergo apoptosis in the peritoneal cavity, CD300a-deficient peritoneal mast cells produced more chemoattractant and recruited more neutrophils than did wild-type (WT) mast cells. on February 17, 2013 As a result, CD300a-deficient mice showed increased neutrophil recruitment and improved bacterial clearance in the peritoneal cavity, and survived longer than WT mice.
    [Show full text]
  • High-Dimensional Analysis Reveals a Distinct Population of Adaptive-Like Tissue
    bioRxiv preprint doi: https://doi.org/10.1101/2019.12.20.883785; this version posted December 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 High-dimensional analysis reveals a distinct population of adaptive-like tissue- 2 resident NK cells in human lung 3 4 Nicole Marquardt1*, Marlena Scharenberg1, Jeffrey E. Mold2, Joanna Hård2, Eliisa 5 Kekäläinen3,4, Marcus Buggert1, Son Nguyen5,6, Jennifer N. Wilson1, Mamdoh Al- 6 Ameri7, Hans-Gustaf Ljunggren1, Jakob Michaëlsson1 7 8 Running title: Adaptive-like human lung tissue-resident NK cells 9 10 Affiliations: 11 1Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, 12 Stockholm, Sweden 13 2Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden 14 3Translational Immunology Research Program & Department of Bacteriology and 15 Immunology, University of Helsinki, Finland 16 4HUSLAB, Division of Clinical Microbiology, Helsinki University Hospital, Helsinki, 17 Finland, 18 5Department of Microbiology, Perelman School of Medicine, University of 19 Pennsylvania, Philadelphia, PA, USA 20 6Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, 21 Philadelphia, PA, USA 22 7Thoracic Surgery, Department of Molecular Medicine and Surgery, Karolinska 23 Institutet, Karolinska University Hospital, Stockholm, Sweden 24 1 bioRxiv preprint doi: https://doi.org/10.1101/2019.12.20.883785; this version posted December 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Type of the Paper (Article
    Supplementary figures and tables E g r 1 F g f2 F g f7 1 0 * 5 1 0 * * e e e * g g g * n n n * a a a 8 4 * 8 h h h * c c c d d d * l l l o o o * f f f * n n n o o o 6 3 6 i i i s s s s s s e e e r r r p p p x x x e e e 4 2 4 e e e n n n e e e g g g e e e v v v i i i t t t 2 1 2 a a a l l l e e e R R R 0 0 0 c o n tro l u n in fla m e d in fla m e d c o n tro l u n in fla m e d in fla m e d c o n tro l u n in fla m e d in fla m e d J a k 2 N o tc h 2 H if1 * 3 4 6 * * * e e e g g g n n n a a * * a * h h * h c c c 3 * d d * d l l l * o o o f f 2 f 4 n n n o o o i i i s s s s s s e e e r r 2 r p p p x x x e e e e e e n n n e e 1 e 2 g g g e e 1 e v v v i i i t t t a a a l l l e e e R R R 0 0 0 c o n tro l u n in fla m e d in fla m e d c o n tro l u n in fla m e d in fla m e d c o n tro l u n in fla m e d in fla m e d Z e b 2 C d h 1 S n a i1 * * 7 1 .5 4 * * e e e g g g 6 n n n * a a a * h h h c c c 3 * d d d l l l 5 o o o f f f 1 .0 * n n n * o o o i i i 4 * s s s s s s e e e r r r 2 p p p x x x 3 e e e e e e n n n e e e 0 .5 g g g 2 e e e 1 v v v i i i t t t a a a * l l l e e e 1 * R R R 0 0 .0 0 c o n tro l u n in fla m e d in fla m e d c o n tro l u n in fla m e d in fla m e d c o n tro l u n in fla m e d in fla m e d M m p 9 L o x V im 2 0 0 2 0 8 * * * e e e * g g g 1 5 0 * n n n * a a a * h h h * c c c 1 5 * 6 d d d l l l 1 0 0 o o o f f f n n n o o o i i i 5 0 s s s s s s * e e e r r r 1 0 4 3 0 p p p * x x x e e e * e e e n n n e e e 2 0 g g g e e e 5 2 v v v i i i t t t a a a l l l 1 0 e e e R R R 0 0 0 c o n tro l u n in fla m e d in fla m e d c o n tro l u n in fla m e d in fla m e d c o n tro l u n in fla m e d in fla m e d Supplementary Figure 1.
    [Show full text]
  • Natural Killer Cell Lymphoma Shares Strikingly Similar Molecular Features
    Leukemia (2011) 25, 348–358 & 2011 Macmillan Publishers Limited All rights reserved 0887-6924/11 www.nature.com/leu ORIGINAL ARTICLE Natural killer cell lymphoma shares strikingly similar molecular features with a group of non-hepatosplenic cd T-cell lymphoma and is highly sensitive to a novel aurora kinase A inhibitor in vitro J Iqbal1, DD Weisenburger1, A Chowdhury2, MY Tsai2, G Srivastava3, TC Greiner1, C Kucuk1, K Deffenbacher1, J Vose4, L Smith5, WY Au3, S Nakamura6, M Seto6, J Delabie7, F Berger8, F Loong3, Y-H Ko9, I Sng10, X Liu11, TP Loughran11, J Armitage4 and WC Chan1, for the International Peripheral T-cell Lymphoma Project 1Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA; 2Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA; 3Departments of Pathology and Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong, China; 4Division of Hematology and Oncology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA; 5College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA; 6Departments of Pathology and Cancer Genetics, Aichi Cancer Center Research Institute, Nagoya University, Nagoya, Japan; 7Department of Pathology, University of Oslo, Norwegian Radium Hospital, Oslo, Norway; 8Department of Pathology, Centre Hospitalier Lyon-Sud, Lyon, France; 9Department of Pathology, Samsung Medical Center, Sungkyunkwan University, Seoul, Korea; 10Department of Pathology, Singapore General Hospital, Singapore and 11Penn State Hershey Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA, USA Natural killer (NK) cell lymphomas/leukemias are rare neo- Introduction plasms with an aggressive clinical behavior.
    [Show full text]