VLIV TERMOREGULAČNÍHO CHOVÁNÍ SAMIC ČOLKŮ NA FENOTYP POTOMSTVA Diplomová Práce

Total Page:16

File Type:pdf, Size:1020Kb

VLIV TERMOREGULAČNÍHO CHOVÁNÍ SAMIC ČOLKŮ NA FENOTYP POTOMSTVA Diplomová Práce MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV BOTANIKY A ZOOLOGIE VLIV TERMOREGULAČNÍHO CHOVÁNÍ SAMIC ČOLKŮ NA FENOTYP POTOMSTVA Diplomová práce Eliška Toufarová VEDOUCÍ PRÁCE: Mgr. Lumír Gvoždík, Ph.D. BRNO 2013 Bibliografický záznam Autor: Bc. Eliška Toufarová Přirodovědecka fakulta, Masarykova univerzita Ústav botaniky a zoologie Vliv termoregulačního chování samic čolků na fenotyp Název práce: potomstva Studijní program: Biologie Studijní obor: Ekologická a evoluční biologie Vedoucí práce: Mgr. Lumír Gvoždík, Ph.D. Akademický rok: 2013 Počet stran: 50 Klíčová slova: Reprodukce, termoregulace, mateřský efekt, čolek horský, fenotyp, potomstvo Bibliographic Entry Author Bc. Eliška Toufarová Faculty of Science, Masaryk University Department of botany and zoology Influence of thermoregulatory in female newts on Title of Thesis: offspring phenotype Degree programme: Biology Field of Study: Field of Study Supervisor: Mgr. Lumír Gvoždík, Ph.D. Academic Year: 2013 Number of Pages: 50 Keywords: Reproduction, thermoregulation, maternal effect, alpine newt, phenotype, offspring ABSTRAKT Reproduktivní samice mnoha ektotermů si udržují teploty těla, které se liší od jejich teplot těla mimo období rozmnožování. Tato změna bývá vysvětlována ve shodě s hypotézou mateřské manipulace, tj. matka mění chování, aby zvýšila fitness svého potomstva. Cíle této práce byly dva. (1) Zjistit, zda reprodukce ovlivňuje termoregulační chování samic u čolka horského, Ichthyosaura alpestris; (2) zjistit vliv rozdílných teplotních nároků reproduktivních a nereproduktivních samic na fenotyp potomstva. Výsledky ukázaly, že kladoucí samice si udržovaly nižší a méně proměnlivé teploty těla než nereproduktivní. To potvrzuje dřívější tvrzení, že ke změně termoregulačního chování dochází dokonce i u druhů, u kterých samice kladou vejce v raných stádiích embryogeneze. Teplotní režimy simulující teploty těla reproduktivních a nereproduktivních samic měly neprůkazný vliv na velikost vajec, rychlost vývoje a velikost při vylíhnutí. Tyto výsledky naznačují, že termoregulační chování samic se vyvinulo dříve než pokročilé způsoby rozmnožování a tento fenomén u čolků není vysvětlitelný mateřskou manipulací fenotypů potomstva. Zdá se pravděpodobné, že reproduktivní samice modifikují termoregulační chování, aby maximalizovaly jejich rychlost kladení vajec. ABSTRACT Reproductive females of many ectotherms maintain body temperatures that differ from their body temperatures during non-reproductive period. This change has been explained in accordance with the maternal manipulation hypothesis, i.e., mother changes behavior to increase her offspring fitness. The aim of this study was twofold. (1) To determine whether reproduction affects female thermoregulatory behavior in the Alpine newt, Ichthyosaura alpestris; (2) to determine the influence of different thermal requirements of reproductive and non-reproductive females on offspring phenotype. The results showed that ovipositing females maintained lower and less variable body temperatures than non-reproductive ones. It corroborates the previous claim that the change in thermoregulatory behavior occurs even in species, in which females lay eggs in early stages of embryogenesis. Thermal regimes simulating body temperatures of reproductive and non-reproductive females had a non-significant influence on egg size, developmental rates, and hatchling size. These results suggest that thermoregulatory behavior in females evolved earlier than advanced reproductive modes, and the phenomenon is not explainable by maternal manipulation of offspring phenotypes. It seems likely that reproductive females modify thermoregulatory behavior to maximize their egg-laying rates. Poděkování Na tomto místě bych chtěla velmi poděkovat Mgr. Lumíru Gvoždíkovi, Ph. D. za uvedení do problematiky, četné rady a připomínky a také za trpělivost a vstřícný přístup. Práce byla financována grantem Grantové agentury České republiky (P506/10/2170). Správa CHKO „Žďárské vrchy“ pro účely tohoto projektu vydala výjimku z ochranných podmínek čolka horského (1154/ZV/2008). Prohlášení Prohlašuji, že jsem svoji diplomovou práci vypracovala samostatně s využitím informačních zdrojů, které jsou v práci citovány. Brno 10. května 2013 ……………………………… Eliška Toufarová Obsah Obsah ................................................................................................................................ 9 1. ÚVOD ......................................................................................................................... 10 1.1. Mateřský efekt ...................................................................................................... 10 1.2. Vliv reprodukce na termoregulační chování ektotermních živočichů ................. 14 1.3. Vliv teploty během embryogeneze na fenotyp potomstva ................................... 18 1.4. Vliv reprodukce na termoregulační chování obojživelníků ................................. 20 1.5. Cíle práce ............................................................................................................. 22 2. MATERIÁL A METODIKA ...................................................................................... 24 2.1. Modelový organismus a jeho chov ...................................................................... 24 2.2. Měření preferovaných tělesných teplot ................................................................ 26 2.3. Měření vlivu teploty na fenotyp potomstva ......................................................... 27 2.4. Statistická analýza dat .......................................................................................... 30 3. VÝSLEDKY ............................................................................................................... 31 3.1. Termoregulační chování samic ............................................................................ 31 3.2. Fenotyp potomstva ............................................................................................... 33 4. DISKUZE ................................................................................................................... 37 4.1. Termoregulační chování samic ............................................................................ 37 4.2. Vliv samice na fenotyp potomstva ....................................................................... 39 4.3. Závěr .................................................................................................................... 40 5. LITERATURA ........................................................................................................... 42 9 1. ÚVOD 1.1. Mateřský efekt Mateřský efekt můžeme definovat jako negenetický vliv matky nebo prostředí, ve kterém se matka vyskytuje, na fenotyp potomstva (MARSHALL & ULLER 2007). Dlouho se předpokládalo, že fenotyp potomstva je pouze výsledkem interakce mezi jeho genotypem a prostředím, nicméně poznatky z evoluční biologie ukázaly, že tento předpoklad není zcela úplný (BERNARDO 1996a). V současné době je mateřský efekt považován za jeden z nejdůležitějších faktorů, který ovlivňuje fenotyp potomstva (BERNARDO 1996a; MOUSSEAU & FOX 1998). Setkáváme se s ním u většiny taxonů (MOUSSEAU & FOX 1998) a může ovlivnit téměř každý aspekt fenotypu potomků, včetně pohlaví (např. ROOSENBURG 1996), morfologie (např., DEEMING & FERGUSON 2004), a chování (např. DOWNES & SHINE 1999). Při definování mateřského účinku je důležité zdůraznit, že tento typ působení na fenotyp potomstva není omezen pouze na matky. Fenotypy „otců“ mohou mít také přímý vliv na fenotyp potomstva (GIESEL 1988 in BERNARDO 1996a). To je například u druhů, u kterých se o potomstvo stará otec (CLUTTON-BROCK 1991), nebo přes nutriční investice jako jsou svatební dary (např. NISBET 1973 in BERNARDO 1996a), či v případě, kdy fenotyp otce ovlivňuje nakladení vajec- buď obranou území, nebo budování hnízda (HOWARD 1978). Pro tyto případy lze použít obecnější termín „rodičovský efekt“. KIRKPATRICK & LANDE (1989) rozdělují mateřský efekt do dvou kategorií: první představuje nemendelovský přenos informace z matky na potomstvo, na příklad když velikost matky ovlivňuje velikost potomků, v tomto případě se jedná o tzv. "mateřskou dědičnost". V druhém případě jde o „mateřskou selekci“, což jsou případy, kdy rodiče ovlivňují selekční tlak způsobem, který přímo nesouvisí s fenotypem potomstva, například obrana snůšky proti predátorům nebo úprava hnízdního prostředí. Mateřský efekt je někdy interpretován jako důležitý mechanismus, který umožňuje adaptivní fenotypovou odpověď na očekávané podmínky prostředí. Jinými slovy, samice mohou upravit fenotypy svých potomků v reakci na podněty prostředí, které vnímá, a to může vést ke zvýšení zdatnosti (fitness) jejího potomstva v budoucnosti – hypotéza mateřské manipulace (WEBB et al. 2006). Mateřský efekt tak může mít 10 významný vliv na vývoj celé populace (KIRKPATRICK & LANDE 1989). Některé důsledky mateřského efektu však nemusí být adaptivní, ale může se jednat spíše o vedlejší fyziologické efekty (FOX & CZESAK 2000). V dřívějších studiích byl mateřský efekt považován za adaptivní pouze v případě, že zvyšoval fitness potomstva (FOX & CZESAK 2000, MOUSSEAU et al. 2009). Nicméně z pohledu potomka může být mateřský efekt nejenom adaptivní, ale také selekčně neutrální nebo dokonce negativní, když snižuje průměrnou fitness potomstva (BERNARDO 1996a, 1996b). V současné době se za hlavní měnu považuje spíše fitness matky než jejího potomstva (MARSHALL & ULLER 2007). Jednoduše by se dalo říct, že zvýšením fitness
Recommended publications
  • Summary of Native Bat, Reptile, Amphibian and Terrestrial Invertebrate Translocations in New Zealand
    Summary of native bat, reptile, amphibian and terrestrial invertebrate translocations in New Zealand SCIENCE FOR CONSERVATION 303 Summary of native bat, reptile, amphibian and terrestrial invertebrate translocations in New Zealand G.H. Sherley, I.A.N. Stringer and G.R. Parrish SCIENCE FOR CONSERVATION 303 Published by Publishing Team Department of Conservation PO Box 10420, The Terrace Wellington 6143, New Zealand Cover: Male Mercury Islands tusked weta, Motuweta isolata. Originally found on Atiu or Middle Island in the Mercury Islands, these were translocated onto six other nearby islands after being bred in captivity. Photo: Ian Stringer. Science for Conservation is a scientific monograph series presenting research funded by New Zealand Department of Conservation (DOC). Manuscripts are internally and externally peer-reviewed; resulting publications are considered part of the formal international scientific literature. Individual copies are printed, and are also available from the departmental website in pdf form. Titles are listed in our catalogue on the website, refer www.doc.govt.nz under Publications, then Science & technical. © Copyright April 2010, New Zealand Department of Conservation ISSN 1173–2946 (hardcopy) ISSN 1177–9241 (PDF) ISBN 978–0–478–14771–1 (hardcopy) ISBN 978–0–478–14772–8 (PDF) This report was prepared for publication by the Publishing Team; editing by Amanda Todd and layout by Hannah Soult. Publication was approved by the General Manager, Research and Development Group, Department of Conservation, Wellington, New Zealand. In the interest of forest conservation, we support paperless electronic publishing. When printing, recycled paper is used wherever possible. CONTENTS Abstract 5 1. Introduction 6 2. Methods 7 3.
    [Show full text]
  • An Assessment of the Suitability of Captive-Bred Founders for Lizard Restoration Projects Using Duvaucel’S Geckos (Hoplodactylus Duvaucelii)
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. An assessment of the suitability of captive-bred founders for lizard restoration projects using Duvaucel’s geckos (Hoplodactylus duvaucelii). A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Conservation Biology Massey University, Albany, New Zealand. Vivienne Glenday 2016 Abstract Sourcing founders for species restoration projects can be problematic, especially when using rare or endangered animals. Harvesting from small natural populations could be detrimental to those populations. A possible solution is to use captive-bred founders as this would reduce harvesting pressure on natural source populations. In the summer of 2013, a combination of captive-bred and wild-sourced Duvaucel’s geckos (Hoplodactylus duvaucelii) were released on two islands in Auckland’s Hauraki Gulf. To assess the suitability of captive-bred founders for species restoration projects, short-term survival, condition, reproductive performance, dispersal and activity patterns, and habitat use were investigated using mark-recapture surveys and radio telemetry over a 12 month period following the release, and comparisons were made between captive-bred and wild- sourced geckos. Captive-bred geckos were encountered more often than wild geckos one year after the release, and had greater increases in body condition index. They also had better overall health, but more partial tail losses. Gravid females from both groups were encountered during the first post-release breeding season and at least 50% of juveniles were encountered alive during the first year.
    [Show full text]
  • Northland CMS Volume I
    CMS CONSERVATION MANAGEMENT STRATEGY N orthland 2014–2024, Volume I Operative 29 September 2014 CONSERVATION106B MANAGEMENT STRATEGY NORTHLAND107B 2014–2024, Volume I Operative108B 29 September 2014 Cover109B image: Waikahoa Bay campsite, Mimiwhangata Scenic Reserve. Photo: DOC September10B 2014, New Zealand Department of Conservation ISBN10B 978-0-478-15017-9 (print) ISBN102B 978-0-478-15019-3 (online) This103B document is protected by copyright owned by the Department of Conservation on behalf of the Crown. Unless indicated otherwise for specific items or collections of content, this copyright material is licensed for re- use under the Creative Commons Attribution 3.0 New Zealand licence. In essence, you are free to copy, distribute and adapt the material, as long as you attribute it to the Department of Conservation and abide by the other licence terms. To104B view a copy of this licence, visit http://creativecommons.org/licenses/by/3.0/nz/U U This105B publication is produced using paper sourced from well-managed, renewable and legally logged forests. Contents802B 152B Foreword803 7 Introduction804B 8 Purpose809B of conservation management strategies 8 CMS810B structure 9 CMS81B term 10 Relationship812B with other Department of Conservation strategic documents and tools 10 Relationship813B with other planning processes 11 Legislative814B tools 11 Exemption89B from land use consents 11 Closure890B of areas and access restrictions 11 Bylaws891B and regulations 12 Conservation892B management plans 12 International815B obligations 12 Part805B
    [Show full text]
  • Effects of Constant Incubation Regimes on Eggs and Hatchlings of the Egg-Laying Skink, Oligosoma Suteri
    Effects of constant incubation regimes on eggs and hatchlings of the egg-laying skink, Oligosoma suteri Kelly Maree Hare A thesis submitted as partial fulfilment for the degree of Master of Science in Ecology Victoria University of Wellington Te Whare Wananga o te Upoko o te Ika a Maui 2001 Abstract The conditions under which reptilian eggs are incubated affect survival probability and physiological attributes of the progeny. The egg-laying skink, Oligosoma suteri , is the only endemic oviparous lizard in New Zealand. No controlled laboratory incubation had previously been undertaken, and thus no information was available on the requirements for successful captive incubation. I studied the effects of incubation regime on the eggs and hatchlings of O. suteri to four months of age. Oligosoma suteri eggs (n = 174) were randomly distributed among three constant incubation temperatures (18 °C, 22 °C and 26 °C) and two water potentials (-120 kPa and -270 kPa). Hatching success and hatchling survival were greatest at 22 °C and 26 °C, with hatchlings from 18°C incubation suffering from physical abnormalities. Incubation regime and maternal influence did not affect sex of individuals, with equal sex ratios occurring from each incubation treatment. Hatchlings from the 22 °C and -120 kPa incubation treatments were larger, for most measurements, and warmer incubation temperatures resulted in increased growth rates. Juveniles from 22 °C and 26 °C and individuals with greater mass per unit length (condition index) sprinted faster over 0.25 m. Sprint speed was positively correlated with ambient temperature. At four months of age sprint speed decreased in 18 °C individuals and individuals incubated at 26 °C and -270 kPa compared to their performance at one month.
    [Show full text]
  • And Endoparasites of New Zealand Reptiles
    An annotated checklist This article lists the internal and external parasites recorded in or on tuataras and lizards in New Zealand of ecto- and endoparasites and includes brief notes about them. of New Zealand reptiles Tuataras and lizards are New Zealand’s only land-based native reptiles. Currently these comprise two species of tuatara, 16 geckos divided into the major groups of Nematoda, Cestoda, Trematoda and 28 skinks although the exact number of lizards is undecided and Protozoa whereas all ectoparasite records are included in the and is likely to increase as more research is done(1). In this article order Acari. In the annotated list, the parasites are not only attempts are made to catalogue all those ecto- and endoparasites identified according to the phylum or order to which they belong, that have been recorded on, or in, these hosts. but also to family level. In the latter list, each parasite record is also The parasite checklist is presented in three parts. The first two parts supported by a reference, but these are omitted in parts one and simply list these records alphabetically by common host name two. While these data are primarily concerned with parasites of according to Gill and Whitaker(1) and by parasite group, respectively. New Zealand’s native reptile fauna, for the sake of completeness, The third comprises an annotated catalogue of the parasites those that have been recorded from two non-naturalised captive arranged alphabetically according to their scientific names. In the lizards in this country (the Indian blood sucker lizard and the former two parts, and as appropriate, the endoparasite groups are bluetongue skink) are included as well.
    [Show full text]
  • New Zealand Threat Classification System (NZTCS)
    NEW ZEALAND THREAT CLASSIFICATION SERIES 17 Conservation status of New Zealand reptiles, 2015 Rod Hitchmough, Ben Barr, Marieke Lettink, Jo Monks, James Reardon, Mandy Tocher, Dylan van Winkel and Jeremy Rolfe Each NZTCS report forms part of a 5-yearly cycle of assessments, with most groups assessed once per cycle. This report is the first of the 2015–2020 cycle. Cover: Cobble skink, Oligosoma aff.infrapunctatum “cobble”. Photo: Tony Jewell. New Zealand Threat Classification Series is a scientific monograph series presenting publications related to the New Zealand Threat Classification System (NZTCS). Most will be lists providing NZTCS status of members of a plant or animal group (e.g. algae, birds, spiders). There are currently 23 groups, each assessed once every 3 years. After each three-year cycle there will be a report analysing and summarising trends across all groups for that listing cycle. From time to time the manual that defines the categories, criteria and process for the NZTCS will be reviewed. Publications in this series are considered part of the formal international scientific literature. This report is available from the departmental website in pdf form. Titles are listed in our catalogue on the website, refer www.doc.govt.nz under Publications, then Series. © Copyright December 2016, New Zealand Department of Conservation ISSN 2324–1713 (web PDF) ISBN 978–1–98–851400–0 (web PDF) This report was prepared for publication by the Publishing Team; editing and layout by Lynette Clelland. Publication was approved by the Director, Terrestrial Ecosystems Unit, Department of Conservation, Wellington, New Zealand. Published by Publishing Team, Department of Conservation, PO Box 10420, The Terrace, Wellington 6143, New Zealand.
    [Show full text]
  • Lizards and Frogs
    Terrestrial Reptiles and Amphibians – Lizards & Frogs 11 Terrestrial Reptiles and Amphibians - Lizards and Frogs Reptiles Thirteen species of lizards have been definitely recorded on Great Barrier Island, and others were probably formerly present (Table 11.1) This compares with 97 lizard taxa recognised nationally, and 15 species in the Auckland Conservancy. Great Barrier Island has the highest lizard diversity of any island in New Zealand. The tuatara was also formerly present on Great Barrier Island. Tuatara is not really a ‘lizard’, but belongs to a much older order of reptiles. Table 11.1 Status Of reptiles on Great Barrier Island. National threat status follows Hitchmough et al. 2007 i: 2 = Nationally endangered; 5 = Gradual decline; 6 = Sparse; 7 = Range restricted. Species indicated by yellow fill are considered at risk on Great Barrier Island or nationally. Grey : no longer present on Great Barrier Island; light grey : No confirmed sightings for 20 years; yellow : species with restricted distributions at risk through rat predation on Great Barrier Island. Bold text indicates a species for which Great Barrier Island is the main population. National Great Barrier Island Common name Scientific name threat Notes status Present in European times, Tuatara Sphenodon punctatus 6 now probably extinct. Probably formerly present. Robust skink Oligosoma alani 7 Currently on Pokohinu/Mokohinaus. Two records only on Great Data Striped skink Oligosoma striatum Barrier Island - 1983 - deficient 2009 at Windy Hill Green gecko Naultinus elegans 5 Rare, but recorded 2009 Duvaucel's Hoplodactylus duvaucelii 6 No sightings since 1988 gecko Only on Great Barrier Chevron skink Oligosoma homalonotum 2 Island and possibly Little Barrier Island Threatened by rat Egg laying skink Oligosoma suteri 5 predation Northern block Great Oligosoma townsi Barrier Island, Little Towns's skink 7 Barrier Island, Pokohinu and Hen & Chickens .
    [Show full text]
  • Chapter 3, I Review the Challenges Associated with Categorising the Activity Pattern of Reptiles
    Basking behaviour of a primarily nocturnal, viviparous gecko in a temperate climate Sophie Gibson A thesis submitted in partial fulfilment for the degree of Master of Science at the University of Otago, Dunedin, New Zealand 20 December 2013 FRONTISPIECE Georgia Moore An adult female Otago-Southland gecko (Woodworthia “Otago/Southland”) basking at Macraes Flat, Eastern Otago. i ABSTRACT Many reptiles, commonly labelled as ‘nocturnal’, have higher selected body temperatures on a laboratory thermal gradient than are available during their night-time activity period. These purportedly ‘nocturnal’ reptiles experience similar day-time body temperatures (Tb) to diurnal reptiles, suggesting that nocturnal reptiles are capable of thermoregulating during the day. By basking for intermittent periods, utilizing postural adjustments and/or by selecting retreat types for specific thermal qualities, nocturnal reptiles may achieve elevated day-time Tb. To date, no studies have directly examined the diurnal behaviour of a nocturnal reptile in a cool-temperate climate. In this thesis, the diurnal behaviour of the viviparous (live-bearing), nocturnal Otago-Southland gecko (Woodworthia “Otago/Southland”) at Macraes Flat, Eastern Otago, was monitored using time-lapse photography. Time-lapse cameras were set up at deep crevice and superficial rock retreats over two seasons: spring-summer and autumn. Three aspects of behaviour were examined to infer whether the Otago-Southland gecko thermoregulates during the day: 1) basking behaviour, 2) postural adjustments and 3) retreat type selection. Operative temperature (Te) was recorded throughout the study using temperature loggers inserted into copper models. Copper models were used to simulate the Te available to geckos in two basking positions (flat and ‘on-toes’) and in two retreat types (in a deep crevice and under a superficial rock).
    [Show full text]
  • The High-Level Classification of Skinks (Reptilia, Squamata, Scincomorpha)
    Zootaxa 3765 (4): 317–338 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3765.4.2 http://zoobank.org/urn:lsid:zoobank.org:pub:357DF033-D48E-4118-AAC9-859C3EA108A8 The high-level classification of skinks (Reptilia, Squamata, Scincomorpha) S. BLAIR HEDGES Department of Biology, Pennsylvania State University, 208 Mueller Lab, University Park, PA 16802, USA. E-mail: [email protected] Abstract Skinks are usually grouped in a single family, Scincidae (1,579 species) representing one-quarter of all lizard species. Oth- er large lizard families, such as Gekkonidae (s.l.) and Iguanidae (s.l.), have been partitioned into multiple families in recent years, based mainly on evidence from molecular phylogenies. Subfamilies and informal suprageneric groups have been used for skinks, defined by morphological traits and supported increasingly by molecular phylogenies. Recently, a seven- family classification for skinks was proposed to replace that largely informal classification, create more manageable taxa, and faciliate systematic research on skinks. Those families are Acontidae (26 sp.), Egerniidae (58 sp.), Eugongylidae (418 sp.), Lygosomidae (52 sp.), Mabuyidae (190 sp.), Sphenomorphidae (546 sp.), and Scincidae (273 sp.). Representatives of 125 (84%) of the 154 genera of skinks are available in the public sequence databases and have been placed in molecular phylogenies that support the recognition of these families. However, two other molecular clades with species that have long been considered distinctive morphologically belong to two new families described here, Ristellidae fam. nov. (14 sp.) and Ateuchosauridae fam. nov.
    [Show full text]
  • Indigenous Terrestrial and Wetland Ecosystems of Auckland
    Indigenous terrestrial and wetland ecosystems of Auckland Recommended citation: Singers, N.; Osborne, B.; Lovegrove, T.; Jamieson, A.; Boow, J.; Sawyer, J.; Hill, K.; Andrews, J.; Hill, S.; Webb, C. 2017. Indigenous terrestrial and wetland ecosystems of Auckland. Auckland Council. Cover image: Forest understorey on the Kohukohunui Track, Hunua Ranges. Jason Hosking. ISBN 978-0-9941351-6-2 (Print) ISBN 978-0-9941351-7-9 (PDF) © Auckland Council, 2017. All photographs are copyright of the respective photographer. Indigenous terrestrial and wetland ecosystems of Auckland Singers, N.; Osborne, B.; Lovegrove, T.; Jamieson, A.; Boow, J.; Sawyer, J.; Hill, K.; Andrews, J.; Hill, S.; Webb, C. Edited by Jane Connor. 2017. 3 This guide is dedicated to John Sawyer whose vision initiated the project and who made a substantial contribution to the publication prior to leaving New Zealand. Sadly, John passed away in 2015. John was passionate about biodiversity conservation and brought huge energy and determination to the projects he was involved with. He was generous with his time, knowledge and support for his many friends and colleagues. INDIGENOUS TERRESTRIAL AND WETLAND ECOSYSTEMS OF AUCKLAND Contents Indigenous terrestrial and wetland ecosystems of Auckland Introduction 7 Origins of a national ecosystem classification system 10 Mapping Auckland’s ecosystems 10 Threatened ecosystems 11 Threatened ecosystem assessments in Auckland 11 Introduction to the ecosystem descriptions 13 Forest ecosystems 15 WF4: Pōhutukawa, pūriri, broadleaved forest [Coastal
    [Show full text]
  • North Island Oligosoma Spp. Skink Recovery Plan 2002–2012
    North Island Oligosoma spp. skink recovery plan 2002–2012 THREATENED SPECIES RECOVERY PLAN 48 Recovery plans This is one of a series of recovery plans published by the Department of Conservation. Recovery plans are statements of the Department’s intentions for the conservation of particular plants and animals for a defined period. In focusing on goals and objectives for management, recovery plans serve to guide the Department in its allocation of resources and to promote discussion amongst a wider section of the interested public. After preparing a technical report, which was refined by scientists and managers both within and outside the Department, a draft of this plan was sent to the New Zealand Conservation Authority and relevant Conservation Boards for comment. After further refinement, this plan was formally approved by the Central Regional Office in May 2002. A review of this plan is due after 10 years (2012), or sooner if new information leads to proposals for a significant change in direction. This plan will remain operative until a reviewed plan is in place. The Department acknowledges the need to take account of the views of the tangata whenua and the application of their values in the conservation of natural resources. While the expression of these values may vary, the recovery planning process provides opportunities for consultation between the Department and the tangata whenua. Departmental Conservancy Kaupapa Atawhai Managers are available to facilitate this dialogue. A recovery group consisting of people with knowledge of the North Island Oligosoma spp., and with an interest in their conservation has been established. The purpose of the North Island Oligosoma Recovery Group is to review progress in the implementation of this plan and to recommend to the Department any changes that may be required as management proceeds.
    [Show full text]
  • Ecological Drivers of Longevity in Squamates and the Tuatara
    Global Ecology and Biogeography, (Global Ecol. Biogeogr.) (2015) 24, 396–405 bs_bs_banner RESEARCH Late bloomers and baby boomers: PAPER ecological drivers of longevity in squamates and the tuatara Inon Scharf1*, Anat Feldman1, Maria Novosolov1, Daniel Pincheira-Donoso2, Indraneil Das3, Monika Böhm4, Peter Uetz5, Omar Torres-Carvajal6, Aaron Bauer7,UriRoll8 and Shai Meiri1* 1Department of Zoology, Faculty of Life ABSTRACT Sciences, Tel Aviv University, Tel Aviv, Israel, Aim Longevity is an important life-history trait, directly linked to the core attrib- 2Laboratory of Evolutionary Ecology of Adaptations, School of Life Sciences, University utes of fitness (reproduction and survival), yet large-scale comparative studies of Lincoln, Lincolnshire, UK, 3Institute of quantifying its implications for the ecology and life history of ectotherms are Biodiversity and Environmental Conservation, scarce. We tested the allometry of longevity in squamates and the tuatara, and Universiti Malaysia Sarawak, Kota determined how longevity is related to key environmental characteristics and life- Samarahan, Malaysia, 4Institute of Zoology, history traits. Predictions based on life-history theory are expected to hold true for Zoological Society of London, London, UK, ectotherms, similarly to mammals and birds. 5Center for the Study of Biological Complexity, Location World-wide. Virginia Commonwealth University, Richmond, VA, USA, 6Escuela de Ciencias Methods We assembled from the literature a dataset of the maximum longevities Biológicas, Pontificia Universidad
    [Show full text]