DOCTORAL THESIS Taofiq Ayodele Oludemi

Total Page:16

File Type:pdf, Size:1020Kb

DOCTORAL THESIS Taofiq Ayodele Oludemi FACULTAD DE FARMACIA DEPARTAMENTO DE QUÍMICA ANALÍTICA, NUTRICIÓN Y BROMATOLOGÍA Development of cosmeceutical formulations based on mushroom extracts and their individual compounds DOCTORAL THESIS Taofiq Ayodele Oludemi Supervisors Dr. Isabel Cristina Fernandes Rodrigues Ferreira Dr. Maria Filomena Barreiro Dr. Ana María González Paramás Salamanca, 2019 Aknowledgements ACKNOWLEDGEMENTS First and foremost, I would like to extend my heartfelt gratitude to my supervisor Prof. Isabel C.F.R Ferreira for giving me the opportunity to be part of this amazing team. You have been very influential in my development as a researcher and as an individual. It is an honour to have the opportunity to learn from you and I will be forever grateful for all your efforts, unending support and continuous encouragement throughout my years of study. Your passion and enthusiasm towards science has been an inspiration to me. My sincere gratitude also goes to my co-supervisor Prof. Maria Filomena Barreiro for your advices and encouragement. I greatly benefited from your keen scientific insight, vast knowledge and scientific curiosity. You have been helpful and gave all necessary information towards the successful completion of this project. My profound gratitude also goes out to my co-supervisor Prof. Ana Maria González- Paramás for your guidance and support all through these years. Thank you so much for always finding the time to provide valuable comments and contributions towards the successful completion of this project. My gratitude also goes out to Dr. Lillian Barros for your continuous support, motivation and patience. Your work ethics have been a continuous source of inspiration to me and I am sincerely thankful for all your time and advices over the years. My sincere appreciation also goes out to Prof. Celestino Santos-Buelga, from Unidad de Nutrición y Bromatología, Faculty of Pharmacy, University of Salamanca, I want to thank you for your advices and continuous support. I would also like to appreciate the effort of Dr. Sandrina Heleno and Dr. Ricardo Calhelha. You both have contributed immensely towards achieving this goal. You have been patient and continue to offer advices whenever the need arises. Thank you so much for everything. My profound gratitude also goes out to all members of Biochemcore research group. Thank you so much for your friendship, assistance and scientific discussions. You have provided a wonderful environment for me to learn and this has really helped me. My gratitude also goes out to members of the Laboratory of Separation and Reaction Engineering (LSRE) especially Dr. Isabel Fernandes. You have been very helpful towards the course of this project. My gratitude also goes out to members of the REQUIMTE/LAQV, iii Aknowledgements Department of Chemical Sciences, Faculty of Pharmacy, University of Porto especially Prof. Beatriz P.P. Oliveira and Dr. Francisca Rodrigues, for welcoming me so well during my research stay at the University of Porto. To the Instituto Politécnico de Bragança especially Dr. Luis Pais and Dr. Anabela Martins, I want to say a big thank you for supporting me all through my time in Braganca. Thank you so much for been there for me and I am glad to be part of this great Institute. My appreciation also goes out to the Foundation for Science and Technology (FCT) for financial support to the Centro de Investigação de Montanha (CIMO) and making it a wonderful and well-equipped environment to develop my work. I would like to offer special thanks to Babatunde Ayodele Osinowo, who, although is no longer with us, has supported me greatly over the years. Thank you so much for everything and I pray you continue to rest in peace. I have met wonderful friends over the years, and I want to say a big thank you to them all, especially Sankara Unisa-Kamara and Karl Mokake Njomo, I really appreciate you guys for the love, friendship and support. My gratitude also goes to my mum Alhaja Ramat Oludemi for your continuous encouragement, prayers and support over the years. Thank you so much for everything you have done in my life, you are my champion and I owe so much to you. To my siblings and my family, I am sincerely grateful for your encouragement and moral support. To my beloved wife, Simbiat Olaide Jimoh, you have been my support system over the years. Even when times looked gloomy, your continuous optimism, understanding and encouragement have been my pillar and I want to sincerely thank you for being a part of my life. Finally, my greatest appreciation goes to Almighty Allah (S.W.T) for sparing my life and for taking complete control over my family, my health, my education, my career and every aspect of my life. All praise is due to you, the Lord of the world, the most Beneficent and the most Merciful. iv Abstract ABSTRACT The cosmetic industry is constantly in search of ingredients from natural sources because of their multifunctional properties, competitive effectiveness, and lower toxicity effects. Otherwise, mushrooms have been an important part of our diet for years due to their rich nutritional and abundant content in biomolecules; however, their cosmeceutical and nutricosmetic potential have not been fully exploited. This study aimed at optimizing the extraction of bioactive compounds from Ganoderma lucidum and Agaricus blazei by Response Surface Methodology (RSM) and comparing conventional extraction techniques with more sustainable methods. Further studies regarding their nutritional and chemical composition (e.g., sugars, organic acids, tocopherols, and fatty acids), were conducted. Also, extracts obtained from those mushrooms, but also from Agaricus bisporus, Pleurotus ostreatus and Lentinula edodes extracts, using the Soxhlet extraction system, were analysed in terms of anti- inflammatory, anti-tyrosinase, antioxidant, and antimicrobial activities followed by their characterization in terms of phenolic acids and related compounds, ergosterol, and triterpenoids. Furthermore, the obtained extracts were incorporated in a base cosmetic cream to ascertain bioactive properties sustainment. Moreover, to evaluate the individual cosmeceutical contribution of p-hydroxybenzoic acid, p-coumaric acid, protocatechuic acid, cinnamic acid and ergosterol, their anti-inflammatory, anti-tyrosinase, and antimicrobial activities were studied, followed by incorporation of these compounds in a base cosmetic cream. Because of the possibility of the extracts and the individual compounds to lose their potency over time either due to oxidation or degradation, microparticles were prepared using the atomization/coagulation technique. The microparticles were characterized in terms of morphology, particle size distribution, and encapsulation efficiency. This is followed by incorporation of the produced microparticles into a base cosmetic cream and comparison of their performance with the free forms (formulations containing free extracts/individual compounds). The most promising extracts and their corresponding formulations were submitted to in vitro safety evaluation using the MTT and LDH assays in keratinocyte (HaCaT) and fibroblast (HFF-1) cell lines. Moreover, they were submitted to ex vivo skin permeation studies using a Franz diffusion apparatus with pig ear skin as permeation membrane to determine topical bioavailability of the bioactive compounds present in the extracts. The optimization study on bioactive compounds recovery from G. lucidum and A. blazei using RSM showed that the values predicted by the models were in close agreement with vi Abstract experimental observations. Furthermore, it was concluded that the extraction yield of bioactive compounds from the studied mushrooms was highly dependent on the extraction variables (time, temperature, solvent proportion, solid-liquid ratio, and power). A. blazei and G. ludidum also showed high nutritional contribution. α-Tocopherol, oxalic acid and twenty-one fatty acids (mainly PUFA) were quantified in A. blazei. G. lucidum showed a similar fatty acids’ profile (PUFA˃SFA˃MUFA) and with the presence of α-tocopherol and δ-tocopherol. Comparatively, A. blazei revealed lower fat content, but higher energy contribution. The cell viability effect of the extract prepared from A. blazei on Caco-2 and HT29-MTX cells was found to be maintained in a concentration-dependent manner. The ethanolic extracts obtained from the studied mushrooms showed antioxidant, anti- inflammatory, anti-tyrosinase and antimicrobial activities, and after incorporation into the base cosmetic cream, the final cosmeceutical formulations preserved some of these bioactivities. G. lucidum extract was found to be a rich source of triterpenoids mainly due to the high contribution of ganoderic acid A, C2, and H, while phenolic acids (p-hydroxybenzoic acid, p- coumaric acid and protocatechuic acid), the related compound cinnamic acid, and ergosterol were identified in A. bisporus, P. ostreatus, L. edodes and A. blazei extracts. Each one of these compounds also showed anti-inflammatory, anti-tyrosinase and antimicrobial activities. Furthermore, microparticles were successfully used to encapsulate extract/individual compounds with high encapsulation efficiency and yield. After incorporation of the free extracts/individual compounds and the produced microparticles into the base cosmetic cream, the encapsulated forms allowed for a controlled release leading to bioactivity preservation when compared with the free forms. Because they presented the most interesting cosmeceutical potential, P. ostreatus and G. lucidum extracts
Recommended publications
  • Thi Thu Tram NGUYEN
    ANNÉE 2014 THÈSE / UNIVERSITÉ DE RENNES 1 sous le sceau de l’Université Européenne de Bretagne pour le grade de DOCTEUR DE L’UNIVERSITÉ DE RENNES 1 Mention : Chimie Ecole doctorale Sciences De La Matière Thi Thu Tram NGUYEN Préparée dans l’unité de recherche UMR CNRS 6226 Equipe PNSCM (Produits Naturels Synthèses Chimie Médicinale) (Faculté de Pharmacie, Université de Rennes 1) Screening of Thèse soutenue à Rennes le 19 décembre 2014 mycosporine-like devant le jury composé de : compounds in the Marie-Dominique GALIBERT Professeur à l’Université de Rennes 1 / Examinateur Dermatocarpon genus. Holger THÜS Conservateur au Natural History Museum Londres / Phytochemical study Rapporteur Erwan AR GALL of the lichen Maître de conférences à l’Université de Bretagne Occidentale / Rapporteur Dermatocarpon luridum Kim Phi Phung NGUYEN Professeur à l’Université des sciences naturelles (With.) J.R. Laundon. d’Hô-Chi-Minh-Ville Vietnam / Examinateur Marylène CHOLLET-KRUGLER Maître de conférences à l’Université de Rennes1 / Co-directeur de thèse Joël BOUSTIE Professeur à l’Université de Rennes 1 / Directeur de thèse Remerciements En premier lieu, je tiens à remercier Monsieur le Dr Holger Thüs et Monsieur le Dr Erwan Ar Gall d’avoir accepté d’être les rapporteurs de mon manuscrit, ainsi que Madame la Professeure Marie-Dominique Galibert d’avoir accepté de participer à ce jury de thèse. J’exprime toute ma gratitude au Dr Marylène Chollet-Krugler pour avoir guidé mes pas dès les premiers jours et tout au long de ces trois années. Je la remercie particulièrement pour sa disponibilité et sa grande gentillesse, son écoute et sa patience.
    [Show full text]
  • Redalyc.Biologically Active Metabolites of the Genus Ganoderma: Three Decades of Myco-Chemistry Research
    Revista Mexicana de Micología ISSN: 0187-3180 [email protected] Sociedad Mexicana de Micología México Trigos, Ángel; Suárez Medellín, Jorge Biologically active metabolites of the genus Ganoderma: Three decades of myco-chemistry research Revista Mexicana de Micología, vol. 34, diciembre, 2011, pp. 63-83 Sociedad Mexicana de Micología Xalapa, México Available in: http://www.redalyc.org/articulo.oa?id=88321339010 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Biologically active metabolites of the genus Ganoderma: Three decades of myco-chemistry research Ángel Trigos 1,2 Jorge Suárez Medellín 1,3 1 Laboratorio de Alta Tecnología de Xalapa, Universidad Veracruzana. Calle Médicos, 5, Col. Unidad del Bosque. C.P. 91010, Xalapa, Veracruz, México. 2 Instituto de Ciencias Básicas, Universidad Veracruzana, Av. Dos Vistas s/n, Carretera Xalapa-Las Trancas, 91000 Xalapa, Veracruz, México. 3 Unidad de Investigación y Desarrollo en Alimentos, Instituto Tecnológico de Veracruz. Av. Miguel A. de Quevedo # 2779 Col. Formando Hogar, C. P. 91680 Veracruz, Veracruz, México 1 1 0 Metabolitos biológicamente activos del género Ganoderma: tres décadas de 2 , investigación mico-química 3 8 - 3 6 Resumen. Desde la antigüedad en la medicina tradicional de oriente, hasta los tiempos : 4 modernos, los hongos pertenecientes al género Ganoderma se han utilizado para el 3 A tratamiento y la prevención de diversas enfermedades como cáncer, hipertensión y Í G diabetes, entre muchas otras afecciones.
    [Show full text]
  • Antioxidant and Anti-Osteoporotic Activities of Aromatic Compounds and Sterols from Hericium Erinaceum
    molecules Article Antioxidant and Anti-Osteoporotic Activities of Aromatic Compounds and Sterols from Hericium erinaceum Wei Li 1, Sang Hyun Lee 2, Hae Dong Jang 2,*, Jin Yeul Ma 1,* and Young Ho Kim 3,* 1 Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Korea; [email protected] 2 Department of Food and Nutrition, Hannam University, Daejeon 34430, Korea; [email protected] 3 College of Pharmacy, Chungnam National University, Daejeon 34134, Korea * Correspondence: [email protected] (H.D.J.); [email protected] (J.Y.M.); [email protected] (Y.H.K.); Tel.: +82-42-629-8795 (H.D.J.); +82-53-940-3811 (J.Y.M.); +82-42-821-5933 (Y.H.K.) Academic Editor: Derek J. McPhee Received: 14 November 2016; Accepted: 2 January 2017; Published: 11 January 2017 Abstract: Hericium erinaceum, commonly called lion’s mane mushroom, is a traditional edible mushroom widely used in culinary applications and herbal medicines in East Asian countries. In this study, a new sterol, cerevisterol 6-cinnamate (6), was isolated from the fruiting bodies of H. erinaceum together with five aromatic compounds 1–5 and five sterols 7–11. The chemical structures of these compounds were elucidated using chemical and physical methods and comparison of HRESIMS, 1D-NMR (1H, 13C, and DEPT) and 2D-NMR (COSY, HMQC, HMBC, and NOESY) spectra with previously reported data. The antioxidant and anti-osteoporotic activities of extracts and the isolated compounds 1–11 were investigated. All compounds exhibited peroxyl radical-scavenging capacity but only compounds 1, 3, and 4 showed potent reducing capacity.
    [Show full text]
  • Mushrooms: an Important Source of Natural Bioactive Compounds
    Natural Product Sciences 26(2) : 118-131 (2020) https://doi.org/10.20307/nps.2020.26.2.118 Mushrooms: An Important Source of Natural Bioactive Compounds Ji Won Ha†, Juhui Kim†, Hyunwoo Kim†, Wonyoung Jang†, and Ki Hyun Kim* School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea Abstract Mushrooms are known for their various attributes in the fields of nutrition and therapeutics. With exceptional taste, aroma, and nutritional value, they are considered ‘functional food’-improving health and providing nutritional benefits to the body. Mushrooms have also been widely applied therapeutically as they possess diverse bioactive compounds known as secondary metabolites. These secondary metabolites demonstrated diverse biological properties such as anticancer, anti-diabetic, immunomodulatory, antimicrobial, anti-inflammatory, antiviral, anti-allergic, and antioxidative activities. This review presents bioactive compounds from the field of mushroom metabolite research and discusses important findings regarding bioactive compounds identified during the last five years (2015 – 2019). Keywords Mushrooms, Secondary metabolites, Biological activities Introduction compounds obtained from mushrooms have shifted toward a new trend: the development of novel drugs.2,3 In Mushrooms, classified as fungi, are defined as “a this review, the biological activities exhibited by the macrofungus with a distinctive fruiting body”.1 In other bioactive metabolites derived from various mushrooms words, they are filamentous fungi with fruiting bodies investigated during the last five years (2015–2019) are packed with beneficial nutrients such as carbohydrates, described and important findings regarding these bio- fibers, proteins, vitamins, and minerals.2 They have been active compounds are emphasized for their potential known for centuries to have an essential nutritional as therapeutic applications.
    [Show full text]
  • A Brief Review of Bioactive Metabolites Derived from Deep-Sea Fungi
    Mar. Drugs 2015, 13, 4594-4616; doi:10.3390/md13084594 OPEN ACCESS marine drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Review A Brief Review of Bioactive Metabolites Derived from Deep-Sea Fungi Yan-Ting Wang, Ya-Rong Xue and Chang-Hong Liu * State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University; 163 Xianlin Avenue, Nanjing 210023, Jiangsu, China; E-Mails: [email protected] (Y.-T.W.); [email protected] (Y.-R.X.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel./Fax: +86-25-8968-5469. Academic Editor: Johannes F. Imhoff Received: 2 June 2015 / Accepted: 14 July 2015 / Published: 23 July 2015 Abstract: Deep-sea fungi, the fungi that inhabit the sea and the sediment at depths of over 1000 m below the surface, have become an important source of industrial, agricultural, and nutraceutical compounds based on their diversities in both structure and function. Since the first study of deep-sea fungi in the Atlantic Ocean at a depth of 4450 m was conducted approximately 50 years ago, hundreds of isolates of deep-sea fungi have been reported based on culture-dependent methods. To date more than 180 bioactive secondary metabolites derived from deep-sea fungi have been documented in the literature. These include compounds with anticancer, antimicrobial, antifungal, antiprotozoal, and antiviral activities. In this review, we summarize the structures and bioactivities of these metabolites to provide help for novel drug development. Keywords: deep-sea fungi; bioactive compounds; anticancer; antimicrobial; antiviral; antifungal 1. Introduction Fungi are well known for their vast diversity of secondary metabolites, which include many life-saving drugs and highly toxic mycotoxins [1].
    [Show full text]
  • Chemical Constituents of the Lichen Stereocaulon Azoreum Antonio G
    Chemical Constituents of the Lichen Stereocaulon azoreum Antonio G. González, Elsa M. Rodrí guez Pérez, Consuelo E. Hernández Padrón*, and Jaime Bermejo Barrera Centro de Productos Naturales Orgänicos Antonio Gonzalez, I.P.N.A. Consejo Superior de Investigaciones Cientificas Carretera La Esperanza 2, La Laguna, 38206 Tenerife, Canary Islands, Spain * Departamento de Botanica, Facultad de Farmacia, Universidad de La Laguna, Tenerife, Canary Islands, Spain Z. Naturforsch. 47c, 503-507 (1992); received April 24, 1992 Stereocaulon azoreum, Lichens, Triterpenes, Sterols, Depsides Column chromatography of the acetone extract of the lichen Stereocaulon azoreum afforded several substances identified by chemical and spectral means; a-amyrin, lupeol, taraxerol, ursolic acid, ergosterol peroxide, brassicasterol, cerevisterol, stictic acid and an acetone-con- densation derivative, lobaric acid. Furthermore atranorin, methyl ß-orsellinate, atranol and, for the first time from the genus Stereocaulon, cryptostictic acid and the dibenzofuran, strepsi- lin were isolated. Introduction guing species was analyzed and afforded various types of substances. Four triterpenes, a-amyrin, Stereocaulon azoreum (Schaer.) Nyl. (Stereocau- laceae, Lecanorales) is a silver-grey lichen with fru- lupeol, taraxerol and ursolic acid, three sterols, er­ ticose thallus, very ramified, graceful pseudopode- gosterol peroxide (1), brassicasterol (2), and cere­ tia covered with squamulose or coralloidsquamu- visterol (3) and various lichen compounds were lose phyllocladia, no soralia, frequent subterminal obtained. apothecia, dark-brown-blackish flat-to-convex The major lichen substances were the depsi- disk. It is saxicolous and its preferred habitat in dones stictic acid (4) and lobaric acid (5) and the the Canaries is on the lava flow found on the depside atranorin, all three of which are of particu­ lar interest in the chemotaxonomic diagnosis of “green mountainside” at 800 to1 0 0 0 m altitude where it may be very abundant locally.
    [Show full text]
  • Biologically Active Metabolites of the Genus Ganoderma: Three Decades of Myco-Chemistry Research
    Biologically active metabolites of the genus Ganoderma: Three decades of myco-chemistry research Ángel Trigos 1,2 Jorge Suárez Medellín 1,3 1 Laboratorio de Alta Tecnología de Xalapa, Universidad Veracruzana. Calle Médicos, 5, Col. Unidad del Bosque. C.P. 91010, Xalapa, Veracruz, México. 2 Instituto de Ciencias Básicas, Universidad Veracruzana, Av. Dos Vistas s/n, Carretera Xalapa-Las Trancas, 91000 Xalapa, Veracruz, México. 3 Unidad de Investigación y Desarrollo en Alimentos, Instituto Tecnológico de Veracruz. Av. Miguel A. de Quevedo # 2779 Col. Formando Hogar, C. P. 91680 Veracruz, Veracruz, México 1 1 0 Metabolitos biológicamente activos del género Ganoderma: tres décadas de 2 , investigación mico-química 3 8 - 3 6 Resumen. Desde la antigüedad en la medicina tradicional de oriente, hasta los tiempos : 4 modernos, los hongos pertenecientes al género Ganoderma se han utilizado para el 3 A tratamiento y la prevención de diversas enfermedades como cáncer, hipertensión y Í G diabetes, entre muchas otras afecciones. Así, a partir de los cuerpos fructíferos, micelio y O L O esporas de diferentes especies de Ganoderma se han aislado más de 140 triterpenoides C I M biológicamente activos y 200 polisacáridos, al igual que proteínas y otros metabolitos E diversos. Por lo que el objetivo de este trabajo, es mostrar un panorama general de los D A principales metabolitos biológicamente activos aislados de los miembros de este género N A C hasta la fecha, aunque sin pretender constituir una revisión exhaustiva, ya que tal cosa sería I X imposible dado el impresionante dinamismo del tema de investigación. E M Palabras clave: compuestos bioactivos, hongos medicinales, metabolitos terapeúticos, A T S polisacáridos, triterpenoides.
    [Show full text]
  • Medicinal Potential of Extracts from the Chanterelle Mushroom, Cantharellus Cibarius
    BIO Web of Conferences 16, 00039 (2019) https://doi.org/10.1051/bioconf/20191600039 Results and Prospects of Geobotanical Research in Siberia Medicinal potential of extracts from the chanterelle mushroom, Cantharellus cibarius (Review) and prospects for studying its strains from differs plant communities of ultra- continental regions of the Asia Vyacheslav Vlasenko1*, Dejidmaa Turmunkh2, Enkhtuya Ochirbat3, Dondov Budsuren2, Kherlenchimeg Nyamsuren3, Javkhlan Samiya3, Burenbaatar Ganbaatar3, and Anastasia Vlasenko1 1Central Siberian Botanical Garden SB RAS, 630090 Zolotodolinskaya st., 101, Novosibirsk, Russia. 2Plant Protection Research Institute MULS, 17024, Khoroo 11, Khan-Uul district, Ulaanbaatar, 3Institute of General and Experimental Biology MAS, Peace Avenue-54b, Bayanzurkh District, Ulaanbaatar-13330, Mongolia Abstract. The article reviews medicinal properties of Cantharellus cibarius. Fruiting bodies of this species are a promising source of extracts with vitamins, carbohydrates, proteins, polysaccharides, sterols, phenolic acids, which various biological properties. 1 Introduction Mushrooms are becoming more and more important in our diet for their nutritional characteristic. Basidiomycetes contain a wide range of various drugs such as polysaccharides, organic acids, lipids, steroids, tetracyclic triterpenes, which are of interest for medical applications [1, 2]. One of the most frequently harvested mushrooms in forests of ultra-continental regions of the Asia is Yellow chanterelle, C. cibarius (fig. 1) is an edible mushroom with medicinal value. Chanterelle is a beneficial nutrient for human health with high levels of vitamins B and C, contains a great number of carbohydrates and proteins and a low amount of fat, phenolic compounds and organic acids [3]. This species is appreciated because of the aroma and taste of its fruiting bodies.
    [Show full text]
  • The Use of Hericium Erinaceus and Trametes Versicolor Extracts in Supportive Treatment in Oncology
    Acta Pharm. 71 (2021) 1–16 Review https://doi.org/10.2478/acph-2021-0007 The use of Hericium erinaceus and Trametes versicolor extracts in supportive treatment in oncology MATEUSZ WINDER* Substances available in nature with potential therapeutic WERONIKA BULSKA-BĘDKOWSKA effects are the subject of research that raises tremendous JERZY CHUDEK hopes for new challenges in medicine. Fungi are the most Department of Internal Medicine and common organisms in the ecosystem and the most interest- Oncological Chemotherapy ing in this respect. This review discusses two species of Medical University of Silesia edible fungi, used for centuries in Eastern natural medi- Katowice 40-027, Poland cine, with the best-documented effect – Hericium erinaceus (He) and Trametes versicolor (Tv). The results of in vivo and in vitro studies conducted on mice and human cell lines demon- strate immunomodulatory, potentially, anticancer, anti- inflammatory and neuroregenerative effects of substances isolated from these fungi. The substances contained in the extracts of He and Tv seem to have immunomodulatory effects that may support chemotherapy. The use of these extracts is justified stronger than the other supportive treat ments based on supplements. Accepted March 24, 2020 Keywords: Hericium erinaceus, Trametes versicolor, onco logy, Published online April 21, 2020 fungi, immunomodulation INTRODUCTION The healing properties of substances available in nature have been known for centu- ries. Medical practices using extracts and infusions from plants have been described in detail by various civilizations. Many of the medicines currently in use are of natural ori- gin. These include acetylsalicylic acid, salicylate derivative obtained from willow bark (Salix, 1853), digoxin, an alkaloid of digitalis (Digitalis lanata, 1925), morphine, poppy alka- loid (Papaver somniferum, 1803) or the first anti-malarial drug – cinchona alkaloid quinine (Cinchona, 1820) (1, 2).
    [Show full text]
  • The Use of Hericium Erinaceus and Trametes Versicolor Extracts in Supportive Treatment in Oncology
    Acta Pharm. 71 (2021) 1–16 Review https://doi.org/10.2478/acph-2021-0007 The use of Hericium erinaceus and Trametes versicolor extracts in supportive treatment in oncology MATEUSZ WINDER* Substances available in nature with potential therapeutic WERONIKA BULSKA-BĘDKOWSKA effects are the subject of research that raises tremendous JERZY CHUDEK hopes for new challenges in medicine. Fungi are the most Department of Internal Medicine and common organisms in the ecosystem and the most interest- Oncological Chemotherapy ing in this respect. This review discusses two species of Medical University of Silesia edible fungi, used for centuries in Eastern natural medi- Katowice 40-027, Poland cine, with the best-documented effect – Hericium erinaceus (He) and Trametes versicolor (Tv). The results of in vivo and in vitro studies conducted on mice and human cell lines demon- strate immunomodulatory, potentially, anticancer, anti- inflammatory and neuroregenerative effects of substances isolated from these fungi. The substances contained in the extracts of He and Tv seem to have immunomodulatory effects that may support chemotherapy. The use of these extracts is justified stronger than the other supportive treat ments based on supplements. Accepted March 24, 2020 Keywords: Hericium erinaceus, Trametes versicolor, onco logy, Published online April 21, 2020 fungi, immunomodulation INTRODUCTION The healing properties of substances available in nature have been known for centu- ries. Medical practices using extracts and infusions from plants have been described in detail by various civilizations. Many of the medicines currently in use are of natural ori- gin. These include acetylsalicylic acid, salicylate derivative obtained from willow bark (Salix, 1853), digoxin, an alkaloid of digitalis (Digitalis lanata, 1925), morphine, poppy alka- loid (Papaver somniferum, 1803) or the first anti-malarial drug – cinchona alkaloid quinine (Cinchona, 1820) (1, 2).
    [Show full text]
  • Chemical Constituents of the Lichen Stereocaulon Azoreum Antonio G
    Chemical Constituents of the Lichen Stereocaulon azoreum Antonio G. González, Elsa M. Rodrí guez Pérez, Consuelo E. Hernández Padrón*, and Jaime Bermejo Barrera Centro de Productos Naturales Orgänicos Antonio Gonzalez, I.P.N.A. Consejo Superior de Investigaciones Cientificas Carretera La Esperanza 2, La Laguna, 38206 Tenerife, Canary Islands, Spain * Departamento de Botanica, Facultad de Farmacia, Universidad de La Laguna, Tenerife, Canary Islands, Spain Z. Naturforsch. 47c, 503-507 (1992); received April 24, 1992 Stereocaulon azoreum, Lichens, Triterpenes, Sterols, Depsides Column chromatography of the acetone extract of the lichen Stereocaulon azoreum afforded several substances identified by chemical and spectral means; a-amyrin, lupeol, taraxerol, ursolic acid, ergosterol peroxide, brassicasterol, cerevisterol, stictic acid and an acetone-con- densation derivative, lobaric acid. Furthermore atranorin, methyl ß-orsellinate, atranol and, for the first time from the genus Stereocaulon, cryptostictic acid and the dibenzofuran, strepsi- lin were isolated. Introduction guing species was analyzed and afforded various types of substances. Four triterpenes, a-amyrin, Stereocaulon azoreum (Schaer.) Nyl. (Stereocau- laceae, Lecanorales) is a silver-grey lichen with fru- lupeol, taraxerol and ursolic acid, three sterols, er­ ticose thallus, very ramified, graceful pseudopode- gosterol peroxide (1), brassicasterol (2), and cere­ tia covered with squamulose or coralloidsquamu- visterol (3) and various lichen compounds were lose phyllocladia, no soralia, frequent subterminal obtained. apothecia, dark-brown-blackish flat-to-convex The major lichen substances were the depsi- disk. It is saxicolous and its preferred habitat in dones stictic acid (4) and lobaric acid (5) and the the Canaries is on the lava flow found on the depside atranorin, all three of which are of particu­ lar interest in the chemotaxonomic diagnosis of “green mountainside” at 800 to1 0 0 0 m altitude where it may be very abundant locally.
    [Show full text]
  • The Occurrence of Ecdysteroids and Ecdysteroid-Related Compounds in Edible Mushroom Species
    THE OCCURRENCE OF ECDYSTEROIDS AND ECDYSTEROID-RELATED COMPOUNDS IN EDIBLE MUSHROOM SPECIES Laurie Dinan1, Nilufar Mamadalieva2 and René Lafont1,3 1Institut Biophytis, Sorbonne Université, 4 place Jussieu, Paris 7505, FranCe 2S. Yu. Yusonov Institute for the Chemistry of Plant SubstanCes, ACademy of SCienCes of the RepubliC of Uzbekistan, Tashkent, RepubliC of Uzbekistan 3Sorbonne Université, Paris-Seine Biology Institute (BIOSIPE), CNRS, 75005 Paris, FranCe Version 1: 24th October, 2019 The list of edible fungi is based on information from Wikipedia (Edible mushroom) with additional species added. The presence of ecdysteroids or ecdysteroid-related Compounds in the fruiting bodies of these speCies was identified from the review of Kovganko (1999) and additional literature searches. Important notice: This database has been designed as a tool to help the sCientifiC Community in researCh on eCdysteroids. The authors wish it to be an evolving system and would enCourage other researChers to submit new data, additional publiCations, proposals for modifiCations or Comments to the authors for inClusion. All new material will be referenCed to its Contributor. ReproduCtion of the material in this database in its entirety is not permitted. ReproduCtion of parts of the database is only permitted under the following Conditions: • reproduCtion is for personal use, for teaching and researCh, but not for distribution to others • reproduCtion is not for CommerCial use • the origin of the material is indiCated in the reproduCtion • we should be notified in advanCe to allow us to doCument that the reproduCtion is being made Where data are reproduCed in published texts, they should be acknowledged by the reference: Lafont R., Harmatha J., Marion-Poll F., Dinan L., Wilson I.D.: The ECdysone Handbook, 3rd edition, on-line, http://eCdybase.org Illustrations may not under any CirCumstanCes be used in published texts, CommerCial or otherwise, without previous written permission of the author(s).
    [Show full text]