Bandamycin As New Antifungal Agent and Further Secondary Metabolites from Terrestrial and Marine Microorganisms

Total Page:16

File Type:pdf, Size:1020Kb

Bandamycin As New Antifungal Agent and Further Secondary Metabolites from Terrestrial and Marine Microorganisms Muhammad Bahi ___________________________________________________ Bandamycin as New Antifungal Agent and further Secondary Metabolites from Terrestrial and Marine Microorganisms H N O 2 O O CH HO 3 O NH HO OH OH OH OH O NH2 OH OH O CH3 OH OH OH O OH Cl OH O O CH3 Dissertation Bandamycin as New Antifungal Agent and further Secondary Metabolites from Terrestrial and Marine Microorganisms Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultäten der Georg-August-Universität zu Göttingen vorgelegt von Muhammad Bahi aus Banda Aceh (Indonesien) Göttingen 2012 D7 Referent: Prof. Dr. H. Laatsch Korreferent: Prof. Dr. A. Zeeck Tag der mündlichen Prüfung: 17.04.2012 Die vorliegende Arbeit wurde in der Zeit von März 2007 bis November 2011 im Institut für Organische Chemie der Georg-August-Universität zu Göttingen unter der Leitung von Herrn Prof. Dr. H. Laatsch angefertigt. Herrn Prof. Dr. H. Laatsch danke ich für die Möglichkeit zur Durchführung dieser Ar- beit sowie die ständige Bereitschaft, auftretende Probleme zu diskutieren. For my parents, my wife (Anizar) and my sons (Fiqhan, Amirul, Syauqal) Content I Table of Content 1 Introduction .................................................................................................... 1 1.1 Natural products in modern therapeutic use .............................................. 1 1.2 Secondary metabolites from bacteria ......................................................... 5 1.3 Natural products from fungi ..................................................................... 19 2 Scope of the present work............................................................................ 28 3 General techniques ....................................................................................... 30 3.1 Collection of strains ................................................................................. 30 3.2 Strategic procedure in evaluating the selected strains ............................. 30 3.3 Pre-screening ............................................................................................ 32 3.4 Biological screening ................................................................................. 33 3.5 Chemical screening .................................................................................. 34 3.6 Cultivation and scaling-up ....................................................................... 34 3.7 Isolation and purification work-up ........................................................... 35 3.8 Dereplication technique ........................................................................... 35 4 Investigation of selected bacterial strains .................................................. 36 4.1 Marine Streptomyces sp. B8289 .............................................................. 36 4.1.1 2-[5-(2-Oxo-propyl)-tetrahydrofuran-2-yl]-propionic acid ..................... 37 4.1.2 2-[5-(2-Oxo-propyl)-tetrahydrofuran-2-yl]propionic acid methyl ester .. 39 4.1.3 Homononactic acid .................................................................................. 42 4.1.4 Homononactic acid methyl ester .............................................................. 44 4.2 Terrestrial Streptomyces sp. Ank86 ......................................................... 46 4.2.1 4-Hydroxy-2-methoxyacetanilide ............................................................ 47 4.2.2 Actinomycin D ......................................................................................... 48 4.3 Terrestrial Streptomyces sp. Ank68 ......................................................... 51 4.3.1 Fungichromin ........................................................................................... 52 4.4 Terrestrial Streptomyces sp. Ank248 ....................................................... 54 4.4.1 1-Acetyl--carboline ................................................................................ 54 4.5 Terrestrial Streptomyces sp. Ank181 ....................................................... 56 4.5.1 Reductiomycin ......................................................................................... 57 4.6 Ruminal bacterium Enterobacter amnigenus ZIA ................................... 59 4.6.1 Poly-(hydroxybutyric acid) (PHB) .......................................................... 60 II Content 4.6.2 Butyl glycoside ........................................................................................ 61 4.7 Terrestrial Streptomyces sp. Ank75 ......................................................... 63 4.7.1 Benadrostin .............................................................................................. 64 4.7.2 2-O-Methylpyrogallol .............................................................................. 66 4.7.3 N-Aminocarbonyl-2,3-dihydroxybenzamide ........................................... 67 4.7.4 2,3-Dihydroxybenzamide ......................................................................... 69 4.7.5 3-[(1Z)-1-Hexenyl-ONN-azoxyl]-1,2-butanediol .................................... 71 4.7.6 Bandamycin.............................................................................................. 72 4.7.7 N6, N6-Dimethyl-adenosine...................................................................... 77 4.8 Marine Streptomyces sp. B5798 ............................................................... 78 4.8.1 p-Hydroxyphenylacetic acid .................................................................... 79 4.8.2 Macrolactin A........................................................................................... 80 4.9 Terrestrial Streptomyces sp. GT-2005/049 .............................................. 82 4.9.1 Lumichrome ............................................................................................. 83 4.10 Terrestrial Streptomyces sp. GW 4723 .................................................... 86 4.10.1 Celastramycin B ....................................................................................... 86 5 Metabolites from selected endophytic fungi .............................................. 91 5.1 Endophytic fungus LAF20 ....................................................................... 91 5.1.1 Isosclerone................................................................................................ 92 5.1.2 4, 6, 8-Trihydroxy-1-tetralone ................................................................. 94 5.2 Endophytic fungus NP32-A ..................................................................... 96 5.2.1 Cerevisterol .............................................................................................. 96 5.2.2 Fusaproliferin ........................................................................................... 98 5.2.3 Beauvericin ............................................................................................ 100 5.2.4 Trichosetin.............................................................................................. 103 5.2.5 Cerebroside B ......................................................................................... 105 5.3 Endophytic fungus FT44 ........................................................................ 107 5.3.1 1233-A ................................................................................................... 108 5.3.2 Ergosterol peroxide ................................................................................ 109 5.4 Endophytic fungus FTM1 ...................................................................... 112 5.4.1 8-Hydroxy-6,7-dimethoxy-3-methylisocoumarin .................................. 113 5.4.2 5-Methylochracin ................................................................................... 115 Content III 5.4.3 Alternariol 5-methyl ether (AME) ......................................................... 117 6 Plant metabolites ........................................................................................ 119 6.1 Adansonia digitata ................................................................................. 120 6.1.1 Garcinon D ............................................................................................. 120 6.1.2 Rubraxanthone ....................................................................................... 123 6.1.3 Acetylaleuritolic acid ............................................................................. 125 6.2 Dillenia pentagyna ................................................................................. 127 6.2.1 Betulinic acid ......................................................................................... 127 6.2.2 Betulin .................................................................................................... 129 6.3 Kaempferia parviflora ........................................................................... 131 6.3.1 5,7-Dimethoxyapigenin ......................................................................... 131 6.3.2 Ganschisandrine ..................................................................................... 133 6.3.3 Stigmasterol glucoside ........................................................................... 135 6.3.4 Oleanolic acid ........................................................................................ 137 6.3.5 2-Methylanthraquinone .......................................................................... 139 6.3.6 Scopoletin .............................................................................................. 140
Recommended publications
  • Thi Thu Tram NGUYEN
    ANNÉE 2014 THÈSE / UNIVERSITÉ DE RENNES 1 sous le sceau de l’Université Européenne de Bretagne pour le grade de DOCTEUR DE L’UNIVERSITÉ DE RENNES 1 Mention : Chimie Ecole doctorale Sciences De La Matière Thi Thu Tram NGUYEN Préparée dans l’unité de recherche UMR CNRS 6226 Equipe PNSCM (Produits Naturels Synthèses Chimie Médicinale) (Faculté de Pharmacie, Université de Rennes 1) Screening of Thèse soutenue à Rennes le 19 décembre 2014 mycosporine-like devant le jury composé de : compounds in the Marie-Dominique GALIBERT Professeur à l’Université de Rennes 1 / Examinateur Dermatocarpon genus. Holger THÜS Conservateur au Natural History Museum Londres / Phytochemical study Rapporteur Erwan AR GALL of the lichen Maître de conférences à l’Université de Bretagne Occidentale / Rapporteur Dermatocarpon luridum Kim Phi Phung NGUYEN Professeur à l’Université des sciences naturelles (With.) J.R. Laundon. d’Hô-Chi-Minh-Ville Vietnam / Examinateur Marylène CHOLLET-KRUGLER Maître de conférences à l’Université de Rennes1 / Co-directeur de thèse Joël BOUSTIE Professeur à l’Université de Rennes 1 / Directeur de thèse Remerciements En premier lieu, je tiens à remercier Monsieur le Dr Holger Thüs et Monsieur le Dr Erwan Ar Gall d’avoir accepté d’être les rapporteurs de mon manuscrit, ainsi que Madame la Professeure Marie-Dominique Galibert d’avoir accepté de participer à ce jury de thèse. J’exprime toute ma gratitude au Dr Marylène Chollet-Krugler pour avoir guidé mes pas dès les premiers jours et tout au long de ces trois années. Je la remercie particulièrement pour sa disponibilité et sa grande gentillesse, son écoute et sa patience.
    [Show full text]
  • Redalyc.Biologically Active Metabolites of the Genus Ganoderma: Three Decades of Myco-Chemistry Research
    Revista Mexicana de Micología ISSN: 0187-3180 [email protected] Sociedad Mexicana de Micología México Trigos, Ángel; Suárez Medellín, Jorge Biologically active metabolites of the genus Ganoderma: Three decades of myco-chemistry research Revista Mexicana de Micología, vol. 34, diciembre, 2011, pp. 63-83 Sociedad Mexicana de Micología Xalapa, México Available in: http://www.redalyc.org/articulo.oa?id=88321339010 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Biologically active metabolites of the genus Ganoderma: Three decades of myco-chemistry research Ángel Trigos 1,2 Jorge Suárez Medellín 1,3 1 Laboratorio de Alta Tecnología de Xalapa, Universidad Veracruzana. Calle Médicos, 5, Col. Unidad del Bosque. C.P. 91010, Xalapa, Veracruz, México. 2 Instituto de Ciencias Básicas, Universidad Veracruzana, Av. Dos Vistas s/n, Carretera Xalapa-Las Trancas, 91000 Xalapa, Veracruz, México. 3 Unidad de Investigación y Desarrollo en Alimentos, Instituto Tecnológico de Veracruz. Av. Miguel A. de Quevedo # 2779 Col. Formando Hogar, C. P. 91680 Veracruz, Veracruz, México 1 1 0 Metabolitos biológicamente activos del género Ganoderma: tres décadas de 2 , investigación mico-química 3 8 - 3 6 Resumen. Desde la antigüedad en la medicina tradicional de oriente, hasta los tiempos : 4 modernos, los hongos pertenecientes al género Ganoderma se han utilizado para el 3 A tratamiento y la prevención de diversas enfermedades como cáncer, hipertensión y Í G diabetes, entre muchas otras afecciones.
    [Show full text]
  • The Use of Natural Product Substrates for the Synthesis of Libraries of Biologically Active, New Chemical Entities
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Graduate School Professional Papers 2010 The seU of Natural Product Substrates for the Synthesis of Libraries of Biologically Active, New Chemical Entities Joshua Bryant Phillips The University of Montana Let us know how access to this document benefits ouy . Follow this and additional works at: https://scholarworks.umt.edu/etd Recommended Citation Phillips, Joshua Bryant, "The sU e of Natural Product Substrates for the Synthesis of Libraries of Biologically Active, New Chemical Entities" (2010). Graduate Student Theses, Dissertations, & Professional Papers. 1100. https://scholarworks.umt.edu/etd/1100 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. THE USE OF NATURAL PRODUCT SUBSTRATES FOR THE SYNTHESIS OF LIBRARIES OF BIOLOGICALLY ACTIVE, NEW CHEMICAL ENTITIES by Joshua Bryant Phillips B.S. Chemistry, Northern Arizona University, 2002 B.S. Microbiology (health pre-professional), Northern Arizona University, 2002 Presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy Chemistry The University of Montana June 2010 Phillips, Joshua Bryant Ph.D., June 2010 Chemistry THE USE OF NATURAL PRODUCT SUBSTRATES FOR THE SYNTHESIS OF LIBRARIES OF BIOLOGICALLY ACTIVE, NEW CHEMICAL ENTITIES Advisor: Dr. Nigel D. Priestley Chairperson: Dr. Bruce Bowler ABSTRACT Since Alexander Fleming first noted the killing of a bacterial culture by a mold, antibiotics have revolutionized medicine, being able to treat, and often cure life-threatening illnesses and making surgical procedures possible by eliminating the possibility of opportunistic infection.
    [Show full text]
  • Antioxidant and Anti-Osteoporotic Activities of Aromatic Compounds and Sterols from Hericium Erinaceum
    molecules Article Antioxidant and Anti-Osteoporotic Activities of Aromatic Compounds and Sterols from Hericium erinaceum Wei Li 1, Sang Hyun Lee 2, Hae Dong Jang 2,*, Jin Yeul Ma 1,* and Young Ho Kim 3,* 1 Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Korea; [email protected] 2 Department of Food and Nutrition, Hannam University, Daejeon 34430, Korea; [email protected] 3 College of Pharmacy, Chungnam National University, Daejeon 34134, Korea * Correspondence: [email protected] (H.D.J.); [email protected] (J.Y.M.); [email protected] (Y.H.K.); Tel.: +82-42-629-8795 (H.D.J.); +82-53-940-3811 (J.Y.M.); +82-42-821-5933 (Y.H.K.) Academic Editor: Derek J. McPhee Received: 14 November 2016; Accepted: 2 January 2017; Published: 11 January 2017 Abstract: Hericium erinaceum, commonly called lion’s mane mushroom, is a traditional edible mushroom widely used in culinary applications and herbal medicines in East Asian countries. In this study, a new sterol, cerevisterol 6-cinnamate (6), was isolated from the fruiting bodies of H. erinaceum together with five aromatic compounds 1–5 and five sterols 7–11. The chemical structures of these compounds were elucidated using chemical and physical methods and comparison of HRESIMS, 1D-NMR (1H, 13C, and DEPT) and 2D-NMR (COSY, HMQC, HMBC, and NOESY) spectra with previously reported data. The antioxidant and anti-osteoporotic activities of extracts and the isolated compounds 1–11 were investigated. All compounds exhibited peroxyl radical-scavenging capacity but only compounds 1, 3, and 4 showed potent reducing capacity.
    [Show full text]
  • Why Ammonium Detection Is Particularly Challenging But
    Analyst View Article Online CRITICAL REVIEW View Journal | View Issue Why ammonium detection is particularly challenging but insightful with ionophore-based Cite this: Analyst, 2020, 145, 3188 potentiometric sensors – an overview of the progress in the last 20 years María Cuartero, * Noemi Colozza, Bibiana M. Fernández-Pérez and Gastón A. Crespo * The monitoring of ammonium ion concentration has gained the attention of researchers from multiple fields since it is a crucial parameter with respect to environmental and biomedical applications. For example, ammonium is considered to be a quality indicator of natural waters as well as a potential bio- marker of an enzymatic byproduct in key physiological reactions. Among the classical analytical methods used for the detection of ammonium ions, potentiometric ion-selective electrodes (ISEs) have attracted Creative Commons Attribution-NonCommercial 3.0 Unported Licence. special attention in the scientific community because of their advantages such as cost-effectiveness, user-friendly features, and miniaturization ability, which facilitate easy portable measurements. Regarding the analytical performance, the key component of ISEs is the selective receptor, labelled as an ionophore in ISE jargon. Indeed, the preference of an ionophore for ammonium amongst other ions (i.e., selectivity) is a factor that primarily dictates the limit of detection of the electrode when performing measurements in real samples. A careful assessment of the literature for the last 20 years reveals that nonactin is by far the most employed ammonium ionophore to date. Despite the remarkable cross-interference of potass- ium over the ammonium response of nonactin-based ISEs, analytical applications comprising water quality assessment, clinical tests in biological fluids, and sweat monitoring during sports practice have This article is licensed under a been successfully researched.
    [Show full text]
  • Stereocontrol in the Synthesis of Nonactin A
    STEREOCONTROL IN THE SYNTHESIS OF NONACTIN A thesis presented by Hiten Sheth in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy of the University of London Department of Chemistry, Imperial College, London SW7 2AY October 1982 ACKNOWLEDGEMENTS I wish to thank Dr A.G.M. Barrett for his advice, guidance and friendship during this project. I am grateful to Ashley Fenwick, Barrett Kalindjian and Mark Russell for friendship and help. A special thanks to Mrs Denise Elliott for typing this thesis and to Tara, Gunvant, Bharat and Sonal for encouragement and support. Thanks are also due to the SERC for a studentship, and to W.R. Grace and Co., Research Division, Columbia, Maryland for support. A special thanks to Mrs. Maria Serrano-Widdowson for helping out at times of crises. ABSTRACT The racemic and chiral syntheses, of nonactic acid, in the literature are reviewed. Our approaches to the synthesis of racemic nonactic acid utilized activated derivatives of pentane-1, 2R(S), 4S(R) triol (101); 2R(S), 4S(R) dihydroxypentanoic acid (133) and 2R(S), 4S(R) dihydroxypentanal (119). The key intermediate, 3R(S) acetoxy-5S(R)-methyltetra- hydrofuran-2-one (99), was prepared from the double elimination of 2,3,5-tri-0-acetyl-D-ribonolactone to give the desired 3-acetoxy- 5-methylene-2,5-dihydrofuran-2-one. Steric-approach controlled hydrogenation yielded the tetrahydrofuran-2-one (99). The lactol (119), derived from the di-isobutylaluminiumhydride reduction of the tetrahydrofuran-2-one (99) was condensed with the ylide, ethoxycarbonylmethylenetriphenylphosphorane, the resultant enoate being hydrogenated and acidified to yield the lactone, 5S(R) - [2S(R) hydroxypropyl ] tetrahydrofuran-2-one (120).
    [Show full text]
  • Mushrooms: an Important Source of Natural Bioactive Compounds
    Natural Product Sciences 26(2) : 118-131 (2020) https://doi.org/10.20307/nps.2020.26.2.118 Mushrooms: An Important Source of Natural Bioactive Compounds Ji Won Ha†, Juhui Kim†, Hyunwoo Kim†, Wonyoung Jang†, and Ki Hyun Kim* School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea Abstract Mushrooms are known for their various attributes in the fields of nutrition and therapeutics. With exceptional taste, aroma, and nutritional value, they are considered ‘functional food’-improving health and providing nutritional benefits to the body. Mushrooms have also been widely applied therapeutically as they possess diverse bioactive compounds known as secondary metabolites. These secondary metabolites demonstrated diverse biological properties such as anticancer, anti-diabetic, immunomodulatory, antimicrobial, anti-inflammatory, antiviral, anti-allergic, and antioxidative activities. This review presents bioactive compounds from the field of mushroom metabolite research and discusses important findings regarding bioactive compounds identified during the last five years (2015 – 2019). Keywords Mushrooms, Secondary metabolites, Biological activities Introduction compounds obtained from mushrooms have shifted toward a new trend: the development of novel drugs.2,3 In Mushrooms, classified as fungi, are defined as “a this review, the biological activities exhibited by the macrofungus with a distinctive fruiting body”.1 In other bioactive metabolites derived from various mushrooms words, they are filamentous fungi with fruiting bodies investigated during the last five years (2015–2019) are packed with beneficial nutrients such as carbohydrates, described and important findings regarding these bio- fibers, proteins, vitamins, and minerals.2 They have been active compounds are emphasized for their potential known for centuries to have an essential nutritional as therapeutic applications.
    [Show full text]
  • A Brief Review of Bioactive Metabolites Derived from Deep-Sea Fungi
    Mar. Drugs 2015, 13, 4594-4616; doi:10.3390/md13084594 OPEN ACCESS marine drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Review A Brief Review of Bioactive Metabolites Derived from Deep-Sea Fungi Yan-Ting Wang, Ya-Rong Xue and Chang-Hong Liu * State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University; 163 Xianlin Avenue, Nanjing 210023, Jiangsu, China; E-Mails: [email protected] (Y.-T.W.); [email protected] (Y.-R.X.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel./Fax: +86-25-8968-5469. Academic Editor: Johannes F. Imhoff Received: 2 June 2015 / Accepted: 14 July 2015 / Published: 23 July 2015 Abstract: Deep-sea fungi, the fungi that inhabit the sea and the sediment at depths of over 1000 m below the surface, have become an important source of industrial, agricultural, and nutraceutical compounds based on their diversities in both structure and function. Since the first study of deep-sea fungi in the Atlantic Ocean at a depth of 4450 m was conducted approximately 50 years ago, hundreds of isolates of deep-sea fungi have been reported based on culture-dependent methods. To date more than 180 bioactive secondary metabolites derived from deep-sea fungi have been documented in the literature. These include compounds with anticancer, antimicrobial, antifungal, antiprotozoal, and antiviral activities. In this review, we summarize the structures and bioactivities of these metabolites to provide help for novel drug development. Keywords: deep-sea fungi; bioactive compounds; anticancer; antimicrobial; antiviral; antifungal 1. Introduction Fungi are well known for their vast diversity of secondary metabolites, which include many life-saving drugs and highly toxic mycotoxins [1].
    [Show full text]
  • Chemical Constituents of the Lichen Stereocaulon Azoreum Antonio G
    Chemical Constituents of the Lichen Stereocaulon azoreum Antonio G. González, Elsa M. Rodrí guez Pérez, Consuelo E. Hernández Padrón*, and Jaime Bermejo Barrera Centro de Productos Naturales Orgänicos Antonio Gonzalez, I.P.N.A. Consejo Superior de Investigaciones Cientificas Carretera La Esperanza 2, La Laguna, 38206 Tenerife, Canary Islands, Spain * Departamento de Botanica, Facultad de Farmacia, Universidad de La Laguna, Tenerife, Canary Islands, Spain Z. Naturforsch. 47c, 503-507 (1992); received April 24, 1992 Stereocaulon azoreum, Lichens, Triterpenes, Sterols, Depsides Column chromatography of the acetone extract of the lichen Stereocaulon azoreum afforded several substances identified by chemical and spectral means; a-amyrin, lupeol, taraxerol, ursolic acid, ergosterol peroxide, brassicasterol, cerevisterol, stictic acid and an acetone-con- densation derivative, lobaric acid. Furthermore atranorin, methyl ß-orsellinate, atranol and, for the first time from the genus Stereocaulon, cryptostictic acid and the dibenzofuran, strepsi- lin were isolated. Introduction guing species was analyzed and afforded various types of substances. Four triterpenes, a-amyrin, Stereocaulon azoreum (Schaer.) Nyl. (Stereocau- laceae, Lecanorales) is a silver-grey lichen with fru- lupeol, taraxerol and ursolic acid, three sterols, er­ ticose thallus, very ramified, graceful pseudopode- gosterol peroxide (1), brassicasterol (2), and cere­ tia covered with squamulose or coralloidsquamu- visterol (3) and various lichen compounds were lose phyllocladia, no soralia, frequent subterminal obtained. apothecia, dark-brown-blackish flat-to-convex The major lichen substances were the depsi- disk. It is saxicolous and its preferred habitat in dones stictic acid (4) and lobaric acid (5) and the the Canaries is on the lava flow found on the depside atranorin, all three of which are of particu­ lar interest in the chemotaxonomic diagnosis of “green mountainside” at 800 to1 0 0 0 m altitude where it may be very abundant locally.
    [Show full text]
  • Biologically Active Metabolites of the Genus Ganoderma: Three Decades of Myco-Chemistry Research
    Biologically active metabolites of the genus Ganoderma: Three decades of myco-chemistry research Ángel Trigos 1,2 Jorge Suárez Medellín 1,3 1 Laboratorio de Alta Tecnología de Xalapa, Universidad Veracruzana. Calle Médicos, 5, Col. Unidad del Bosque. C.P. 91010, Xalapa, Veracruz, México. 2 Instituto de Ciencias Básicas, Universidad Veracruzana, Av. Dos Vistas s/n, Carretera Xalapa-Las Trancas, 91000 Xalapa, Veracruz, México. 3 Unidad de Investigación y Desarrollo en Alimentos, Instituto Tecnológico de Veracruz. Av. Miguel A. de Quevedo # 2779 Col. Formando Hogar, C. P. 91680 Veracruz, Veracruz, México 1 1 0 Metabolitos biológicamente activos del género Ganoderma: tres décadas de 2 , investigación mico-química 3 8 - 3 6 Resumen. Desde la antigüedad en la medicina tradicional de oriente, hasta los tiempos : 4 modernos, los hongos pertenecientes al género Ganoderma se han utilizado para el 3 A tratamiento y la prevención de diversas enfermedades como cáncer, hipertensión y Í G diabetes, entre muchas otras afecciones. Así, a partir de los cuerpos fructíferos, micelio y O L O esporas de diferentes especies de Ganoderma se han aislado más de 140 triterpenoides C I M biológicamente activos y 200 polisacáridos, al igual que proteínas y otros metabolitos E diversos. Por lo que el objetivo de este trabajo, es mostrar un panorama general de los D A principales metabolitos biológicamente activos aislados de los miembros de este género N A C hasta la fecha, aunque sin pretender constituir una revisión exhaustiva, ya que tal cosa sería I X imposible dado el impresionante dinamismo del tema de investigación. E M Palabras clave: compuestos bioactivos, hongos medicinales, metabolitos terapeúticos, A T S polisacáridos, triterpenoides.
    [Show full text]
  • The Rational Design and Synthesis of Ionophores and Fluoroionophores for the Selective Detection of Monovalent Cations
    The Rational Design and Synthesis of Ionophores and Fluoroionophores for the Selective Detection of Monovalent Cations By John S. Benco A Dissertation Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Chemistry by ________________________________ April 7, 2003 APPROVED: ________________________________ ________________________________ Dr. W. Grant McGimpsey, Major Advisor Dr. James W. Pavlik, Committee Member ________________________________ ________________________________ Dr. Robert E. Connors, Committee Member Dr. Joseph S. Foos, Outside Reviewer ________________________________ Dr. James P. Dittami, Head of Department Abstract The rational design, synthesis and complexation characteristics of several monovalent cation-selective ligands are described. Molecular modeling employing a combination of dynamics, mechanics (AMBER94) and electrostatics was used to design ligands for the complexation of ammonium, potassium, sodium and lithium ions. A modular technique was used to synthesize an ammonium selective ionophore based on a cyclic depsipeptide structure (8). The ionophore was incorporated into a planar ion selective electrode (ISE) sensor format and the selectivity tested versus a range of metal cations. It was found that the membrane containing the polar plasticizer NPOE (nitrophenyloctylether) in the absence of ionic additive exhibited near-Nernstian behavior (slope = 60.1 mV/dec @ 37˚C) and possessed high selectivity for ammonium ion over lithium and the divalent POT cations, calcium and magnesium (log K + = -7.3, -4.4, -7.1 for lithium, calcium and NH 4 j magnesium ions, respectively). The same membrane also exhibited sodium and POT potassium selectivity that was comparable to that reported for nonactin (log K + = - NH 4 j 2.1, -0.6 for sodium and potassium, respectively, compared to -2.4, -0.9 in the case of nonactin).
    [Show full text]
  • Tetrahydrofuran-Containing Crown Ethers As Ionophores for NH+-Selective Electrodes
    NH4 -ISEs Based on THF-Containing Crown Ethers Bull. Korean Chem. Soc. 2004, Vol. 25, No. 1 59 Tetrahydrofuran-Containing Crown Ethers as Ionophores for NH+-Selective Electrodes Hua Yan Jin, Tae Ho Kim, Jineun Kim, Shim Sung Lee, and Jae Sang Kim* Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Chinju 660-701, Korea Received September 29, 2003 The ammonium ion-selective electrodes (NHj-ISEs) based on the tetrahydrofuran(THF)-containing-16- crown-4 derivatives, 1,4,6,9,11,14,16,19-tetraoxocycloeicosane (L1) and 5,10,15,20,-tetramethyl-1,4,6,9,11, 14,16,tetraoxocycloeicosane19- (L2), were prepared and the electrode characteristics were tested. The conditioned NH4+-ISEs (E1) based on L1 with TEHP as a plasticising solvent mediator gave best results with near-Nernstian slope of 53.9 mV/decade of activity, detection limit of 10-4,9 M, and enhanced selectivity coefficients for the NH4+ ion with respect to an interfering K+ ion (log KpotNH4+,K+ = -1.84). This result was compared to other ammonium ionophores reported previously, for example, that of nonactin (log KpotNH4+,K+ = -0.92). The proposed electrode showed no significant potential changes in the range of 3.0 < pH < 9.0. Key Words : Ammonium ionophore, Ion-selective PVC membrane electrodes, THF-containing crown ethers, Nonactin Introduction crown ethers with small substituents (R=CH3, R'=H) at four bridged meso-carbon position show excellent sensitivity and From the clinical and environmental viewpoints, a selectivity for Li+ ion.19-21 In the course of our consecutive convenient and exact determination of NH4+ ion in river works for the Li+ ionophores, we realized that the analogue water and urine samples is eagerly desired.1-5 One of the with methyl groups (R=R'=CH3) exhibited very high most effective NH4+ ionophore is nonactin (Fig.
    [Show full text]