A Brief Review of Bioactive Metabolites Derived from Deep-Sea Fungi
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Thi Thu Tram NGUYEN
ANNÉE 2014 THÈSE / UNIVERSITÉ DE RENNES 1 sous le sceau de l’Université Européenne de Bretagne pour le grade de DOCTEUR DE L’UNIVERSITÉ DE RENNES 1 Mention : Chimie Ecole doctorale Sciences De La Matière Thi Thu Tram NGUYEN Préparée dans l’unité de recherche UMR CNRS 6226 Equipe PNSCM (Produits Naturels Synthèses Chimie Médicinale) (Faculté de Pharmacie, Université de Rennes 1) Screening of Thèse soutenue à Rennes le 19 décembre 2014 mycosporine-like devant le jury composé de : compounds in the Marie-Dominique GALIBERT Professeur à l’Université de Rennes 1 / Examinateur Dermatocarpon genus. Holger THÜS Conservateur au Natural History Museum Londres / Phytochemical study Rapporteur Erwan AR GALL of the lichen Maître de conférences à l’Université de Bretagne Occidentale / Rapporteur Dermatocarpon luridum Kim Phi Phung NGUYEN Professeur à l’Université des sciences naturelles (With.) J.R. Laundon. d’Hô-Chi-Minh-Ville Vietnam / Examinateur Marylène CHOLLET-KRUGLER Maître de conférences à l’Université de Rennes1 / Co-directeur de thèse Joël BOUSTIE Professeur à l’Université de Rennes 1 / Directeur de thèse Remerciements En premier lieu, je tiens à remercier Monsieur le Dr Holger Thüs et Monsieur le Dr Erwan Ar Gall d’avoir accepté d’être les rapporteurs de mon manuscrit, ainsi que Madame la Professeure Marie-Dominique Galibert d’avoir accepté de participer à ce jury de thèse. J’exprime toute ma gratitude au Dr Marylène Chollet-Krugler pour avoir guidé mes pas dès les premiers jours et tout au long de ces trois années. Je la remercie particulièrement pour sa disponibilité et sa grande gentillesse, son écoute et sa patience. -
Identification of Fungi Storage Types by Sequencing Method
Zh. T. Abdrassulova et al /J. Pharm. Sci. & Res. Vol. 10(3), 2018, 689-692 Identification of Fungi Storage Types by Sequencing Method Zh. T. Abdrassulova, A. M. Rakhmetova*, G. A. Tussupbekova#, Al-Farabi Kazakh national university, 050040, Republic of Kazakhstan, Almaty, al-Farabi Ave., 71 *Karaganda State University named after the academician E.A. Buketov #A;-Farabi Kazakh National University, 050040, Republic of Kazakhstan, Almaty, al0Farabi Ave, 71 E. M. Imanova, Kazakh State Women’s Teacher Training University, 050000, Republic of Kazakhstan, Almaty, Aiteke bi Str., 99 M. S. Agadieva, R. N. Bissalyyeva Aktobe regional governmental university named after K.Zhubanov, 030000, Republic of Kazakhstan, Аktobe, A. Moldagulova avenue, 34 Abstract With the use of classical identification methods, which imply the identification of fungi by cultural and morphological features, they may not be reliable. With the development of modern molecular methods, it became possible to quickly and accurately determine the species and race of the fungus. The purpose of this work was to study bioecology and refine the species composition of fungi of the genus Aspergillus, Penicillium on seeds of cereal crops. The article presents materials of scientific research on morphological and molecular genetic peculiarities of storage fungi, affecting seeds of grain crops. Particular attention is paid to the fungi that develop in the stored grain. The seeds of cereals (Triticum aestivum L., Avena sativa L., Hordeum vulgare L., Zea mays L., Oryza sativa L., Sorghum vulgare Pers., Panicum miliaceum L.) were collected from the granaries of five districts (Talgar, Iliysky, Karasai, Zhambul, Panfilov) of the Almaty region. The pathogens of diseases of fungal etiology were found from the genera Penicillium, Aspergillus influencing the safety, quality and safety of the grain. -
Identification and Nomenclature of the Genus Penicillium
Downloaded from orbit.dtu.dk on: Dec 20, 2017 Identification and nomenclature of the genus Penicillium Visagie, C.M.; Houbraken, J.; Frisvad, Jens Christian; Hong, S. B.; Klaassen, C.H.W.; Perrone, G.; Seifert, K.A.; Varga, J.; Yaguchi, T.; Samson, R.A. Published in: Studies in Mycology Link to article, DOI: 10.1016/j.simyco.2014.09.001 Publication date: 2014 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Visagie, C. M., Houbraken, J., Frisvad, J. C., Hong, S. B., Klaassen, C. H. W., Perrone, G., ... Samson, R. A. (2014). Identification and nomenclature of the genus Penicillium. Studies in Mycology, 78, 343-371. DOI: 10.1016/j.simyco.2014.09.001 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 78: 343–371. Identification and nomenclature of the genus Penicillium C.M. -
Characterisation of Fungal Contamination Sources for Use in Quality Management of Cheese Production Farms in Korea
Open Access Asian-Australas J Anim Sci Vol. 33, No. 6:1002-1011 June 2020 https://doi.org/10.5713/ajas.19.0553 pISSN 1011-2367 eISSN 1976-5517 Characterisation of fungal contamination sources for use in quality management of cheese production farms in Korea Sujatha Kandasamy1,a, Won Seo Park1,a, Jayeon Yoo1, Jeonghee Yun1, Han Byul Kang1, Kuk-Hwan Seol1, Mi-Hwa Oh1, and Jun Sang Ham1,* * Corresponding Author: Jun Sang Ham Objective: This study was conducted to determine the composition and diversity of the fungal Tel: +82-63-238-7366, Fax: +82-63-238-7397, E-mail: [email protected] flora at various control points in cheese ripening rooms of 10 dairy farms from six different provinces in the Republic of Korea. 1 Animal Products Research and Development Methods: Floor, wall, cheese board, room air, cheese rind and core were sampled from cheese Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea ripening rooms of ten different dairy farms. The molds were enumerated using YM petrifilm, while isolation was done on yeast extract glucose chloramphenicol agar plates. Morphologically a Both the authors contributed equally to this work. distinct isolates were identified using sequencing of internal transcribed spacer region. ORCID Results: The fungal counts in 8 out of 10 dairy farms were out of acceptable range, as per Sujatha Kandasamy hazard analysis critical control point regulation. A total of 986 fungal isolates identified https://orcid.org/0000-0003-1460-449X and assigned to the phyla Ascomycota (14 genera) and Basidiomycota (3 genera). Of these Won Seo Park https://orcid.org/0000-0003-2229-3169 Penicillium, Aspergillus, and Cladosporium were the most diverse and predominant. -
Redalyc.Biologically Active Metabolites of the Genus Ganoderma: Three Decades of Myco-Chemistry Research
Revista Mexicana de Micología ISSN: 0187-3180 [email protected] Sociedad Mexicana de Micología México Trigos, Ángel; Suárez Medellín, Jorge Biologically active metabolites of the genus Ganoderma: Three decades of myco-chemistry research Revista Mexicana de Micología, vol. 34, diciembre, 2011, pp. 63-83 Sociedad Mexicana de Micología Xalapa, México Available in: http://www.redalyc.org/articulo.oa?id=88321339010 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Biologically active metabolites of the genus Ganoderma: Three decades of myco-chemistry research Ángel Trigos 1,2 Jorge Suárez Medellín 1,3 1 Laboratorio de Alta Tecnología de Xalapa, Universidad Veracruzana. Calle Médicos, 5, Col. Unidad del Bosque. C.P. 91010, Xalapa, Veracruz, México. 2 Instituto de Ciencias Básicas, Universidad Veracruzana, Av. Dos Vistas s/n, Carretera Xalapa-Las Trancas, 91000 Xalapa, Veracruz, México. 3 Unidad de Investigación y Desarrollo en Alimentos, Instituto Tecnológico de Veracruz. Av. Miguel A. de Quevedo # 2779 Col. Formando Hogar, C. P. 91680 Veracruz, Veracruz, México 1 1 0 Metabolitos biológicamente activos del género Ganoderma: tres décadas de 2 , investigación mico-química 3 8 - 3 6 Resumen. Desde la antigüedad en la medicina tradicional de oriente, hasta los tiempos : 4 modernos, los hongos pertenecientes al género Ganoderma se han utilizado para el 3 A tratamiento y la prevención de diversas enfermedades como cáncer, hipertensión y Í G diabetes, entre muchas otras afecciones. -
Identification and Nomenclature of the Genus Penicillium
available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 78: 343–371. Identification and nomenclature of the genus Penicillium C.M. Visagie1, J. Houbraken1*, J.C. Frisvad2*, S.-B. Hong3, C.H.W. Klaassen4, G. Perrone5, K.A. Seifert6, J. Varga7, T. Yaguchi8, and R.A. Samson1 1CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, NL-3584 CT Utrecht, The Netherlands; 2Department of Systems Biology, Building 221, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark; 3Korean Agricultural Culture Collection, National Academy of Agricultural Science, RDA, Suwon, Korea; 4Medical Microbiology & Infectious Diseases, C70 Canisius Wilhelmina Hospital, 532 SZ Nijmegen, The Netherlands; 5Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70126 Bari, Italy; 6Biodiversity (Mycology), Agriculture and Agri-Food Canada, Ottawa, ON K1A0C6, Canada; 7Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Közep fasor 52, Hungary; 8Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan *Correspondence: J. Houbraken, [email protected]; J.C. Frisvad, [email protected] Abstract: Penicillium is a diverse genus occurring worldwide and its species play important roles as decomposers of organic materials and cause destructive rots in the food industry where they produce a wide range of mycotoxins. Other species are considered enzyme factories or are common indoor air allergens. Although DNA sequences are essential for robust identification of Penicillium species, there is currently no comprehensive, verified reference database for the genus. To coincide with the move to one fungus one name in the International Code of Nomenclature for algae, fungi and plants, the generic concept of Penicillium was re-defined to accommodate species from other genera, such as Chromocleista, Eladia, Eupenicillium, Torulomyces and Thysanophora, which together comprise a large monophyletic clade. -
Lists of Names in Aspergillus and Teleomorphs As Proposed by Pitt and Taylor, Mycologia, 106: 1051-1062, 2014 (Doi: 10.3852/14-0
Lists of names in Aspergillus and teleomorphs as proposed by Pitt and Taylor, Mycologia, 106: 1051-1062, 2014 (doi: 10.3852/14-060), based on retypification of Aspergillus with A. niger as type species John I. Pitt and John W. Taylor, CSIRO Food and Nutrition, North Ryde, NSW 2113, Australia and Dept of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA Preamble The lists below set out the nomenclature of Aspergillus and its teleomorphs as they would become on acceptance of a proposal published by Pitt and Taylor (2014) to change the type species of Aspergillus from A. glaucus to A. niger. The central points of the proposal by Pitt and Taylor (2014) are that retypification of Aspergillus on A. niger will make the classification of fungi with Aspergillus anamorphs: i) reflect the great phenotypic diversity in sexual morphology, physiology and ecology of the clades whose species have Aspergillus anamorphs; ii) respect the phylogenetic relationship of these clades to each other and to Penicillium; and iii) preserve the name Aspergillus for the clade that contains the greatest number of economically important species. Specifically, of the 11 teleomorph genera associated with Aspergillus anamorphs, the proposal of Pitt and Taylor (2014) maintains the three major teleomorph genera – Eurotium, Neosartorya and Emericella – together with Chaetosartorya, Hemicarpenteles, Sclerocleista and Warcupiella. Aspergillus is maintained for the important species used industrially and for manufacture of fermented foods, together with all species producing major mycotoxins. The teleomorph genera Fennellia, Petromyces, Neocarpenteles and Neopetromyces are synonymised with Aspergillus. The lists below are based on the List of “Names in Current Use” developed by Pitt and Samson (1993) and those listed in MycoBank (www.MycoBank.org), plus extensive scrutiny of papers publishing new species of Aspergillus and associated teleomorph genera as collected in Index of Fungi (1992-2104). -
Antioxidant and Anti-Osteoporotic Activities of Aromatic Compounds and Sterols from Hericium Erinaceum
molecules Article Antioxidant and Anti-Osteoporotic Activities of Aromatic Compounds and Sterols from Hericium erinaceum Wei Li 1, Sang Hyun Lee 2, Hae Dong Jang 2,*, Jin Yeul Ma 1,* and Young Ho Kim 3,* 1 Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Korea; [email protected] 2 Department of Food and Nutrition, Hannam University, Daejeon 34430, Korea; [email protected] 3 College of Pharmacy, Chungnam National University, Daejeon 34134, Korea * Correspondence: [email protected] (H.D.J.); [email protected] (J.Y.M.); [email protected] (Y.H.K.); Tel.: +82-42-629-8795 (H.D.J.); +82-53-940-3811 (J.Y.M.); +82-42-821-5933 (Y.H.K.) Academic Editor: Derek J. McPhee Received: 14 November 2016; Accepted: 2 January 2017; Published: 11 January 2017 Abstract: Hericium erinaceum, commonly called lion’s mane mushroom, is a traditional edible mushroom widely used in culinary applications and herbal medicines in East Asian countries. In this study, a new sterol, cerevisterol 6-cinnamate (6), was isolated from the fruiting bodies of H. erinaceum together with five aromatic compounds 1–5 and five sterols 7–11. The chemical structures of these compounds were elucidated using chemical and physical methods and comparison of HRESIMS, 1D-NMR (1H, 13C, and DEPT) and 2D-NMR (COSY, HMQC, HMBC, and NOESY) spectra with previously reported data. The antioxidant and anti-osteoporotic activities of extracts and the isolated compounds 1–11 were investigated. All compounds exhibited peroxyl radical-scavenging capacity but only compounds 1, 3, and 4 showed potent reducing capacity. -
A Checklist of Mycobiota on Pistacia Vera of the Gaziantep Province in Turkey
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Österreichische Zeitschrift für Pilzkunde Jahr/Year: 2012 Band/Volume: 21 Autor(en)/Author(s): Yilmazkaya Demet, Akgül Hasan, Hüseyin Elsad, Ergül C. Cem Artikel/Article: A checklist of mycobiota on Pistacia vera of the Gaziantep province in Turkey. 53-59 ©Österreichische Mykologische Gesellschaft, Austria, download unter www.biologiezentrum.at Österr. Z. Pilzk. 21 (2012) 53 A checklist of mycobiota on Pistacia vera of the Gaziantep province in Turkey DEMET YILMAZKAYA ELAD HÜSEYIN HASAN AKGÜL Ahi Evran University Gaziantep University Sciences and Arts Faculty Sciences and Arts Faculty Department of Biology Department of Biology Krehir, Turkey Gaziantep,Turkey Email: [email protected] Emails: [email protected], [email protected] C. CEM ERGÜL Uluda University Sciences and Arts Faculty Department of Biology Bursa, Turkey Email: [email protected] Accepted 20. 8. 2012 Key words: Ascomycota, Basidiomycota, Pistacia vera. – Mycobiota of Turkey. Abstract: A list of 25 fungi collected on Pistacia vera in the Gaziantep province (Turkey) in 2009 and 2010 is presented. Twenty-three taxa were microfungi belonging to the Ascomycota and two taxa were macrofungi belonging to the Basidiomycota. Zusammenfassung: Eine Liste von 25 Pilzarten auf Pistacia vera aus der türkischen Provinz Ga- ziantep, gesammelt in den Jahren 2009 und 2010, wird vorgestellt. 23 Taxa sind Mikropilze der As- comycota und zwei Taxa Großpilze der Basidiomycota. The Gaziantep province is located in south-east Anatolia (Turkey). It is bordered by the districts anlurfa’s Birecik and Halfeti in the east, Osmaniye’s Bahçe in the west, Kahramanmara’s Pazarck in the north, Kilis in the south, Hatay’s Hassa in the south- west, and Adyaman in the north-east. -
Mushrooms: an Important Source of Natural Bioactive Compounds
Natural Product Sciences 26(2) : 118-131 (2020) https://doi.org/10.20307/nps.2020.26.2.118 Mushrooms: An Important Source of Natural Bioactive Compounds Ji Won Ha†, Juhui Kim†, Hyunwoo Kim†, Wonyoung Jang†, and Ki Hyun Kim* School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea Abstract Mushrooms are known for their various attributes in the fields of nutrition and therapeutics. With exceptional taste, aroma, and nutritional value, they are considered ‘functional food’-improving health and providing nutritional benefits to the body. Mushrooms have also been widely applied therapeutically as they possess diverse bioactive compounds known as secondary metabolites. These secondary metabolites demonstrated diverse biological properties such as anticancer, anti-diabetic, immunomodulatory, antimicrobial, anti-inflammatory, antiviral, anti-allergic, and antioxidative activities. This review presents bioactive compounds from the field of mushroom metabolite research and discusses important findings regarding bioactive compounds identified during the last five years (2015 – 2019). Keywords Mushrooms, Secondary metabolites, Biological activities Introduction compounds obtained from mushrooms have shifted toward a new trend: the development of novel drugs.2,3 In Mushrooms, classified as fungi, are defined as “a this review, the biological activities exhibited by the macrofungus with a distinctive fruiting body”.1 In other bioactive metabolites derived from various mushrooms words, they are filamentous fungi with fruiting bodies investigated during the last five years (2015–2019) are packed with beneficial nutrients such as carbohydrates, described and important findings regarding these bio- fibers, proteins, vitamins, and minerals.2 They have been active compounds are emphasized for their potential known for centuries to have an essential nutritional as therapeutic applications. -
IDENTIFICATION and COMPARISION of FUNGI from DIFFERENT DEPTHS of ANCIENT GLACIAL ICE Angira Patel a Thesis Submitted to the Grad
IDENTIFICATION AND COMPARISION OF FUNGI FROM DIFFERENT DEPTHS OF ANCIENT GLACIAL ICE Angira Patel A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the Requirements for the degree of MASTER OF SCIENCE MAY 2006 Committee: Dr. Scott Rogers, Advisor Dr. Stan Smith Dr. Dawn Hentges ii ABSTRACT Dr. Scott Rogers, Advisor Glacial ice serves as a unique preservation matrix for contemporary and ancient microorganisms. The main objective of this study was to evaluate and test the existence of the fungi encased in ancient glacial ice of Antarctica and Greenland. PCR (polymerase chain reaction) amplification was used to isolate the DNA followed by DNA sequencing to obtain the DNA sequences of the ancient microorganisms. Most of the sequences obtained from ancient microbes were similar to the contemporary fungi. Few fungi cultured were approximately 10,000 years old. Microorganisms isolated from ancient glacial ice have undergone repeated phases of evolutionary changes, such as irradiation, freezing and thawing, and in the process they have been archiving various biogenic materials over the period of time. These microorganisms entrapped in glacial ice provide valuable information about the evolutionary processes, as well as the rich biodiversity during ancient times. Hence, various species of microorganisms may appear to be extinct, but factually they might be dormant, entrapped in ice for millions of years and are capable to reappear amidst suitable conditions. The results of this study can be used in future to relate the biological, biogeochemical and genetic composition to a unique and well characterized geologic history of the fungi entrapped in ancient glacial ice. -
Rapid Phenotypic and Metabolomic Domestication of Wild Penicillium 2 Molds on Cheese 3 4 Ina Bodinaku1, Jason Shaffer1, Allison B
bioRxiv preprint doi: https://doi.org/10.1101/647172; this version posted May 23, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Rapid phenotypic and metabolomic domestication of wild Penicillium 2 molds on cheese 3 4 Ina Bodinaku1, Jason Shaffer1, Allison B. Connors2, Jacob L. Steenwyk3, Erik Kastman1, Antonis 5 Rokas3, Albert Robbat2,4, and Benjamin Wolfe1,4,* 6 7 1Tufts University, Department of Biology, Medford, MA, USA 8 2Tufts University, Department of Chemistry, Medford, MA, USA 9 3Vanderbilt University, Department of Biological Sciences, Nashville, TN, USA 10 4Tufts University Sensory and Science Center, Medford, MA, USA 11 *Correspondence: [email protected] 12 13 14 ABSTRACT Fermented foods provide novel ecological opportunities for natural populations of 15 microbes to evolve through successive recolonization of resource-rich substrates. Comparative 16 genomic data have reconstructed the evolutionary histories of microbes adapted to food 17 environments, but experimental studies directly demonstrating the process of domestication are 18 lacking for most fermented food microbes. Here we show that during the repeated colonization 19 of cheese, phenotypic and metabolomic traits of wild Penicillium molds rapidly change to 20 produce mutants with properties similar to industrial cultures used to make Camembert and 21 other bloomy rind cheeses. Over a period of just a few weeks, populations of wild Penicillium 22 strains serially passaged on cheese resulted in the reduction or complete loss of pigment, 23 spore, and mycotoxin production. Mutants also had a striking change in volatile metabolite 24 production, shifting from production of earthy or musty volatile compounds (e.g.