Hurricane Irma: Florida’S First Landfalling Major Hurricane Since 2005 Prepared by Daniel J
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Catálogo Maestro Master Catalogue
Catálogo Maestro de aplicaciones y referencias técnicas 2006 - 2007 Master Catalogue of applications and technical references M.R. Producción eficiente y competitiva Nuestro objetivo consiste en brindar a la industria automotriz los mejores cojinetes para motor, Efficient and bujes de árbol de levas, arandelas de empuje y pistones, tanto para equipo original como Competitive refacciones para el mercado de repuesto. Production Para ello, la planta especializada Clemex, ubicada en el Parque Industrial Lerma, Estado de México Our objective is to provide the (50 km al oeste del D.F.), posee el valioso respaldo automotive industry with the best que sólo la más avanzada tecnología puede engine bearings, camshaft bushings, ofrecer, así como laboratorios CAD-CAM, equipos thrust washers and pistons, for the CNC, líneas de producción flexibles y una eficiente original equipment market, as well as integración de procesos para adaptarse a las the spare parts market. necesidades de cada cliente. Clemex' specialized plant in the Lerma Industrial Park in the state of Mexico (50 km west of Mexico City) is backed by the latest technology, CAD-CAM labs, CNC equipment, flexible production lines and efficient M.R. process integration that enable it to adapt to its customer's needs. Índice/Index Nuestra identidad/Our Identity 2 Información técnica relevante/Relevant Technical Information 4 ¿Cómo usar este catálogo?/How to Use This Catalogue? 19 Catálogo de aplicaciones y referencias técnicas/ Catalogue of Applications and Technical References 26 American -
Atlantic Hurricane Season Outlook for June 2020
Atlantic Hurricane Season Outlook for June 2020 ELEVATED U.S. RISKS FROM HURRICANE SEASON 2020 AS VERY BUSY YEAR BEGINS… Outlook Overview ➢ WeatherTiger’s WeatherTiger's June outlook for the 2020 hurricane season is for a 75-80% chance of an above average year, with a 15-20% chance of near-normal and just a 5% chance of below-normal cumulative activity. The median of our forecast is about 180% of average hurricane season activity, or around 19 named storms, nine hurricanes and five major hurricanes. ➢ This is slightly above the consensus of some other recently issued forecasts, likely due to our model's bullishness towards a La Niña developing by late summer or early fall. However, almost all forecast groups project above normal activity. ➢ Overall, while model skill remains limited at this range, convergent lines of evidence from our objective modeling and seasonal analogs support an active season, with the potential for a risky steering current regime in the peak months. Updated Seasonal Outlook for Tropical Cyclone Activity On a lighter note: hurricane season. The devil you know is back. Unlike a pandemic, at least taking down the shutters after a storm won’t make it return. This doesn’t imply that hurricane season 2020 will be reasonable. WeatherTiger’s updated seasonal forecast and a consensus of other guidance favors an abnormally active year. We expect net activity of about three-quarters more than the average season, with 95% odds of more storms than Dr. Birx has scarves. I’ll get into the forecast rationale and what it may mean for Florida, but first, a quick orientation for new readers: I’m Dr. -
Resilience Potential: Assessing Jamaica's “Bounce-Back” from Hurricane Dean
Resilience Potential: Assessing Jamaica’s “Bounce-Back” from Hurricane Dean CaPRI is a Caribbean think tank that promotes evidence- based policymaking in the region. CaPRI espouses a methodology which is built on the values of multi- disciplinary work, team work and the utilization of the diaspora in our search for evidence. Committed to the region’s development, CaPRI has strong linkages with the academic community, the private sector and civil society. For information and feedback, please contact: Caribbean Policy Research Institute GUANGO TREE HOUSE, 29 MUNROE ROAD, KINGSTON 6 JAMAICA, W.I. TEL: (876) 970-3447 (876) 970-2910 FAX: (876) 970-4544 E-mail: [email protected] WEBSITE: http://www.takingresponsibility.org 2 Table of Contents Pages List of Figures, Tables and Boxes .............................................................4 Preface......................................................................................................5 Executive Summary .................................................................................6-7 Introduction: Resilience Potential ...........................................................8-9 1. Natural Disasters: The Global Context................................................10-13 2. Natural Disasters in the Caribbean .....................................................14-18 3. Changing Practices in Disaster Management…………………………19-20 4. Disaster Management in Jamaica .....................................................21 4.1 National Disaster Plan…………………………………………….21 -
Significant Loss Report
NATIONAL FLOOD INSURANCE PROGRAM Bureau and Statistical Agent W-01049 3019-01 MEMORANDUM TO: Write Your Own (WYO) Principal Coordinators and NFIP Servicing Agent FROM: WYO Clearinghouse DATE: July 18, 2001 SUBJECT: Significant Loss Report Enclosed is a listing of significant flooding events that occurred between February 1978 and October 2000. Only those events that had more than 1500 losses are included on the list. These data were compiled for WYO Companies and others to use to remind their customers of the impact of past flooding events. Please use this information in your marketing efforts as you feel it is appropriate. If you have any questions, please contact your WYO Program Coordinator. Enclosure cc: Vendors, IBHS, FIPNC, WYO Standards Committee, WYO Marketing Committee, ARCHIVEDGovernment Technical Representative APRIL 2018 Suggested Routing: Claims, Marketing, Underwriting 7700 HUBBLE DRIVE • LANHAM, MD 20706 • (301) 731-5300 COMPUTER SCIENCES CORPORATION, under contract to the FEDERAL EMERGENCY MANAGEMENT AGENCY, is the Bureau and Statistical Agent for the National Flood Insurance Program NATIONAL FLOOD INSURANCE PROGRAM SIGNIFICANT FLOOD EVENTS REPORT EVENT YEAR # PD LOSSES AMOUNT PD ($) AVG PD LOSS Massachusetts Flood Feb. 1978 Feb-78 2,195 $20,081,479 $9,149 Louisiana Flood May 1978 May-78 7,284 $43,288,709 $5,943 WV, IN, KY, OH Floods Dec 1978 Dec-78 1,879 $11,934,512 $6,352 PA, CT, MA, NJ, NY, RI Floods Jan-79 8,826 $31,487,015 $3,568 Texas Flood April 1979 Apr-79 1,897 $19,817,668 $10,447 Florida Flood April 1979 Apr-79 -
Texas Hurricane History
Texas Hurricane History David Roth National Weather Service Camp Springs, MD Table of Contents Preface 3 Climatology of Texas Tropical Cyclones 4 List of Texas Hurricanes 8 Tropical Cyclone Records in Texas 11 Hurricanes of the Sixteenth and Seventeenth Centuries 12 Hurricanes of the Eighteenth and Early Nineteenth Centuries 13 Hurricanes of the Late Nineteenth Century 16 The First Indianola Hurricane - 1875 21 Last Indianola Hurricane (1886)- The Storm That Doomed Texas’ Major Port 24 The Great Galveston Hurricane (1900) 29 Hurricanes of the Early Twentieth Century 31 Corpus Christi’s Devastating Hurricane (1919) 38 San Antonio’s Great Flood – 1921 39 Hurricanes of the Late Twentieth Century 48 Hurricanes of the Early Twenty-First Century 68 Acknowledgments 74 Bibliography 75 Preface Every year, about one hundred tropical disturbances roam the open Atlantic Ocean, Caribbean Sea, and Gulf of Mexico. About fifteen of these become tropical depressions, areas of low pressure with closed wind patterns. Of the fifteen, ten become tropical storms, and six become hurricanes. Every five years, one of the hurricanes will become reach category five status, normally in the western Atlantic or western Caribbean. About every fifty years, one of these extremely intense hurricanes will strike the United States, with disastrous consequences. Texas has seen its share of hurricane activity over the many years it has been inhabited. Nearly five hundred years ago, unlucky Spanish explorers learned firsthand what storms along the coast of the Lone Star State were capable of. Despite these setbacks, Spaniards set down roots across Mexico and Texas and started colonies. Galleons filled with gold and other treasures sank to the bottom of the Gulf, off such locations as Padre and Galveston Islands. -
Known Impacts of Tropical Cyclones, East Coast, 1858 – 2008 by Mr Jeff Callaghan Retired Senior Severe Weather Forecaster, Bureau of Meteorology, Brisbane
ARCHIVE: Known Impacts of Tropical Cyclones, East Coast, 1858 – 2008 By Mr Jeff Callaghan Retired Senior Severe Weather Forecaster, Bureau of Meteorology, Brisbane The date of the cyclone refers to the day of landfall or the day of the major impact if it is not a cyclone making landfall from the Coral Sea. The first number after the date is the Southern Oscillation Index (SOI) for that month followed by the three month running mean of the SOI centred on that month. This is followed by information on the equatorial eastern Pacific sea surface temperatures where: W means a warm episode i.e. sea surface temperature (SST) was above normal; C means a cool episode and Av means average SST Date Impact January 1858 From the Sydney Morning Herald 26/2/1866: an article featuring a cruise inside the Barrier Reef describes an expedition’s stay at Green Island near Cairns. “The wind throughout our stay was principally from the south-east, but in January we had two or three hard blows from the N to NW with rain; one gale uprooted some of the trees and wrung the heads off others. The sea also rose one night very high, nearly covering the island, leaving but a small spot of about twenty feet square free of water.” Middle to late Feb A tropical cyclone (TC) brought damaging winds and seas to region between Rockhampton and 1863 Hervey Bay. Houses unroofed in several centres with many trees blown down. Ketch driven onto rocks near Rockhampton. Severe erosion along shores of Hervey Bay with 10 metres lost to sea along a 32 km stretch of the coast. -
Tropical Cyclone Report for Hurricane Ivan
Tropical Cyclone Report Hurricane Ivan 2-24 September 2004 Stacy R. Stewart National Hurricane Center 16 December 2004 Updated 27 May 2005 to revise damage estimate Updated 11 August 2011 to revise damage estimate Ivan was a classical, long-lived Cape Verde hurricane that reached Category 5 strength three times on the Saffir-Simpson Hurricane Scale (SSHS). It was also the strongest hurricane on record that far south east of the Lesser Antilles. Ivan caused considerable damage and loss of life as it passed through the Caribbean Sea. a. Synoptic History Ivan developed from a large tropical wave that moved off the west coast of Africa on 31 August. Although the wave was accompanied by a surface pressure system and an impressive upper-level outflow pattern, associated convection was limited and not well organized. However, by early on 1 September, convective banding began to develop around the low-level center and Dvorak satellite classifications were initiated later that day. Favorable upper-level outflow and low shear environment was conducive for the formation of vigorous deep convection to develop and persist near the center, and it is estimated that a tropical depression formed around 1800 UTC 2 September. Figure 1 depicts the “best track” of the tropical cyclone’s path. The wind and pressure histories are shown in Figs. 2a and 3a, respectively. Table 1 is a listing of the best track positions and intensities. Despite a relatively low latitude (9.7o N), development continued and it is estimated that the cyclone became Tropical Storm Ivan just 12 h later at 0600 UTC 3 September. -
10R.3 the Tornado Outbreak Across the North Florida Panhandle in Association with Hurricane Ivan
10R.3 The Tornado Outbreak across the North Florida Panhandle in association with Hurricane Ivan Andrew I. Watson* Michael A. Jamski T.J. Turnage NOAA/National Weather Service Tallahassee, Florida Joshua R.Bowen Meteorology Department Florida State University Tallahassee, Florida Jason C. Kelley WJHG-TV Panama City, Florida 1. INTRODUCTION their mobile homes were destroyed near Blountstown, Florida. Hurricane Ivan made landfall early on the morning of 16 September 2004, just west of Overall, there were 24 tornadoes reported Gulf Shores, Alabama as a category 3 across the National Weather Service (NWS) hurricane on the Saffir-Simpson Hurricane Tallahassee forecast area. The office issued Scale. Approximately 117 tornadoes were 130 tornado warnings from the afternoon of 15 reported associated with Ivan across the September until just after daybreak on 16 southeast United States. Eight people were September. killed and 17 were injured by tornadoes (Storm Data 2004; Stewart 2004). The most The paper examines the convective cells significant tornadoes occurred as hurricane within the rain bands of hurricane Ivan, which Ivan approached the Florida Gulf coast on the produced these tornadoes across the Florida afternoon and evening of 15 September. Panhandle, Big Bend, and southwest Georgia. The structure of the tornadic and non-tornadic The intense outer rain bands of Ivan supercells is examined for clues on how to produced numerous supercells over portions better warn for these types of storms. This of the Florida Panhandle, Big Bend, southwest study will focus on the short-term predictability Georgia, and Gulf coastal waters. In turn, of these dangerous storms, and will these supercells spawned dozens of investigate the problem of how to reduce the tornadoes. -
Coast Guard, DHS § 7.100
Coast Guard, DHS § 7.100 the easternmost extremity of Black- (e) A line drawn across the seaward beard Island at Northeast Point. extremity of the Sebastian Inlet Jet- (d) A line drawn from the southern- ties. most extremity of Blackbeard Island to (f) A line drawn from the seaward ex- latitude 31°19.4′ N. longitude 81°11.5′ W. tremity of the Fort Pierce Inlet North (Doboy Sound Lighted Buoy ‘‘D’’); Jetty to latitude 27°28.5′ N. longitude thence to latitude 31°04.1′ N. longitude 80°16.2′ W. (Fort Pierce Inlet Lighted 81°16.7′ W. (St. Simons Lighted Whistle Whistle Buoy ‘‘2’’); thence to the tank Buoy ‘‘ST S’’). located in approximate position lati- tude 27°27.2′ N. longitude 80°17.2′ W. § 7.85 St. Simons Island, GA to Little (g) A line drawn from the seaward ex- Talbot Island, FL. tremity of St. Lucie Inlet north jetty (a) A line drawn from latitude 31°04.1′ to latitude 27°10′ N. longitude 80°08.4′ N. longitude 81°16.7′ W. (St. Simons W. (St. Lucie Inlet Entrance Lighted Lighted Whistle Buoy ‘‘ST S’’) to lati- Whistle Buoy ‘‘2’’); thence to Jupiter tude 30°42.7′ N. longitude 81°19.0′ W. (St. Island bearing approximately 180° true. Mary’s Entrance Lighted Whistle Buoy (h) A line drawn from the seaward ex- ‘‘1’’); thence to Amelia Island Light. tremity of Jupiter Inlet North Jetty to (b) A line drawn from the southern- the northeast extremity of the con- most extremity of Amelia Island to crete apron on the south side of Jupiter latitude 30°29.4′ N. -
ISAIAS (AL092020) 30 July–4 August 2020
NATIONAL HURRICANE CENTER TROPICAL CYCLONE REPORT HURRICANE ISAIAS (AL092020) 30 July–4 August 2020 Andy Latto, Andrew Hagen, and Robbie Berg National Hurricane Center 1 11 June 2021 GOES-16 10.3-µM INFRARED SATELLITE IMAGE OF HURRICANE ISAIAS AT 0310 UTC 04 AUGUST 2020 AS IT MADE LANDFALL NEAR OCEAN ISLE BEACH, NORTH CAROLINA. Isaias was a hurricane that formed in the eastern Caribbean Sea. The storm affected the Leeward Islands, Puerto Rico, Hispaniola, Cuba, the Bahamas, and a large portion of the eastern United States. 1 Original report date 30 March 2021. Second version on 15 April updated Figure 12. This version corrects a wind gust value in the Winds and Pressures section and the track length of a tornado in Delaware. Hurricane Isaias 2 Table of Contents SYNOPTIC HISTORY .......................................................................................... 3 METEOROLOGICAL STATISTICS ...................................................................... 5 Winds and Pressure ........................................................................................... 5 Caribbean Islands and Bahamas ..................................................................... 6 United States ................................................................................................... 6 Rainfall and Flooding ......................................................................................... 7 Storm Surge ....................................................................................................... 8 Tornadoes ....................................................................................................... -
Hurricane Irma Storm Review
Hurricane Irma Storm Review November 11, 2018 At Duke Energy Florida, we power more than 4 million lives Service territory includes: . Service to 1.8 million retail customers in 35 counties . 13,000 square miles . More than 5,100 miles of transmission lines and 32,000 miles of distribution lines . Owns and operates nearly 9,500 MWs of generating capacity . 76.2% gas, 21% coal, 3% renewable, 0.2%oil, 2,400 MWs Purchased Power. 2 Storm Preparedness Activities Operational preparation is a year-round activity Coordination with County EOC Officials . Transmission & Distribution Systems Inspected and . Structured Engagement and Information Maintained Sharing Before, During and After Hurricane . Storm Organizations Drilled & Prepared . Coordination with county EOC priorities . Internal and External Resource Needs Secured . Public Communications and Outreach . Response Plan Tested and Continuously Improved Storm Restoration Organization Transmission Hurricane Distribution System Preparedness System Local Governmental Coordination 3 Hurricane Irma – Resources & Logistics Resources . 12,528 Total Resources . 1,553 pre-staged in Perry, Georgia . 91 line and vegetation vendors from 25 states . Duke Energy Carolinas and Midwest crews as well as resources from Texas, New York, Louisiana, Colorado, Illinois, Oklahoma, Minnesota, Maine and Canada . 26 independent basecamps, parking/staging sites Mutual Assistance . Largest mobilization in DEF history . Mutual Assistance Agreements, executed between DEF and other utilities, ensure that resources can be timely dispatched and fairly apportioned. Southeastern Electric Exchange coordinates Mutual Assistance 4 5. Individual homes RESTORATION 3. Critical Infrastructure 2. Substations 1. Transmission Lines 4. High-density neighborhoods 5 Hurricane Irma- Restoration Irma’s track northward up the Florida peninsula Restoration Summary resulted in a broad swath of hurricane and tropical Customers Peak Customers Outage storm force winds. -
1989 Hurricane Hugo - September 1989
1989 Hurricane Hugo - September 1989. Category 4 hurricane devastates SC and NC with ~ 20 foot storm surge and severe wind damage after hitting PR and the U.S. Virgin Islands; over $9.0 (13.9) billion (about $7.1 (10.9) billion in Carolinas); 86 deaths (57--U.S. mainland, 29--U.S. Islands). Hurricane Hugo was a powerful Cape Verde hurricane that caused widespread damage and loss of life in Guadeloupe, Saint Croix, Puerto Rico, and the Southeast United States. It formed over the eastern Atlantic near the Cape Verde Islands on September 9, 1989. Hugo moved thousands of miles across the Atlantic, rapidly strengthening to briefly attain category 5 hurricane strength on its journey. It later crossed over Guadeloupe and St. Croix on September 17 and 18 as a category 4 hurricane. Weakening slightly more, it passed over Puerto Rico as a strong category 3 hurricane. Further weakening occurred several hours after re-emerging into the Atlantic, becoming downgraded to a category 2 hurricane. However, it re-strengthened into a category 4 hurricane before making landfall just slightly north of Charleston, on Isle of Palms on September 22 with 140 mph sustained winds (gusts to more than 160 mph). It had devolved to a remnant low near Lake Erie by the next day. As of 2016, Hurricane Hugo is the most intense tropical cyclone to strike the East Coast north of Florida since 1898. Hurricane Hugo caused 34 fatalities (most by electrocution or drowning) in the Caribbean and 27 in South Carolina, left nearly 100,000 homeless, and resulted in $9.47 billion (1989 USD) in damage overall, making it the most damaging hurricane ever recorded at the time.