NAPPC Pollinator Curriculum

Total Page:16

File Type:pdf, Size:1020Kb

NAPPC Pollinator Curriculum NAPPC Pollinator Curriculum >>next Nature's Partners: Pollinators, Plants, and You | Copyright 2007 The Pollinator Partnership Please help us improve and expand this resource! Send us your comments, questions, and suggestions. Let us know how you are using the curriculum, what works well, and what challenges you're encountering. E-mail: [email protected] http://www.nappc.org/curriculum/9/25/2007 11:10:30 AM NAPPC Pollinator Curriculum Printer-Friendly View | Normal View Why Care About Pollinators? Many people think only of allergies when they hear Nature's Partners is an the word pollen. But pollination — the transfer of inquiry learning-based pollen grains to fertilize the seed-producing ovaries curriculum for young of flowers — is an essential part of a healthy people in the 3rd through ecosystem. Pollinators play a significant role in the Home the 6th grade. production of over 150 food crops in the United >>Learn more about the curriculum. States — among them apples, alfalfa, almonds, Why Care About blueberries, cranberries, kiwis, melons, pears, Pollinators? plums, and squash. Scientific Thinking Bees, both managed honey bees and native bees, Processes are the primary pollinators. However, more than 100,000 invertebrate species, including bees, moths, butterflies, beetles, and flies, serve as pollinators — Implementing the as well as 1,035 species of vertebrates, including Curriculum birds, mammals, and reptiles. In the United States, the annual benefit of managed honey bees to Assessment consumers is estimated at $14.6 billion. The services provided by native pollinators further contribute to Outline the productivity of crops as well as to the survival and reproduction of many native plants. Printable Photos However, long-term population trends for some Module 1 North American pollinators are "demonstrably downward," says a new report from the National The Who, What & Why of Research Council1. Pollinators Monarch butterfly on tithonia. Observable decreases in wild populations of bees, Module 2 butterflies, and moths are of great concern to Long-term population Pollinators and Plants in producers of fruits, vegetables, nuts, alfalfa, and flowers. These crops depend on wild and domestic trends for some North American Partnership pollinators. Growers in California, Florida, Arizona, pollinators are "demonstrably Utah, Washington, and Hawaii are especially downward," says a new report Module 3 concerned. More important is the disturbing notion from the National Research The Other Half of the of an imbalance in the natural ecosystem and Council. This is of great concern biodiversity on which all food production depends. to producers of fruits, Partnership: Pollinators Habitat loss for pollinators by human activity poses vegetables, nuts, alfalfa, an immediate and frequently irreversible threat. and flowers. These crops Module 4 Other factors responsible for population decreases depend on wild and domestic Pollinator-Friendly Habitat include invasive plant species, broad-spectrum pesticide use, disease, and weather. pollinators. in Your Area For the most part, the general public is unaware of Module 5 the decrease in pollinator populations and the Creating Pollinator- implications this has for agricultural production. The Nature's Partners: Pollinators, Plants, and You Friendly Habitat curriculum is designed to educate young people about Module 6 Community Service ● pollinators and the important role they play in Project and Celebration providing many of the foods we eat and the http://www.nappc.org/curriculum/intro.php (1 of 2)9/25/2007 11:10:35 AM NAPPC Pollinator Curriculum plant fiber used in our clothing and household Resources/Links goods, and ● ways they can help pollinators survive and Acknowledgements flourish by protecting and creating pollinator- friendly habitat. Introduction to 4-H Series The Nature's Partners curriculum is just one step toward increasing the public's awareness and sense of responsibility that are essential to a successful conservation program for pollinators. In this introductory curriculum we have purposely Honey bees on a frame in a managed hive. chosen to focus on just two of the many pollinators as a means for teaching basic concepts about the process and importance of pollination. Bees were Habitat loss for pollinators chosen due to their primary importance among by human activity poses an pollinators and butterflies were chosen because of immediate and frequently the interesting and distinctive stages of their life irreversible threat. cycle and their intrinsic appeal. Resource and reference materials pertaining to other pollinators are easily found on the Internet, at your local library, and by contacting the Cooperative Extension Office in your county. 1 "Status of Pollinators in North America, " Committee on the Status of Pollinators in North America, National Research Council View report. Scientific Thinking Processes Implementing the Curriculum Photos by Suzanne DeJohn. Begin Module 1 Nature's Partners: Pollinators, Plants, and You | Copyright 2007 The Pollinator Partnership Please help us improve and expand this resource! Send us your comments, questions, and suggestions. Let us know how you are using the curriculum, what works well, and what challenges you're encountering. E-mail: [email protected] http://www.nappc.org/curriculum/intro.php (2 of 2)9/25/2007 11:10:35 AM NAPPC Pollinator Curriculum Printer-Friendly View | Normal View Scientific Thinking Processes Much of what we learn about science in school is delivered through readings, lectures or demonstrations. Scientists, however, create new knowledge by careful use of the scientific thinking processes outlined below. Home Underlying all the curriculum activities are the basic thought processes that scientists use everyday. As leader and co-investigator, you'll be introducing and practicing these with your youth group. Why Care About a) Observing Pollinators? Using all the senses of sight, smell, taste, touch, and hearing to gain information. Scientific Thinking Processes b) Communicating Recording discoveries, sharing them, and listening to Implementing the others who may have observed things you missed or have different ways of expressing their observations. Curriculum Communication — whether oral, written, or graphic — increases everyone's awareness and gives a fuller Assessment picture of the object or phenomenon. Outline c) Comparing Observing two or more things side-by-side to find Printable Photos similarities and differences. Some comparisons may Photo by Marilyn Drabicki be sensory, such as comparing how different things Module 1 feel, sound, smell, taste, look, behave, or react. The activities are designed The Who, What & Why of Measurement is another way of comparing things: to provide a systematic you are comparing something to a set of Pollinators exploration of the topic standardized units. You may weigh something (compare it to an ounce or a pound); measure its using the scientific thinking Module 2 length (compare its length to inches or centimeters); processes. Since there are no Pollinators and Plants in or measure its holding capacity (compare it to the "right" results, there can be scale on a measuring cup). no "failure." Partnership d) Organizing Module 3 Grouping or classifying the things you are studying into categories — for example: leaves vs. twigs; red The Other Half of the vs. green vs. blue. Another type of organization is ordering or sequencing — for example: rank the Partnership: Pollinators rocks from hardest to softest; twigs from longest to shortest. Module 4 e) Relating Looking for relationships between variables involves trying out or checking your ideas in a systematic Pollinator-Friendly Habitat way. It is the process by which concrete and abstract ideas are woven together to test or explain in Your Area phenomena. Once you have an idea about how something works (a hypothesis), you can experiment to test the hypothesis by comparing the effects of one variable on another. Module 5 f) Inferring Creating Pollinator- Inferring is the process of realizing ideas that are not directly observable. Based upon your findings in Friendly Habitat the above processes, you can begin to recognize and predict general patterns and relationships, thus forming a more comprehensive theory. Module 6 g) Applying Community Service Applying knowledge involves using knowledge to solve problems — often in creative and inventive Project and Celebration ways. You can take the knowledge you gained from your systematic explorations and apply it to new http://www.nappc.org/curriculum/thinking-processes.php (1 of 2)9/25/2007 11:10:40 AM NAPPC Pollinator Curriculum questions or to problems that arise in everyday life. Resources/Links The activities in Nature's Partners are designed to provide a systematic exploration of the topic using Acknowledgements the scientific thinking processes. Since there are no "right" results anticipated, there can be no "failure." You'll know your activities are successful when investigators come up with their own questions and together you start finding ways to answer them! Introduction to 4-H Series Implementing the Curriculum Begin Module 1 Nature's Partners: Pollinators, Plants, and You | Copyright 2007 The Pollinator Partnership Please help us improve and expand this resource! Send us your comments, questions, and suggestions. Let us know how you are using the curriculum, what works well, and what challenges you're encountering. E-mail: [email protected] http://www.nappc.org/curriculum/thinking-processes.php
Recommended publications
  • Central Appalachian Broadleaf Forest Coniferous Forest Meadow Province
    Selecting Plants for Pollinators A Regional Guide for Farmers, Land Managers, and Gardeners In the Central Appalachian Broadleaf Forest Coniferous Forest Meadow Province Including the states of: Maryland, Pennsylvania, Virginia, West Virginia And parts of: Georgia, Kentucky, and North Carolina, NAPPC South Carolina, Tennessee Table of CONTENTS Why Support Pollinators? 4 Getting Started 5 Central Appalachian Broadleaf Forest 6 Meet the Pollinators 8 Plant Traits 10 Developing Plantings 12 Far ms 13 Public Lands 14 Home Landscapes 15 Bloom Periods 16 Plants That Attract Pollinators 18 Habitat Hints 20 This is one of several guides for Check list 22 different regions in the United States. We welcome your feedback to assist us in making the future Resources and Feedback 23 guides useful. Please contact us at [email protected] Cover: silver spotted skipper courtesy www.dangphoto.net 2 Selecting Plants for Pollinators Selecting Plants for Pollinators A Regional Guide for Farmers, Land Managers, and Gardeners In the Ecological Region of the Central Appalachian Broadleaf Forest Coniferous Forest Meadow Province Including the states of: Maryland, Pennsylvania, Virginia, West Virginia And parts of: Georgia, Kentucky, North Carolina, South Carolina, Tennessee a nappc and Pollinator Partnership™ Publication This guide was funded by the National Fish and Wildlife Foundation, the C.S. Fund, the Plant Conservation Alliance, the U.S. Forest Service, and the Bureau of Land Management with oversight by the Pollinator Partnership™ (www.pollinator.org), in support of the North American Pollinator Protection Campaign (NAPPC–www.nappc.org). Central Appalachian Broadleaf Forest – Coniferous Forest – Meadow Province 3 Why support pollinators? In theIr 1996 book, the Forgotten PollInators, Buchmann and Nabhan estimated that animal pollinators are needed for the reproduction “ Farming feeds of 90% of flowering plants and one third of human food crops.
    [Show full text]
  • History Department Botany
    THE HISTORY OF THE DEPARTMENT OF BOTANY 1889-1989 UNIVERSITY OF MINNESOTA SHERI L. BARTLETT I - ._-------------------- THE HISTORY OF THE DEPARTMENT OF BOTANY 1889-1989 UNIVERSITY OF MINNESOTA SHERI L. BARTLETT TABLE OF CONTENTS Preface 1-11 Chapter One: 1889-1916 1-18 Chapter Two: 1917-1935 19-38 Chapter Three: 1936-1954 39-58 Chapter Four: 1955-1973 59-75 Epilogue 76-82 Appendix 83-92 Bibliography 93-94 -------------------------------------- Preface (formerly the College of Science, Literature and the Arts), the College of Agriculture, or The history that follows is the result some other area. Eventually these questions of months ofresearch into the lives and work were resolved in 1965 when the Department of the Botany Department's faculty members joined the newly established College of and administrators. The one-hundred year Biological Sciences (CBS). In 1988, The overview focuses on the Department as a Department of Botany was renamed the whole, and the decisions that Department Department of Plant Biology, and Irwin leaders made to move the field of botany at Rubenstein from the Department of Genetics the University of Minnesota forward in a and Cell Biology became Plant Biology's dynamic and purposeful manner. However, new head. The Department now has this is not an effort to prove that the administrative ties to both the College of Department's history was linear, moving Biological Sciences and the College of forward in a pre-determined, organized Agriculture. fashion at every moment. Rather I have I have tried to recognize the attempted to demonstrate the complexities of accomplishments and individuality of the the personalities and situations that shaped Botany Department's faculty while striving to the growth ofthe Department and made it the describe the Department as one entity.
    [Show full text]
  • Floral Symmetry Affects Speciation Rates in Angiosperms Risa D
    Received 25 July 2003 Accepted 13 November 2003 Published online 16 February 2004 Floral symmetry affects speciation rates in angiosperms Risa D. Sargent Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia V6T 1Z4, Canada ([email protected]) Despite much recent activity in the field of pollination biology, the extent to which animal pollinators drive the formation of new angiosperm species remains unresolved. One problem has been identifying floral adaptations that promote reproductive isolation. The evolution of a bilaterally symmetrical corolla restricts the direction of approach and movement of pollinators on and between flowers. Restricting pollin- ators to approaching a flower from a single direction facilitates specific placement of pollen on the pollin- ator. When coupled with pollinator constancy, precise pollen placement can increase the probability that pollen grains reach a compatible stigma. This has the potential to generate reproductive isolation between species, because mutations that cause changes in the placement of pollen on the pollinator may decrease gene flow between incipient species. I predict that animal-pollinated lineages that possess bilaterally sym- metrical flowers should have higher speciation rates than lineages possessing radially symmetrical flowers. Using sister-group comparisons I demonstrate that bilaterally symmetric lineages tend to be more species rich than their radially symmetrical sister lineages. This study supports an important role for pollinator- mediated speciation and demonstrates that floral morphology plays a key role in angiosperm speciation. Keywords: reproductive isolation; pollination; sister group comparison; zygomorphy 1. INTRODUCTION The importance of pollinator-mediated selection in angiosperms is well supported by theory (Kiester et al.
    [Show full text]
  • Attracting Hummingbirds to Your Garden Using Native Plants
    United States Department of Agriculture Attracting Hummingbirds to Your Garden Using Native Plants Black-chinned Hummingbird feeding on mountain larkspur, fireweed, and wild bergamot (clockwise from top) Forest National Publication April Service Headquarters Number FS-1046 2015 Hummingbird garden guide Many of us enjoy the beauty of flowers in our backyard and community gardens. Growing native plants adds important habitat for hummingbirds and other wildlife—especially pollinators. Even small backyard gardens can make a difference. Gardening connects us to nature and helps us better understand how nature works. This guide will help you create a hummingbird- What do hummingbirds, friendly garden. butterflies, and bees have in common? They all pollinate flowering plants. Broad-tailed Hummingbird feeding on scarlet gilia Hummingbirds are Why use native plants in restricted to the Americas with more your garden? than 325 species of Hummingbirds have evolved with hummingbirds in North, Central, and native plants, which are best adapted South America. to local growing seasons, climate, and soil. They prefer large, tubular flowers that are often (but not always) red in color. In this guide, we feature seven hummingbirds that breed in the United States. For each one, we also highlight two native plants found in its breeding range. These native plants are easy to grow, need little water once established, and offer hummingbirds abundant nectar. 2 Hummingbirds and pollination Ruby-throated Hummingbird feeding on the At rest, a hummer’s nectar and pollen heart beats an of blueberry flowers average of 480 beats per minute. On cold nights, it goes into What is pollination? torpor (hibernation- like state), and its Pollination is the process of moving pollen heart rate drops to (male gamete) from one flower to the ovary of another 45 to 180 beats per minute.
    [Show full text]
  • Bee and Pollinator Activities for Kids
    let’s BEE friends Bee and Pollinator Activities for Kids Hi! I’m Buzz the bee! I’m a solitary bee, which means I don’t make honey or live in a colony. I live alone and like to keep to myself. I don’t even want to sting you because I would rather find food, lay eggs, and pollinate plants at the same time. But I’m not the only pollinator out there—my friends are important pollinators too! Bees, butterflies, moths, beetles, ants, flies, and wasps are all pollinators. Even birds and bats can pollinate too! Join me to learn about bees and pollination! 1 Get help from an adult Build a Bee Hotel when working with tools. Then put up your bee hotel near some flowers so me and my friends will be able to find it and have food near by. Place it off the ground, or attach to a tree or fence post with nails or a small rope. Make sure it won’t move in the wind. You Will Need: A waterproof container, such as a milk carton, bucket , pipe or old How To Make It: crate. 1. Drill holes into wood blocks, ranging from 7/64, 1/8, Wood blocks or logs 11/64, 3/16 or 1/4 inch diameter. Use 6” or 12” long drill bits if possible. Straws or natural stalks, such as bamboo or 2. Insert wood blocks into container. Add straws or raspberry canes natural stalks, such as bamboo. 3. Hang your bee hotel outside, facing south or southeast.
    [Show full text]
  • Plant-Pollinator Interactions in an Ecological and Evolutionary Context: the Promising
    Plant-Pollinator Interactions in an Ecological and Evolutionary Context: The Promising Role of 3D-Printing Technology and Mathematical Modeling Eric Octavio Campos A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2017 Reading Committee: Thomas L. Daniel, Chair H.D. ‘Toby’ Bradshaw Janneke Hille Ris Lambers Program Authorized to Offer Degree: Biology ©Copyright 2017 Eric Octavio Campos University of Washington Abstract Plant-Pollinator Interactions in an Ecological and Evolutionary Context: The Promising Role of 3D-Printing Technology and Mathematical Modeling Eric Octavio Campos Co-Chairs of the Supervisory Committee: Professor H.D. ‘Toby’ Bradshaw Department of Biology Professor Thomas L. Daniel Department of Biology This dissertation concerns itself with the role of flower shape in affecting the foraging performance of pollinating animals. The pollinator used in this study is a model organism representing crepuscular hawkmoths in research involving the study of flight neuromuscular physiology and plant-pollinator interactions, Manduca sexta (hereafter Manduca). The broader goal of the work is to develop a new experimental framework for investigating the ecological and evolutionary consequences of plant-pollinator interactions. To that end, I have combined 3D-printing technology and mathematical modelling to construct artificial flowers, which can be manufactured with great precision and with objective, quantitatively describable shapes. First, I present a proof-of-concept study to demonstrate the feasibility of collecting foraging data from a real animal pollinator attempting to feed from 3D-printed artificial flowers. I show that Manduca’s foraging performance is extremely sensitive to variation in floral corolla curvature and nectary diameter.
    [Show full text]
  • Pollinator Preferences and the Persistence of Crop Genes in Wild Radish Populations (Raphanus Raphanistrum, Brassicaceae)1
    American Journal of Botany 85(3): 333±339. 1998. POLLINATOR PREFERENCES AND THE PERSISTENCE OF CROP GENES IN WILD RADISH POPULATIONS (RAPHANUS RAPHANISTRUM, BRASSICACEAE)1 TED N. LEE2, 4 AND ALLISON A. SNOW3, 5 2Department of Biology, University of Michigan, 830 N. University, Ann Arbor, Michigan 48109±1048; and 3Department of Plant Biology, Ohio State University, 1735 Neil Avenue, Columbus, Ohio 43214 Crop±weed hybridization can potentially in¯uence the evolutionary ecology of wild populations. Many crops are known to hybridize with wild relatives, but few studies have looked at the long-term persistence of crop genes in the wild. This study investigated one factor in the hybridization process in radish: differential pollinator visitation to wild radish (Raphanus raphanistrum) vs. crop±wild F1 hybrids (R. sativus 3 R. raphanistrum). Wild genotypes had yellow ¯owers, a recessive single-locus trait, whereas hybrids always had white or pale pink ¯owers. In experimental arrays in northern Michigan, total pollinator visitation was signi®cantly biased toward wild plants when the frequencies of wild and hybrid plants were equal. Syrphid ¯ies, the most frequent visitors, preferred wild plants while bumble bees showed no preference. This pattern was also observed when hybrid plants were overrepresented in the array (12 hybrid : 2 wild). In contrast, when hybrid plants were rare (2 hybrid : 12 wild), neither morph was preferred by any pollinator group. Later in the summer, pollinators were also observed in a large experimental garden with nearly equal frequencies of wild and hybrid plants. Cabbage butter¯ies (Pieris rapae) strongly overvisited wild plants, while bumble bees showed a slight preference for hybrids.
    [Show full text]
  • Lesson 6: Plant Reproduction
    LESSON 6: PLANT REPRODUCTION LEVEL ONE Like every living thing on earth, plants need to make more of themselves. Biological structures wear out over time and need to be replaced with new ones. We’ve already looked at how non-vascular plants reproduce (mosses and liverworts) so now it’s time to look at vascular plants. If you look back at the chart on page 17, you will see that vascular plants are divided into two main categories: plants that produce seeds and plants that don’t produce seeds. The vascular plants that do not make seeds are basically the ferns. There are a few other smaller categories such as “horse tails” and club mosses, but if you just remember the ferns, that’s fine. So let’s take a look at how ferns make more ferns. The leaves of ferns are called fronds, and brand new leaves that have not yet totally uncoiled are called fiddleheads because they look like the scroll-shaped end of a violin. Technically, the entire frond is a leaf. What looks like a stem is actually the fern’s equivalent of a petiole. (Botanists call it a stipe.) The stem of a fern plant runs under the ground and is called a rhizome. Ferns also have roots, like all other vascular plants. The roots grow out from the bottom of the rhizome. Ferns produce spores, just like mosses do. At certain times of the year, the backside of some fern fronds will be covered with little dots called sori. Sori is the plural form, meaning more than one of them.
    [Show full text]
  • Pollinators and Nectar Producing Plants
    Pollinators and Nectar Producing Plants A pollinator is any animal that acts as an agent for distributing pollen from plant to plant. Pollinators ensure full harvests and seed production from many agricultural crops and provide for healthy plants grown in backyards, community gardens, and rural and urban areas. Populations of insect pollinators such as butterflies and bees have declined dramatically in recent years. Even though we'd all be in trouble without pollinators, many people ignore their value and at worst eradicate them with indiscriminate pesticide application and habitat destruction. Pollinators are worth protecting for their own sakes, but we would do well to remember that these creatures facilitate reproduction in 90% of the world's flowering plants, and that--on average--one in every three bites of food we humans take comes courtesy of an animal pollinator. When people think of pollination, many focus on bees. In many cases the use of insecticides for pest control has had the unwelcome side effect of killing the bees necessary for pollinating crops. Such environmental stresses plus several species of parasitic mites devastated honeybee populations in the United States beginning in the 1980s, making it necessary for farmers to rent bees from keepers throughout the U.S. in order to get their crops pollinated and greatly affecting the pollination of plants in the wild. Bees are the principal pollinators, but there are other important pollinators as well. These include other insects such as flies, moths, butterflies, wasps, and even some beetles. They also include hummingbirds and bats. Creating an enjoyable and environmentally friendly backyard habitat helps support all valuable pollinators.
    [Show full text]
  • Selecting Plants for Pollinators Guide for the Southeast
    Selecting Plants for Pollinators A Regional Guide for Farmers, Land Managers, and Gardeners In the Southeastern Mixed Forest Province Including the States of Virginia, North Carolina, South Carolina, Georgia, Alabama, Mississippi and parts of Tennessee, Louisiana, Texas, and Arkansas, Oklahoma, NAPPC and Maryland Table of CONTENTS Why Support Pollinators? 4 Getting Started 5 Southeastern Mixed Forest 6 Meet the Pollinators 8 Plant Traits 10 Developing Plantings 12 Far ms 13 Public Lands 14 Home Landscapes 15 Bloom Periods 16 Plants That Attract Pollinators 18 Habitat Hints 20 This is one of several guides for Check list 22 different regions in the United States. We welcome your feedback to assist us in making the future Resources and Feedback 23 guides useful. Please contact us at [email protected] Cover: Carolina Satyr butterfly courtesy Kim Davis & Mike Stangeland 2 Selecting Plants for Pollinators Selecting Plants for Pollinators A Regional Guide for Farmers, Land Managers, and Gardeners In the Ecological Region of the Southeastern Mixed Forest Province Including the States of Virginia, North Carolina, South Carolina, Georgia, Alabama, Mississippi and parts of Tennessee, Louisiana, Texas, Arkansas, Oklahoma, and Maryland a nappc and Pollinator Partnership™ Publication This guide was funded by the National Fish and Wildlife Foundation, the C.S. Fund, the Plant Conservation Alliance, the U.S. Forest Service, and the Bureau of Land Management with oversight by the Pollinator Partnership™ (www.pollinator.org), in support of the North American Pollinator Protection Campaign (NAPPC–www.nappc.org). Southeastern Mixed Forest Province 3 Why support pollinators? In theIr 1996 book, the Forgotten PollInators, Buchmann and Nabhan estimated that animal pollinators are needed for the reproduction “ Farming feeds of 90% of flowering plants and one third of human food crops.
    [Show full text]
  • Pollination Partners
    Table Rocks Curriculum Pollination Partners Objective: In order to explore the relationships between flowers and their pollinators, students will dissect flowers, construct flower models, and match each flower model with its correct pollinator. This activity emphasizes flowers and pollinators native to the Table Rocks. Benchmarks Targeted: 2 (Grades 4-5) Oregon Standards Achieved: Subject Area: Life Science Common Curriculum Goals: Diversity/ Interdependence: Understand the relationships among living things and between living things and their environments. Benchmark 2: Describe the relationship between characteristics of specific habitats and the organisms that live there. Describe how adaptations help a species survive. Common Curriculum Goals: Organisms: Understand the characteristics, structure, and functions of an organism. Benchmark 2: Group and classify organisms based on a variety of characteristics. Benchmark 2: Describe the basic plant and animal structures and their functions Subject Area: The Arts Common Curriculum Goals: Create, Present, and Perform: Apply artistic elements and technical skills to create, present, and/or perform works of art for a variety of audiences and purposes. Benchmark 2: Create, present and/or perform a work of art using experiences, imagination, observations, artistic elements, and technical skills to achieve desired effect. Length of Lesson: 3 to 5 hrs. Materials: Clipped specimens of a variety of flowers for the class to dissect Small scissors and tweezers for dissection Magnifying glasses or
    [Show full text]
  • Pollinator-Friendly Plants for the Northeast United States
    Pollinator-Friendly Plants for the Northeast United States for more information on pollinators and outreach, please click here Information provided in the following document was obtained from a variety of sources and field research conducted at the USDA NRCS Big Flats Plant Materials Center. Sources of information can be found by clicking here. Pollinator rating values were provided by the Xerces Society as well as past and current research. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250- 9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer. USDA is committed to making its information materials accessible to all USDA customers and employees. Table of Contents Click on species to jump to that page • Purple Giant Hyssop •
    [Show full text]