Precision Requirement of the Photofission Cross Section for The

Total Page:16

File Type:pdf, Size:1020Kb

Precision Requirement of the Photofission Cross Section for The EPJ Web of Conferences 146, 09041 (2017) DOI: 10.1051/epjconf/201714609041 ND2016 Precision requirement of the photofission cross section for the nondestructive assay Rei Kimuraa, Hiroshi Sagara, and Satoshi Chiba Tokyo Institute of Technology, 2-12-2 Ookayama Meguro-ku Tokyo, Japan Abstract. Principle of the new NDA technique based on the photofission reaction rate ratio (PFRR) has been developed by Kimura et al for measurement of uranium enrichment by using the only relative measured counts of neutron produced by photofission reactions of 235Uand238U at different specific incident photon energies. In the past analysis, no attentions have been paid for relatively large uncertainty of photonuclear cross section of special nuclear materials around 10%. In the present paper, quantitative analysis was performed to reveal the impact of photonuclear cross section uncertainty to predicted value of the uranium enrichment by the PFRR methodology. And also, the requirement of photofission cross section precision was evaluated as less than 3%, to satisfy the uncertainty of PFRR methodology to within 5%. 1. Introduction photofission reaction rate ratio (PFRR) was validated by small scale numerical simulation with good reproducibility The nondestructive assay (NDA) techniques for quantify- of within 2% difference of predicted uranium enrichment ing special nuclear materials (SNMs) have been developed and reported by Kimura et al. [10]. However, cross sections by many organizations and some of which have been of the photonuclear reaction of interested nuclides relating successfully applied to uranium enrichment measurement to PERR have, in general, around 10% uncertainty, which [1–9]. One of the recent projects is Next Generation may lead the huge impact to the accuracy of uranium Safeguards Initiative in the United States which has been enrichment measurement by the PFRR methodology. In examined in a spent fuel NDA technique [2]. The other the present paper, quantitative analysis was performed to challenge of the NDA technique for quantification or even reveal the impact of photonuclear cross section uncertainty detection of SNMs in unknown forms, such as unknown to predicted value of the uranium enrichment by the PFRR waste, debris or concealed and shielded highly enriched methodology. And also, the requirement of photonuclear uranium in containers, these have some technical difficulty cross section precision was evaluated as follows [10]; (1) Few self-generated neutron or photon emissions because of shielding 2. Principle of the NDA technique based (2) Difficulty of measurement because of intensive on the Photofission reaction rate ratio gamma-ray backgrounds The PFRR methodology mechanism is based on the (3) Low measurement reliability due to impurities and difference of photonuclear cross section of different unknown information. nuclides and different incident photon energies, these functions of the incident photon energies for the typical Recently, the development of the compact and quasi- fertile and fissile nuclides of ENDF/B-VII.1 are shown monochromatic photon (X-ray) source generator has in Fig. 1 [14]. These differences of cross sections make proceeded, which is expected to be realized as portable the differences of neutron production rate at the target of photon generator device with higher energy than the SNMs, for example, as shown in Fig. 2 [10]. photonuclear threshold energy [11–14]. Its application is The neutron production rates shown in Fig. 2 include expected to be one of the NDA techniques. the (γ ,n),(γ , 2n), (γ , fission), and other neutron A new NDA technique is aimed for uranium production reactions. In case of the maximum incident enrichment measurement, characterized by mathematical photon energy is under 11.27 MeV as threshold energy of process which represents the correlation of the target (γ , 2n) reaction at 238U and 235U target, (γ , fission) counts enrichment and relative measured counts of neutron can be extracted from the neutron counts by coincidence produced by the photofission reactions of 235U and counting. In the PFRR methodology, the information of 238U at different specific incident photon energies of photofission reactions is utilized to improve the precision 6 MeV and 11 MeV. Principle of the nuclear material by the simplified mathematical process as removal of other isotopic composition measurement method based on the reactions from the equation. The photofission reaction rate Ri (i represents the a e-mail: [email protected] specific incident photon energy spectrum) is described c The Authors, published by EDP Sciences. This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/). EPJ Web of Conferences 146, 09041 (2017) DOI: 10.1051/epjconf/201714609041 ND2016 by Eq. (1), Ri = φi (E) Nnucσ f,nuc (E) dE, (1) nuc where E is the photon energy, φi (E)is the photon flux, Nnucandσ f,nuc (E) are number density and microscopic photofission cross section of nuclide nuc. In addition, parameters i and nuc are defined as 1, 2, 3 ...n and I, II, III···n. Further, Ai,nuc is defined as Ai,nuc = φi (E) σ f,nuc (E)dE andR1 ∼ Rn−1are divided byRn, Eq. (1) for each iand nuc can be transformed as Eq. (2), where Ai,nuc is known. The PFRR methodology requires Figure 1. Photonuclear reaction cross sections versus the incident the measurement value of the photofission reaction rate photon energy. The cross section of each nuclides and reactions ratioRi Rn in order to calculateNnuc Nn. The isotopic are written as “nuclides(reaction)” [10,14]. composition IC of nuclide nuc is calculated from Nnuc Nn and Eq. (3). −1 NI R1 R1 R1 R1 An,I − A1,I An,II − A1,II An,III − A1,III ··· An,n−1 − A1,n−1 Nn Rn Rn Rn Rn NII R2 R2 R2 R2 An,I − A2,I An,II − A2,II An,III − A2,III ··· An,n−1 − A2,n−1 Nn Rn Rn Rn Rn NIII R3 R3 R3 R3 An,I − A3,I An,II − A3,II An,III − A3,III ··· An,n−1 − A3,n−1 Nn = Rn Rn Rn Rn . . . . . . Nn−1 Rn−1 Rn−1 Rn−1 Rn−1 An,I − An−1,I An,II − An−1,II An,III − An−1,III ··· An,n−1 − An−1,n−1 Nn Rn Rn Rn Rn R1 A1,n − An,n Rn R2 A2,n − An,n Rn R3 A3,n − An,n × Rn (2) . . . Rn−1 An−1,n − An,n Rn N IC = nuc nuc + + +···+ NI NII NIII Nn Figure 2. Difference in the neutron production for different photon energies and nuclides [10]. Nnuc = Nn (3) NI + NII + NIII +···+ N N N 1 n n n where, NU235/NU238 and Rratio was Nnuc/Nn and Ri /Rn of Eq. (2), ε0,238U and ε0,235U were relative error of Hence, the PFRR methodology induces the isotopic 238 235 composition by only measuring relative value of the the photofission cross section of U and U. Other photofission reaction [10]. parameters in the Eq. (4) were described as follows: MA = A238U,n − RratioA238U,i 3. Calculation model and methodology MB = RratioA235U,i − A235U,n MCNP6 as a Monte Carlo code and ENDF/B-VII.1 as an evaluated nuclear data library were used for simulating the 2 2 εA = ε0,238U A238U,n + ε0,238U RratioA238U,i photonuclear reaction in the target [14,15]. Figure 3 shows the calculation model of the present study. In this model, 2 2 εB = ε0,235U RratioA235U,i + ε0,235U A235U,n the photon beam is assumed to be injected to the center = σ φ , of the thin target. This target consists of metallic uranium A238U,i f,238U (E) i (E) 235 238 235 = σ φ ( U and U, U enrichment is 5–90%) which density A238U,n f,238U (E) n (E) is 19.1g/cm3. A235U,i = σ f,235U (E) φi (E), Incident photons from the pencil beam (108 histories A , = σ , (E) φ (E) . in this study) cause the photofission reaction at the target. 235U n f 235U n The fission reaction which occurred at the target is tallied as “Ri ”ofEq.(2). This fission reaction include (γ , fission) and (n, fission) because signal of (γ , fission) and (n, 4. Results and discussion fission) cannot be separated in the actual measurement by 235 coincidence counting. 4.1. Estimation of the U enrichment based on The error propagation formula of predicted 235U the PFRR method 235 238 enrichment in the U– U system was derived as Eq. (4), The results of the 235U enrichment prediction by PFRR method was shown in Fig. 4. The incident photon energies 2 2 ε = 1 1 ε + MA ε are 11 and 6 MeV that has the Gaussian shaped energy A B σ = . 2 M M2 distribution ( 0 5MeV)[10]. As shown in this figure, NU235 + 1 B B 235 NU238 the present method showed good reproducibility of U (4) enrichment, the principle of PFRR methodology was 2 EPJ Web of Conferences 146, 09041 (2017) DOI: 10.1051/epjconf/201714609041 ND2016 Figure 3. Calculation model on the MCNP code. Figure 6. The predicted value of 235U enrichment and its uncertainty with 3% cross section uncertainty. 5. Conclusion The effect of the photofission cross section uncertainty to the predicted value of the 235U in the PFRR methodology was evaluated. This uncertainty was required to be 3% or less to keep less than 5% uncertainty of the predicted value of the 235U enrichment. 235 Figure 4. The predicted value of the U enrichment based on However, the current photonuclear cross section data the PFRR due the 11 MeV/6 MeV incident photon that has the of nuclear materials, namely, uranium and plutonium Gaussian shaped energy distribution [10].
Recommended publications
  • Hetc-3Step Calculations of Proton Induced Nuclide Production Cross Sections at Incident Energies Between 20 Mev and 5 Gev
    JAERI-Research 96-040 JAERI-Research—96-040 JP9609132 JP9609132 HETC-3STEP CALCULATIONS OF PROTON INDUCED NUCLIDE PRODUCTION CROSS SECTIONS AT INCIDENT ENERGIES BETWEEN 20 MEV AND 5 GEV August 1996 Hiroshi TAKADA, Nobuaki YOSHIZAWA* and Kenji ISHIBASHI* Japan Atomic Energy Research Institute 2 G 1 0 1 (T319-11 l This report is issued irregularly. Inquiries about availability of the reports should be addressed to Research Information Division, Department of Intellectual Resources, Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki-ken, 319-11, Japan. © Japan Atomic Energy Research Institute, 1996 JAERI-Research 96-040 HETC-3STEP Calculations of Proton Induced Nuclide Production Cross Sections at Incident Energies between 20 MeV and 5 GeV Hiroshi TAKADA, Nobuaki YOSHIZAWA* and Kenji ISHIBASHP* Department of Reactor Engineering Tokai Research Establishment Japan Atomic Energy Research Institute Tokai-mura, Naka-gun, Ibaraki-ken (Received July 1, 1996) For the OECD/NEA code intercomparison, nuclide production cross sections of l60, 27A1, nalFe, 59Co, natZr and 197Au for the proton incidence with energies of 20 MeV to 5 GeV are calculated with the HETC-3STEP code based on the intranuclear cascade evaporation model including the preequilibrium and high energy fission processes. In the code, the level density parameter derived by Ignatyuk, the atomic mass table of Audi and Wapstra and the mass formula derived by Tachibana et al. are newly employed in the evaporation calculation part. The calculated results are compared with the experimental ones. It is confirmed that HETC-3STEP reproduces the production of the nuclides having the mass number close to that of the target nucleus with an accuracy of a factor of two to three at incident proton energies above 100 MeV for natZr and 197Au.
    [Show full text]
  • An Octad for Darmstadtium and Excitement for Copernicium
    SYNOPSIS An Octad for Darmstadtium and Excitement for Copernicium The discovery that copernicium can decay into a new isotope of darmstadtium and the observation of a previously unseen excited state of copernicium provide clues to the location of the “island of stability.” By Katherine Wright holy grail of nuclear physics is to understand the stability uncover its position. of the periodic table’s heaviest elements. The problem Ais, these elements only exist in the lab and are hard to The team made their discoveries while studying the decay of make. In an experiment at the GSI Helmholtz Center for Heavy isotopes of flerovium, which they created by hitting a plutonium Ion Research in Germany, researchers have now observed a target with calcium ions. In their experiments, flerovium-288 previously unseen isotope of the heavy element darmstadtium (Z = 114, N = 174) decayed first into copernicium-284 and measured the decay of an excited state of an isotope of (Z = 112, N = 172) and then into darmstadtium-280 (Z = 110, another heavy element, copernicium [1]. The results could N = 170), a previously unseen isotope. They also measured an provide “anchor points” for theories that predict the stability of excited state of copernicium-282, another isotope of these heavy elements, says Anton Såmark-Roth, of Lund copernicium. Copernicium-282 is interesting because it University in Sweden, who helped conduct the experiments. contains an even number of protons and neutrons, and researchers had not previously measured an excited state of a A nuclide’s stability depends on how many protons (Z) and superheavy even-even nucleus, Såmark-Roth says.
    [Show full text]
  • The R-Process Nucleosynthesis and Related Challenges
    EPJ Web of Conferences 165, 01025 (2017) DOI: 10.1051/epjconf/201716501025 NPA8 2017 The r-process nucleosynthesis and related challenges Stephane Goriely1,, Andreas Bauswein2, Hans-Thomas Janka3, Oliver Just4, and Else Pllumbi3 1Institut d’Astronomie et d’Astrophysique, Université Libre de Bruxelles, CP 226, 1050 Brussels, Belgium 2Heidelberger Institut fr¨ Theoretische Studien, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany 3Max-Planck-Institut für Astrophysik, Postfach 1317, 85741 Garching, Germany 4Astrophysical Big Bang Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan Abstract. The rapid neutron-capture process, or r-process, is known to be of fundamental importance for explaining the origin of approximately half of the A > 60 stable nuclei observed in nature. Recently, special attention has been paid to neutron star (NS) mergers following the confirmation by hydrodynamic simulations that a non-negligible amount of matter can be ejected and by nucleosynthesis calculations combined with the predicted astrophysical event rate that such a site can account for the majority of r-material in our Galaxy. We show here that the combined contribution of both the dynamical (prompt) ejecta expelled during binary NS or NS-black hole (BH) mergers and the neutrino and viscously driven outflows generated during the post-merger remnant evolution of relic BH-torus systems can lead to the production of r-process elements from mass number A > 90 up to actinides. The corresponding abundance distribution is found to reproduce the∼ solar distribution extremely well. It can also account for the elemental distributions observed in low-metallicity stars. However, major uncertainties still affect our under- standing of the composition of the ejected matter.
    [Show full text]
  • Photofission Cross Sections of 238U and 235U from 5.0 Mev to 8.0 Mev Robert Andrew Anderl Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1972 Photofission cross sections of 238U and 235U from 5.0 MeV to 8.0 MeV Robert Andrew Anderl Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Nuclear Commons, and the Oil, Gas, and Energy Commons Recommended Citation Anderl, Robert Andrew, "Photofission cross sections of 238U and 235U from 5.0 MeV to 8.0 MeV " (1972). Retrospective Theses and Dissertations. 4715. https://lib.dr.iastate.edu/rtd/4715 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This dissertation was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction, 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity, 2.
    [Show full text]
  • Compilation and Evaluation of Fission Yield Nuclear Data Iaea, Vienna, 2000 Iaea-Tecdoc-1168 Issn 1011–4289
    IAEA-TECDOC-1168 Compilation and evaluation of fission yield nuclear data Final report of a co-ordinated research project 1991–1996 December 2000 The originating Section of this publication in the IAEA was: Nuclear Data Section International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria COMPILATION AND EVALUATION OF FISSION YIELD NUCLEAR DATA IAEA, VIENNA, 2000 IAEA-TECDOC-1168 ISSN 1011–4289 © IAEA, 2000 Printed by the IAEA in Austria December 2000 FOREWORD Fission product yields are required at several stages of the nuclear fuel cycle and are therefore included in all large international data files for reactor calculations and related applications. Such files are maintained and disseminated by the Nuclear Data Section of the IAEA as a member of an international data centres network. Users of these data are from the fields of reactor design and operation, waste management and nuclear materials safeguards, all of which are essential parts of the IAEA programme. In the 1980s, the number of measured fission yields increased so drastically that the manpower available for evaluating them to meet specific user needs was insufficient. To cope with this task, it was concluded in several meetings on fission product nuclear data, some of them convened by the IAEA, that international co-operation was required, and an IAEA co-ordinated research project (CRP) was recommended. This recommendation was endorsed by the International Nuclear Data Committee, an advisory body for the nuclear data programme of the IAEA. As a consequence, the CRP on the Compilation and Evaluation of Fission Yield Nuclear Data was initiated in 1991, after its scope, objectives and tasks had been defined by a preparatory meeting.
    [Show full text]
  • Heavy Element Nucleosynthesis
    Heavy Element Nucleosynthesis A summary of the nucleosynthesis of light elements is as follows 4He Hydrogen burning 3He Incomplete PP chain (H burning) 2H, Li, Be, B Non-thermal processes (spallation) 14N, 13C, 15N, 17O CNO processing 12C, 16O Helium burning 18O, 22Ne α captures on 14N (He burning) 20Ne, Na, Mg, Al, 28Si Partly from carbon burning Mg, Al, Si, P, S Partly from oxygen burning Ar, Ca, Ti, Cr, Fe, Ni Partly from silicon burning Isotopes heavier than iron (as well as some intermediate weight iso- topes) are made through neutron captures. Recall that the prob- ability for a non-resonant reaction contained two components: an exponential reflective of the quantum tunneling needed to overcome electrostatic repulsion, and an inverse energy dependence arising from the de Broglie wavelength of the particles. For neutron cap- tures, there is no electrostatic repulsion, and, in complex nuclei, virtually all particle encounters involve resonances. As a result, neutron capture cross-sections are large, and are very nearly inde- pendent of energy. To appreciate how heavy elements can be built up, we must first consider the lifetime of an isotope against neutron capture. If the cross-section for neutron capture is independent of energy, then the lifetime of the species will be ( )1=2 1 1 1 µn τn = ≈ = Nnhσvi NnhσivT Nnhσi 2kT For a typical neutron cross-section of hσi ∼ 10−25 cm2 and a tem- 8 9 perature of 5 × 10 K, τn ∼ 10 =Nn years. Next consider the stability of a neutron rich isotope. If the ratio of of neutrons to protons in an atomic nucleus becomes too large, the nucleus becomes unstable to beta-decay, and a neutron is changed into a proton via − (Z; A+1) −! (Z+1;A+1) + e +ν ¯e (27:1) The timescale for this decay is typically on the order of hours, or ∼ 10−3 years (with a factor of ∼ 103 scatter).
    [Show full text]
  • A Guide to Naturally Occurring Radioactive Materials (NORM)
    ABOUT NORM SOME NORM NUCLIDES OF SPECIAL INTEREST A Guide to Naturally There are three types of NORM: Occurring Radioactive • Cosmogenic – NORM produced by cosmic rays interacting with the Earth’s Materials (NORM) Beryllium 7 atmosphere; the most important Developed by the 3 7 14 examples are H (tritium), Be, and C. 7Be is being continuously formed in the DHS Secondary Reachback Program • Primordial – Sufficiently long-lived atmosphere by cosmic rays. Jet engines can March 2010 NORM for some to have survived from accumulate enough 7Be to set off before the formation of the Earth; there radiological alarms when being cleaned. are 20 primordial NORM nuclides with As defined by the International Atomic the most important being 40K, 232Th, Energy Agency (IAEA), Naturally 235U, and 238U. Polonium 210 Occurring Radioactive Materials • Daughters – When 232Th, 235U and 238U In the 238U decay chain 210Po is a distant (NORM) include all natural radioactive decay 42 different radioactive nuclides daughter of 226Ra. 210Po gained notoriety in materials where human activities have are formed (see below) with the most the 1960s as a radioactive trace component increased the potential for exposure in important being 222Rn, 226Ra, 228Ra and in cigarette smoke. Heavy use of phosphate comparison with the unaltered natural 228 Ac. fertilizers (which have trace amounts of out here. fold Next situation. If processing has increased 226Ra) can triple the amount of 210Po found the concentrations of radionuclides in a When 232Th, 235U and 238U decay a in tobacco. material then it is Technologically radioactive “daughter” nuclide is formed, Enhanced NORM (TE-NORM).
    [Show full text]
  • Production and Properties Towards the Island of Stability
    This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Author(s): Leino, Matti Title: Production and properties towards the island of stability Year: 2016 Version: Please cite the original version: Leino, M. (2016). Production and properties towards the island of stability. In D. Rudolph (Ed.), Nobel Symposium NS 160 - Chemistry and Physics of Heavy and Superheavy Elements (Article 01002). EDP Sciences. EPJ Web of Conferences, 131. https://doi.org/10.1051/epjconf/201613101002 All material supplied via JYX is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user. EPJ Web of Conferences 131, 01002 (2016) DOI: 10.1051/epjconf/201613101002 Nobel Symposium NS160 – Chemistry and Physics of Heavy and Superheavy Elements Production and properties towards the island of stability Matti Leino Department of Physics, University of Jyväskylä, PO Box 35, 40014 University of Jyväskylä, Finland Abstract. The structure of the nuclei of the heaviest elements is discussed with emphasis on single-particle properties as determined by decay and in- beam spectroscopy. The basic features of production of these nuclei using fusion evaporation reactions will also be discussed. 1. Introduction In this short review, some examples of nuclear structure physics and experimental methods relevant for the study of the heaviest elements will be presented.
    [Show full text]
  • The Discoverers of the Ruthenium Isotopes
    •Platinum Metals Rev., 2011, 55, (4), 251–262• The Discoverers of the Ruthenium Isotopes Updated information on the discoveries of the six platinum group metals to 2010 http://dx.doi.org/10.1595/147106711X592448 http://www.platinummetalsreview.com/ By John W. Arblaster This review looks at the discovery and the discoverers Wombourne, West Midlands, UK of the thirty-eight known ruthenium isotopes with mass numbers from 87 to 124 found between 1931 and 2010. Email: [email protected] This is the sixth and fi nal review on the circumstances surrounding the discoveries of the isotopes of the six platinum group elements. The fi rst review on platinum isotopes was published in this Journal in October 2000 (1), the second on iridium isotopes in October 2003 (2), the third on osmium isotopes in October 2004 (3), the fourth on palladium isotopes in April 2006 (4) and the fi fth on rhodium isotopes in April 2011 (5). An update on the new isotopes of palladium, osmium, iridium and platinum discovered since the previous reviews in this series is also included. Naturally Occurring Ruthenium Of the thirty-eight known isotopes of ruthenium, seven occur naturally with the authorised isotopic abun- dances (6) shown in Table I. The isotopes were fi rst detected in 1931 by Aston (7, 8) using a mass spectrograph at the Cavendish Laboratory, Cambridge University, UK. Because of diffi cult experimental conditions due to the use of poor quality samples, Aston actually only detected six of the isotopes and obtained very approximate Table I The Naturally Occurring Isotopes of Ruthenium Mass number Isotopic Abundance, % 96Ru 5.54 98Ru 1.87 99Ru 12.76 100Ru 12.60 101Ru 17.06 102Ru 31.55 104Ru 18.62 251 © 2011 Johnson Matthey http://dx.doi.org/10.1595/147106711X592448 •Platinum Metals Rev., 2011, 55, (4)• percentage abundances.
    [Show full text]
  • Important Fission Product Nuclides Identification Method for Simplified Burnup Chain Construction
    Title Important fission product nuclides identification method for simplified burnup chain construction Author(s) Chiba, Go; Tsuji, Masashi; Narabayashi, Tadashi; Ohoka, Yasunori; Ushio, Tadashi Journal of nuclear science and technology, 52(7-8), 953-960 Citation https://doi.org/10.1080/00223131.2015.1032381 Issue Date 2015-08 Doc URL http://hdl.handle.net/2115/62612 This is an Accepted Manuscript of an article published by Taylor & Francis in Journal of nuclear science and Rights technology on 4 Aug 2015, available online: http://www.tandfonline.com/10.1080/00223131.2015.1032381 Type article (author version) File Information paper.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP ARTICLE Typeset with jnst.cls <ver.1.84> Important fission product nuclides identification method for simplified burnup chain construction Go Chiba1 ∗, Masashi Tsuji1, Tadashi Narabayashi1, Yasunori Ohoka2, Tadashi Ushio2 1Graduate School of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan; 2Nuclear Fuel Industries, Ltd., 950 Asashiro-Nishi 1-chome, Kumatori, Osaka 590-0481, Japan A method of identifying important fission product (FP) nuclides which are included in a simplified burnup chain is proposed. This method utilizes adjoint nuclide number densities and contribution functions which quantify importance of nuclide number densities to the target nuclear characteristics: number densities of specific nuclides after burnup. Numer- ical tests with light water reactor (LWR) fuel pin-cell problems reveal that this method successfully identifies important FP nuclides included in a simplified burnup chain, with which number densities of target nuclides after burnup are well reproduced. A simpli- fied burnup chain consisting of 138 FP nuclides is constructed using this method, and its good performance for predictions of number densities of target nuclides and reac- tivity is demonstrated against LWR pin-cell problems and multi-cell problem including gadolinium-bearing fuel rod.
    [Show full text]
  • Lecture 3: Nucleosynthesis
    Geol. 655 Isotope Geochemistry Lecture 3 Spring 2003 NUCLEOSYNTHESIS A reasonable starting point for isotope geochemistry is a determination of the abundances of the naturally occurring nuclides. Indeed, this was the first task of isotope geochemists (though those engaged in this work would have referred to themselves simply as physicists). We noted this began with Thomson, who built the first mass spectrometer and discovered Ne consisted of 2 isotopes (actually, it consists of three, but one of them, 21Ne is very much less abundant than the other two, and Thomson’s primitive instrument did not detect it). Having determined the abundances of nu- clides, it is natural to ask what accounts for this distribution, and even more fundamentally, what processes produced the elements. This process is known as nucleosynthesis. The abundances of naturally occurring nuclides is now reasonably, though perhaps not perfectly, known. We also have what appears to be a reasonably successful theory of nucleosynthesis. Physi- cists, like all scientists, are attracted to simple theories. Not surprisingly then, the first ideas about nucleosynthesis attempted to explain the origin of the elements by single processes. Generally, these were thought to occur at the time of the Big Bang. None of these theories was successful. It was re- ally the astronomers, accustomed to dealing with more complex phenomena than physicists, who suc- cessfully produced a theory of nucleosynthesis that involved a number of processes. Today, isotope geochemists continue to be involved in refining these ideas by examining and attempting to explain isotopic variations occurring in some meteorites. The origin of the elements is an astronomical question, perhaps even more a cosmological one.
    [Show full text]
  • Radiation Weighting Factors
    Sources of Radiation Exposure Sources of Radiation Exposure to the US Population (from U.S. NRC, Glossary: Exposure. [updated 21 July 2003, cited 26 March 2004] http://www.nrc.gov/reading-rm/basic-ref/glossary/exposure.html In the US, the annual estimated average effective dose to an adult is 3.60 mSv. Sources of exposure for the general public • Natural radiation of terrestrial origin • Natural radiation of cosmic origin • Natural internal radioisotopes • Medical radiation • Technologically enhanced natural radiation • Consumer products • Fallout • Nuclear power Other 1% Occupational 3% Fallout <0.3% Nuclear Fuel Cycle 0.1% Miscellaneous 0.1% Radioactivity in Nature Our world is radioactive and has been since it was created. Over 60 radionuclides can be found in nature, and they can be placed in three general categories: Primordial - been around since the creation of the Earth Singly-occurring Chain or series Cosmogenic - formed as a result of cosmic ray interactions Primordial radionuclides When the earth was first formed a relatively large number of isotopes would have been radioactive. Those with half-lives of less than about 108 years would by now have decayed into stable nuclides. The progeny or decay products of the long-lived radionuclides are also in this heading. Primordial nuclide examples Half-life Nuclide Natural Activity (years) Uranium 7.04 x 108 0.72 % of all natural uranium 235 Uranium 99.27 % of all natural uranium; 0.5 to 4.7 ppm total 4.47 x 109 238 uranium in the common rock types Thorium 1.6 to 20 ppm in the common
    [Show full text]