A Double Helical Motif in OCIAD2 Is Essential for Its Localization

Total Page:16

File Type:pdf, Size:1020Kb

A Double Helical Motif in OCIAD2 Is Essential for Its Localization www.nature.com/scientificreports OPEN A double helical motif in OCIAD2 is essential for its localization, interactions and STAT3 activation Received: 16 November 2017 Saloni Sinha1, Venkata Anudeep Bheemsetty1 & Maneesha S. Inamdar 1,2 Accepted: 20 April 2018 The Ovarian Carcinoma Immunoreactive Antigen domain (OCIAD) - containing proteins OCIAD1/ Published: xx xx xxxx Asrij and OCIAD2, are implicated in several cancers and neurodegenerative diseases. While Asrij has a conserved role in facilitating STAT3 activation for JAK/STAT signaling, the expression and function of OCIAD2 in non-cancerous contexts remains unknown. Here, we report that ociad2 neighbors ociad1/ asrij in most vertebrate genomes, and the two genes likely arose by tandem gene duplication, probably somewhere between the Ordovician and Silurian eras. We show that ociad2 expression is higher in the mouse kidney, liver and brain relative to other tissues. OCIAD2 localizes to early endosomes and mitochondria, and interacts with Asrij and STAT3. Knockdown and overexpression studies showed that OCIAD2 is essential for STAT3 activation and cell migration, which could contribute to its role in tumor metastasis. Structure prediction programs, protein disruption studies, biochemical and functional assays revealed a double helical motif in the OCIA domain that is necessary and sufcient for its localization, interactions and STAT3 activation. Given the importance of JAK/STAT signaling in development and disease, our studies shed light on the evolution and conserved function of the OCIA domain in regulating this pathway and will be critical for understanding this clinically important protein family. OCIAD1 and OCIAD2 are human cancer-related proteins implicated in ovarian1, thyroid2 and lung cancers3, and in various hematological neoplasms4,5 including multiple myeloma6 and neutrophilia7. Teir names derive from the frst report on OCIAD1 (Ovarian Carcinoma Immunoreactive Antigen domain-containing protein 1), which was found in ascites fuid of patients with metastatic ovarian cancer and mapped to chromosome 4p118. Subsequently, a smaller human protein sharing homology with the N-terminal region of OCIAD1 was identifed and designated OCIAD2. While the developmental expression and cellular function of Asrij, the mouse ortholog of human OCIAD1 is reported9, there is limited information on the normal expression and localization of human OCIAD2 or its orthologs. Asrij localizes to endosomes10 and mitochondria11 and has key conserved roles in the maintenance of stem- ness in Drosophila hematopoiesis12, as well as in mouse embryonic stem cell pluripotency9. Moreover, Asrij reg- ulates blood cell homeostasis in Drosophila and its absence causes fy leukemia12. Asrij has a conserved role in regulating the JAK/STAT and Notch signaling pathways9,12. Although OCIAD2 expression varies among diferent cancers, its precise function remains unknown - while high levels of OCIAD2 are reported in ovarian mucinous tumors1 and lung carcinomas3,13; signifcantly reduced OCIAD2 expression is reported in liver and gastric carcinomas14, glioblastomas15 and chronic lymphocytic leu- kemia16. Further, loss of OCIAD2 function promotes cancer progression by increasing activation of the PI3K/ Akt pathway17. Moreover, the human OCIAD proteins are known to localize to lipid-rafs18,19 and have been proposed to be involved in the amyloidogenic processing of proteins associated with proteinopathies such as Alzheimer’s18,19 and Parkinson’s disease20. In this study, we explore the origin, evolution and function of ociad2. We report that the vertebrate OCIAD family members are genomic neighbors that possibly arose by a tandem gene duplication event in the last com- mon ancestor of jawed vertebrates. Further by in silico, in situ and biochemical approaches, we show that the two OCIAD proteins interact via a double helical region in the OCIA domain. In non-cancerous cells, OCIAD2 also interacts with and regulates STAT3 activation and cell migration, which is important in several developmental 1Jawaharlal Nehru Centre for Advanced Scientifc Research, Jakkur, Bangalore, 560064, India. 2Institute for Stem Cell Biology and Regenerative Medicine, GKVK, Bellary Road, Bangalore, 560065, India. Correspondence and requests for materials should be addressed to M.S.I. (email: [email protected]) SCIENTIFIC REPORTS | (2018) 8:7362 | DOI:10.1038/s41598-018-25667-3 1 www.nature.com/scientificreports/ and immune processes as well as cancer. Our studies will help decipher the role and regulation of the OCIAD family proteins in various normal and pathological contexts. Results ociad2 is located next to ociad1/asrij and encodes an OCIAD family protein. ociad1/asrij is conserved in vertebrates and invertebrates, and has important functions in development and disease. Since the normal function of OCIAD1 in human is not known, we searched for similar proteins that may suggest its pos- sible function. Querying the NCBI genome database by a BLASTp analysis (https://blast.ncbi.nlm.nih.gov/Blast. cgi?PAGE=Proteins) revealed a shorter protein OCIAD2 of 154 amino acids in mouse and human, with 36.36% sequence identity to the OCIA domain and 14.17% sequence identity in the non-domain region of OCIAD1. In silico analysis mapped the corresponding mouse gene to chromosome 5 at 38.54 cM (73322199–73341028 bp), which is next to asrij (38.44 cM, 73292784–73314069 bp) and is transcribed from the antisense strand in the opposite direction (Fig. 1A). Te human protein OCIAD2 also mapped to a gene neighboring ociad1 on chromo- some 4p11. Detailed in silico analysis showed that the genes coding for ociad1 and ociad2 are neighbors, located in the same position and relative orientation (tail-to-tail) in mammals, birds, reptiles, amphibians and fsh [excep- tions: chicken (Gallus gallus), spotted gar (Lepisosteus oculatus, not shown) and whale shark (Rhincodon typus), where ociad2 is absent and red-bellied piranha (Pygocentrus nattereri), where ociad1 and ociad2 have a tail-to- head orientation] (Fig. 1A). Notably, we found that ociad1 and ociad2 are neighbors only in some fsh belonging to the Actinopterygii (Danio rerio, Clupea harengus, Pygocentrus nattereri) and Chondrichthyes (Callorhinchus milii) classes, whereas the others (Ictalurus punctatus, Oreochromis niloticus and Oryzias latipes) had ociad1 and ociad2 on diferent chromosomes (Fig. 1A). Interestingly, apart from ociad1 and ociad2 (referred to as ociad1a and ociad2a in Fig. 1A), some members of the teleost fsh category such as Danio rerio and Clupea harengus also had an additional ociad1-like gene (referred to as ociad1b in Fig. 1A; Gene IDs: 553528, 105903538). Although we could not find ociad2 in whale shark (Rhincodon typus), it is noteworthy that this spe- cies has a non-coding RNA for ociad2, that seems to have been missed by the automatic annotation procedures. In this regard, a tblastn (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=tblastn&PAGE_ TYPE=BlastSearch&LINK_LOC=blasthome) search using elephant shark (Callorhinchus milii) OCIAD2 (Accession ID: XP_007890924.1) against the genome of whale shark (Rhincodon typus), revealed the presence of an uncharacterized non-coding RNA (LOC109914671, Accession ID: XR_002258473.1), present in a similar ori- entation, as expected for ociad2. Moreover, alignment of diferent reading frames of the elephant shark OCIAD2 protein and the translated sequence of the LOC109914671 non-coding RNA revealed overlap of two frames with high identity values (57%, 56%) and aided in the identifcation of several conserved exon stretches. Tus, this suggests that the arrangement of the OCIAD family of genes is very similar across all the vertebrate species. Analysis of gene synteny across diferent species helped in identifcation of conserved fanking genes (fryl and cwh43) in the vicinity of ociad1 and ociad2 in mammals, birds and reptiles (Fig. 1A). Although members of the frog and teleost fsh lineages lack cwh43, we found synteny with the gene next to cwh43, namely, dcun1d4, to be conserved (Fig. 1A). Tese results indicate that the gene synteny of ociad1 and ociad2 is conserved and strongly suggests that this particular genomic arrangement is ancestral to all vertebrate genomes analyzed here. Mapping the nucleotide positions of the start and stop sites of ociad1 and ociad2 showed that these genes were non-overlapping in species where they were neighbors (Fig. S1A,B). Further, comparison of protein lengths across species shows that OCIAD2 (154 aa in mouse) is a smaller protein than OCIAD1 (247 aa in mouse) with a shorter C-terminal region. (Fig. 2A). Multiple sequence alignment of the full-length OCIAD1 and OCIAD2 sequences using MUSCLE21 showed maximum conservation towards the N-terminal (Fig. 2B) and a high degree of similarity between OCIAD2 sequences of mouse, rat and human (Fig. 2C). Although signifcant homology exists among the N-terminal regions of OCIAD1 and OCIAD2 sequences across various species, the C-terminal regions are not as well-conserved (Fig. S2A). ociad1 and ociad2 evolved ca 435–500 MYA via tandem gene duplication from an ancestral ociad gene and have comparable rates of amino acid evolution. To explore the evolutionary rela- tionship between OCIAD family members, we collected a total of 106 protein sequences from NCBI (https:// www.ncbi.nlm.nih.gov/) covering 58 unique species, that included invertebrate OCIAD and vertebrate OCIAD1 and OCIAD2 sequences (see Table S1). We used protein sequences to identify genetic events relevant to the evolution
Recommended publications
  • Determining the Role of P53 Mutation in Human Breast
    Determining the Role of p53 Mutation in Human Breast Cancer Progression Using Recombinant Mutant/Wild-Type p53 Heterozygous Human Mammary Epithelial Cell Culture Models Item Type text; Electronic Dissertation Authors Junk, Damian Jerome Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 28/09/2021 18:36:12 Link to Item http://hdl.handle.net/10150/193600 DETERMINING THE ROLE OF P53 MUTATION IN HUMAN BREAST CANCER PROGRESSION USING RECOMBINANT MUTANT/WILD-TYPE P53 HETEROZYGOUS HUMAN MAMMARY EPITHELIAL CELL CULTURE MODELS by Damian Jerome Junk _________________________ A Dissertation Submitted to the Faculty of the GRADUATE INTERDISCIPLINARY PROGRAM IN CANCER BIOLOGY In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2008 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation prepared by Damian Jerome Junk entitled Determining the Role of p53 Mutation in Human Breast Cancer Progression Using Recombinant Mutant/Wild-Type p53 Heterozygous Human Mammary Epithelial Cell Culture Models and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy _______________________________________________________________________ Date: 4/18/08 Bernard W. Futscher, Ph.D. _______________________________________________________________________ Date: 4/18/08 Anne E. Cress, Ph.D. _______________________________________________________________________ Date: 4/18/08 Jesse D.
    [Show full text]
  • Interaction of Functional NPC1 Gene Polymorphism with Smoking On
    Ma et al. BMC Medical Genetics 2010, 11:149 http://www.biomedcentral.com/1471-2350/11/149 RESEARCH ARTICLE Open Access Interaction of functional NPC1 gene Polymorphism with smoking on coronary heart disease Weiwei Ma1, Jing Xu1, Qianqian Wang2, Ying Xin1, Lin Zhang1, Xinxin Zheng1, Hu Wang1, Kai Sun1, Rutai Hui1, Xiaohong Huang2* Abstract Background: The protein of Niemann-pick type C1 gene (NPC1) is known to facilitate the egress of cholesterol and other lipids from late endosomes and lysosomes to other cellular compartments. This study aims to investigate whether the genetic variation in NPC1 is associated with risk of coronary heart disease (CHD) and to detect whether NPC1 might interact with smoking on the risk of CHD. Methods: We performed a case-control study, including 873 patients with coronary heart disease (CHD) and 864 subjects without CHD as control. Polymorphisms of NPC1 gene were genotyped by polymerase chain reaction (PCR) -restriction fragment length polymorphism (RFLP). Results: A tag-SNP rs1805081 (+644A > G) in NPC1 was identified. The G allele of the +644 locus showed reduced risk of CHD than wild-type genotype in Chinese population (recessive model GG vs. AG+AA: odds ratio [OR] 0.647, 95% CI 0.428 to 0.980, P = 0.039; additive model GG vs. AG vs. AA: OR 0.847, 95% CI 0.718 to 0.998, P = 0.0471). Moreover in smokers, the G-allele carriers had reduced risk of CHD compared with A-allele carries (OR 0.552, 95% CI 0.311 to 0.979, P = 0.0421). Conclusions: The results of the present study suggest that NPC1 variants seem to be contributors to coronary heart disease occurrence in Chinese population.
    [Show full text]
  • TITLE PAGE Oxidative Stress and Response to Thymidylate Synthase
    Downloaded from molpharm.aspetjournals.org at ASPET Journals on October 2, 2021 -Targeted -Targeted 1 , University of of , University SC K.W.B., South Columbia, (U.O., Carolina, This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted.
    [Show full text]
  • 140503 IPF Signatures Supplement Withfigs Thorax
    Supplementary material for Heterogeneous gene expression signatures correspond to distinct lung pathologies and biomarkers of disease severity in idiopathic pulmonary fibrosis Daryle J. DePianto1*, Sanjay Chandriani1⌘*, Alexander R. Abbas1, Guiquan Jia1, Elsa N. N’Diaye1, Patrick Caplazi1, Steven E. Kauder1, Sabyasachi Biswas1, Satyajit K. Karnik1#, Connie Ha1, Zora Modrusan1, Michael A. Matthay2, Jasleen Kukreja3, Harold R. Collard2, Jackson G. Egen1, Paul J. Wolters2§, and Joseph R. Arron1§ 1Genentech Research and Early Development, South San Francisco, CA 2Department of Medicine, University of California, San Francisco, CA 3Department of Surgery, University of California, San Francisco, CA ⌘Current address: Novartis Institutes for Biomedical Research, Emeryville, CA. #Current address: Gilead Sciences, Foster City, CA. *DJD and SC contributed equally to this manuscript §PJW and JRA co-directed this project Address correspondence to Paul J. Wolters, MD University of California, San Francisco Department of Medicine Box 0111 San Francisco, CA 94143-0111 [email protected] or Joseph R. Arron, MD, PhD Genentech, Inc. MS 231C 1 DNA Way South San Francisco, CA 94080 [email protected] 1 METHODS Human lung tissue samples Tissues were obtained at UCSF from clinical samples from IPF patients at the time of biopsy or lung transplantation. All patients were seen at UCSF and the diagnosis of IPF was established through multidisciplinary review of clinical, radiological, and pathological data according to criteria established by the consensus classification of the American Thoracic Society (ATS) and European Respiratory Society (ERS), Japanese Respiratory Society (JRS), and the Latin American Thoracic Association (ALAT) (ref. 5 in main text). Non-diseased normal lung tissues were procured from lungs not used by the Northern California Transplant Donor Network.
    [Show full text]
  • Curcumin Alters Gene Expression-Associated DNA Damage, Cell Cycle, Cell Survival and Cell Migration and Invasion in NCI-H460 Human Lung Cancer Cells in Vitro
    ONCOLOGY REPORTS 34: 1853-1874, 2015 Curcumin alters gene expression-associated DNA damage, cell cycle, cell survival and cell migration and invasion in NCI-H460 human lung cancer cells in vitro I-TSANG CHIANG1,2, WEI-SHU WANG3, HSIN-CHUNG LIU4, SU-TSO YANG5, NOU-YING TANG6 and JING-GUNG CHUNG4,7 1Department of Radiation Oncology, National Yang‑Ming University Hospital, Yilan 260; 2Department of Radiological Technology, Central Taiwan University of Science and Technology, Taichung 40601; 3Department of Internal Medicine, National Yang‑Ming University Hospital, Yilan 260; 4Department of Biological Science and Technology, China Medical University, Taichung 404; 5Department of Radiology, China Medical University Hospital, Taichung 404; 6Graduate Institute of Chinese Medicine, China Medical University, Taichung 404; 7Department of Biotechnology, Asia University, Taichung 404, Taiwan, R.O.C. Received March 31, 2015; Accepted June 26, 2015 DOI: 10.3892/or.2015.4159 Abstract. Lung cancer is the most common cause of cancer CARD6, ID1 and ID2 genes, associated with cell survival and mortality and new cases are on the increase worldwide. the BRMS1L, associated with cell migration and invasion. However, the treatment of lung cancer remains unsatisfactory. Additionally, 59 downregulated genes exhibited a >4-fold Curcumin has been shown to induce cell death in many human change, including the DDIT3 gene, associated with DNA cancer cells, including human lung cancer cells. However, the damage; while 97 genes had a >3- to 4-fold change including the effects of curcumin on genetic mechanisms associated with DDIT4 gene, associated with DNA damage; the CCPG1 gene, these actions remain unclear. Curcumin (2 µM) was added associated with cell cycle and 321 genes with a >2- to 3-fold to NCI-H460 human lung cancer cells and the cells were including the GADD45A and CGREF1 genes, associated with incubated for 24 h.
    [Show full text]
  • Differential Expression of 14-3-3 Isoforms in Human Alcoholic Brain
    Published in final edited form as: Alcohol Clin Exp Res. 2011 June ; 35(6): 1041±1049. doi:10.1111/j.1530-0277.2011.01436.x. Differential expression of 14-3-3 isoforms in human alcoholic brain Rachel K. MacKay, M.MolBiol1, Natalie J. Colson, PhD1, Peter R. Dodd, PhD2, and Joanne M. Lewohl, PhD1 1Griffith Health Institute and School of Medical Sciences, Griffith University, Gold Coast Campus, Southport, Australia 2School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia Abstract Background—Neuropathological damage due to chronic alcohol abuse often results in impairment of cognitive function. The damage is particularly marked in the frontal cortex. The 14-3-3 protein family consists of 7 proteins, β, γ, ε, ζ, η, θ and σ, encoded by 7 distinct genes. They are highly conserved molecular chaperones with roles in regulation of metabolism, signal transduction, cell-cycle control, protein trafficking, and apoptosis. They may also play an important role in neurodegeneration in chronic alcoholism. Methods—We used Real-Time PCR to measure the expression of 14-3-3 mRNA transcripts in both the dorsolateral prefrontal cortex and motor cortex of human brains obtained at autopsy. Results—We found significantly lower 14-3-3β, γ and θ expression in both cortical areas of alcoholics; but no difference in 14-3-3η expression, and higher expression of 14-3-3σ, in both areas. Levels of 14-3-3ζ and ε transcripts were significantly lower only in alcoholic motor cortex. Conclusions—Altered 14-3-3 expression could contribute to synaptic dysfunction and altered neurotransmission in chronic alcohol misuse by human subjects.
    [Show full text]
  • Clinical-Biochemical Correlation in Molecularly Characterized Patients
    September/October 2001 ⅐ Vol. 3 ⅐ No. 5 article Clinical-biochemical correlation in molecularly characterized patients with Niemann-Pick type C Vardiella Meiner, MD1, Shoshi Shpitzen, BSc2, Hanna Mandel, MD3, Aharon Klar, MD4, Ziva Ben-Neriah, MD1, Jol Zlotogora, MD, PhD5, Michal Sagi, PhD1, Alex Lossos, MD6, Ruth Bargal, MSc1, Vivy Sury, BSc1, Rivka Carmi, MD7, Eran Leitersdorf, MD2, and Marsha Zeigler, PhD1 Purpose: Niemann-Pick disease type C (NP-C) is an autosomal recessive lipid storage disease manifested by an impairment in cellular cholesterol homeostasis. The clinical phenotype of NP-C is extremely variable, ranging from an acute neonatal form to an adult late-onset presentation. To facilitate phenotype-genotype studies, we have analyzed multiple Israeli NP-C families. Methods: The severity of the disease was assessed by the age at onset, hepatic involvement, neurological deterioration, and cholesterol esterification studies. Screening of the entire NPC1 coding sequence allowed for molecular characterization and identification of disease causing mutations. Results: A total of nine NP-C index cases with mainly neurovisceral involvement were characterized. We demon- strated a possible link between the severity of the clinical phenotype and the cholesterol esterification levels in fibroblast cultures following 24 hours of in vitro cholesterol loading. In addition, we identified eight novel mutations in the NPC1 gene. Conclusions: Our results further support the clinical and allelic heterogeneity of NP-C and point to possible association between the clinical and the biochemical phenotype in distinct affected Israeli families. Genet Med 2001:3(5):343–348. Key Words: lipid storage disease, cholesterol esterification, mutation analyses, NPC1 gene, consanguineous marriage Niemann-Pick disease type C (NP-C) is an autosomal reces- of NP-C is extremely variable ranging from an acute neonatal sive lipid storage disease manifested by an impairment in cel- form, showing mainly liver involvement and rapid neurologic lular cholesterol homeostasis (OMIM number 257220).
    [Show full text]
  • Evaluation of a New Method for Large-Scale and Gene-Targeted Next Generation DNA Sequencing in Nonmodel Species
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2013 Evaluation of a New Method for Large-Scale and Gene-targeted Next Generation DNA Sequencing in Nonmodel Species Ted Cosart The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Cosart, Ted, "Evaluation of a New Method for Large-Scale and Gene-targeted Next Generation DNA Sequencing in Nonmodel Species" (2013). Graduate Student Theses, Dissertations, & Professional Papers. 4133. https://scholarworks.umt.edu/etd/4133 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. EVALUTATION OF A NEW METHOD FOR LARGE-SCALE AND GENE- TARGETED NEXT GENERATION DNA SEQUENCING IN NONMODEL SPECIES By Ted Cosart BA, University of Montana, Missoula, Montana, 1983 MS, University of Montana, Missoula, Montana, 2006 Dissertation presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Individualized, Interdisciplinary Graduate Program The University of Montana Missoula, Montana August, 2013 Approved by: Sandy Ross, Associate Dean of The Graduate School Graduate School Dr. Jesse Johnson, Co-Chair Computer Science Dr. Gordon Luikart, Co-Chair Flathead Biological Station Dr. Jeffrey Good Division of Biological Sciences Dr. William Holben Division of Biological Sciences Dr. Stephen Porcella Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases Dr.
    [Show full text]
  • Rapid Whole-Genome Sequencing Identifies a Novel Homozygous NPC1 Variant Associated with Niemann–Pick Type C1 Disease in a 7-Week-Old Male with Cholestasis
    Downloaded from molecularcasestudies.cshlp.org on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press COLD SPRING HARBOR Molecular Case Studies | RAPID COMMUNICATION Rapid whole-genome sequencing identifies a novel homozygous NPC1 variant associated with Niemann–Pick type C1 disease in a 7-week-old male with cholestasis Amber Hildreth,1,2 Kristen Wigby,3 Shimul Chowdhury,1 Shareef Nahas,1 Jaime Barea,3 Paulina Ordonez,2,4 Sergey Batalov,1 David Dimmock,1 Stephen Kingsmore,1 and on behalf of the RCIGM Investigators 1Rady Children’s Institute of Genomic Medicine, San Diego, California 92123, USA; 2Department of Pediatrics, Division of Gastroenterology, University of California San Diego, La Jolla, California 92093, USA; 3Department of Pediatrics, Division of Medical Genetics, University of California San Diego, La Jolla, California 92093, USA; 4Sanford Consortium of Regenerative Medicine, La Jolla, California 92037, USA Abstract Niemann–Pick type C disease (NPC; OMIM #257220) is an inborn error of intracellular cholesterol trafficking. It is an autosomal recessive disorder caused predominantly by mutations in NPC1. Although characterized as a progressive neurological disorder, it can also cause cholestasis and liver dysfunction because of intrahepatocyte lipid accumulation. We report a 7-wk-old infant who was admitted with neonatal cholestasis, and who was diagnosed with a novel homozygous stop-gain variant in NPC1 by rapid whole-genome sequencing (WGS). WGS results were obtained 16 d Corresponding author: before return of the standard clinical genetic test results and prompted initiation of [email protected] targeted therapy. © 2017 Hildreth et al. This article is distributed under the terms of [Supplemental material is available for this article.] the Creative Commons Attribution-NonCommercial License, which permits reuse and CASE PRESENTATION redistribution, except for commercial purposes, provided that the original author and A 2.7-kg male infant was born at 38 wk via cesarean section for breech position to healthy source are credited.
    [Show full text]
  • Mammalian NPC1 Genes May Undergo Positive Selection And
    Al-Daghri et al. BMC Medicine 2012, 10:140 http://www.biomedcentral.com/1741-7015/10/140 RESEARCHARTICLE Open Access Mammalian NPC1 genes may undergo positive selection and human polymorphisms associate with type 2 diabetes Nasser M Al-Daghri1,2,3*, Rachele Cagliani4, Diego Forni4, Majed S Alokail1,2,3, Uberto Pozzoli4, Khalid M Alkharfy1,2,3,5, Shaun Sabico1,2,3, Mario Clerici6,7† and Manuela Sironi4† Abstract Background: The NPC1 gene encodes a protein involved in intracellular lipid trafficking; its second endosomal loop (loop 2) is a receptor for filoviruses. A polymorphism (His215Arg) in NPC1 was associated with obesity in Europeans. Adaptations to diet and pathogens represented powerful selective forces; thus, we analyzed the evolutionary history of the gene and exploited this information for the identification of variants/residues of functional importance in human disease. Methods: We performed phylogenetic analysis, population genetic tests, and genotype-phenotype analysis in a population from Saudi Arabia. Results: Maximum-likelihood ratio tests indicated the action of positive selection on loop 2 and identified three residues as selection targets; these were confirmed by an independent random effects likelihood (REL) analysis. No selection signature was detected in present-day human populations, but analysis of nonsynonymous polymorphisms showed that a variant (Ile642Met, rs1788799) in the sterol sensing domain affects a highly conserved position. This variant and the previously described His215Arg polymorphism were tested for association with obesity and type 2 diabetes (T2D) in a cohort from Saudi Arabia. Whereas no association with obesity was detected, 642Met allele was found to predispose to T2D. A significant interaction was noted with sex (P = 0.041), and stratification on the basis of gender indicated that the association is driven by men (P = 0.0021, OR = 1.5).
    [Show full text]
  • The Role of Natural Selection in Human Evolution – Insights from Latin America
    Genetics and Molecular Biology, 39, 3, 302-311 (2016) Copyright © 2016, Sociedade Brasileira de Genética. Printed in Brazil DOI: http://dx.doi.org/10.1590/1678-4685-GMB-2016-0020 Review Article The role of natural selection in human evolution – insights from Latin America Francisco M. Salzano1 1Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil. Abstract A brief introduction considering Darwin’s work, the evolutionary synthesis, and the scientific biological field around the 1970s and subsequently, with the molecular revolution, was followed by selected examples of recent investiga- tions dealing with the selection-drift controversy. The studies surveyed included the comparison between essential genes in humans and mice, selection in Africa and Europe, and the possible reasons why females in humans remain healthy and productive after menopause, in contrast with what happens in the great apes. At the end, selected exam- ples of investigations performed in Latin America, related to the action of selection for muscle performance, acetylation of xenobiotics, high altitude and tropical forest adaptations were considered. Despite dissenting views, the influence of positive selection in a considerable portion of the human genome cannot presently be dismissed. Keywords: natural selection, human evolution, population genetics, human adaptation, history of genetics. Received: February 10, 2016; Accepted: May 8, 2016. History deniably indicated that we had derived from
    [Show full text]
  • Proceedings from the Fourth International Symposium on Sigma-2 Receptors: Role in Health and Disease
    Review | Disorders of the Nervous System Proceedings from the Fourth International Symposium on sigma-2 Receptors: Role in Health and Disease https://doi.org/10.1523/ENEURO.0317-20.2020 Cite as: eNeuro 2020; 10.1523/ENEURO.0317-20.2020 Received: 31 July 2020 Revised: 10 September 2020 Accepted: 12 September 2020 This Early Release article has been peer-reviewed and accepted, but has not been through the composition and copyediting processes. The final version may differ slightly in style or formatting and will contain links to any extended data. Alerts: Sign up at www.eneuro.org/alerts to receive customized email alerts when the fully formatted version of this article is published. Copyright © 2020 Izzo et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. 1 Proceedings from the Fourth International Symposium on sigma-2 Receptors: 2 Role in Health and Disease 3 Nicholas J. Izzo,1 Martí Colom-Cadena,2 Aladdin A. Riad,3 Jinbin Xu,4 Meharvan Singh,5 Carmen 4 Abate,6 Michael A. Cahill,7,8 Tara L. Spires-Jones,2 Wayne D. Bowen,9 Robert H. Mach,3 and 5 Susan M. Catalano1* 6 1Cognition Therapeutics Inc., Pittsburgh, PA, USA 7 2UK Dementia Research Institute and The University of Edinburgh, Edinburgh, UK 8 3The University of Pennsylvania, Philadelphia, PA, USA 9 4Washington University School of Medicine, St. Louis, MO, USA 10 5Loyola University
    [Show full text]