Differentiation, Dedifferentiation, and Transdifferentiation of BALB/C 3T3 T Mesenchymal Stem Cells: Potential Significance in Metaplasia and Neoplasia1

Total Page:16

File Type:pdf, Size:1020Kb

Differentiation, Dedifferentiation, and Transdifferentiation of BALB/C 3T3 T Mesenchymal Stem Cells: Potential Significance in Metaplasia and Neoplasia1 [CANCER RESEARCH 46, 5312-5319, October 1986] Differentiation, Dedifferentiation, and Transdifferentiation of BALB/c 3T3 T Mesenchymal Stem Cells: Potential Significance in Metaplasia and Neoplasia1 Rodney L. Sparks, Elizabeth I. Seibel-Ross, Marjorie L. Wier, and Robert E. Scott2 Section of Experimental Pathology, Departments of Pathology and Biochemistry and Molecular Biology, Mayo Clinic and Foundation, Rochester, Minnesota 55905 ABSTRACT process by which normal cells develop variations in cell size, shape, proliferation, and differentiation. The expression of defects in the control of cellular differentiation is The underlying mechanisms by which the expression of de thought to be of etiological significance in the early stages of carcinogen- fects in the control of differentiation could be associated with esis. This possibility is supported by a variety of experimental studies the development of metaplastic, dysplastic, preneoplastic, and including those that have established that metaplastic changes in cells neoplastic states are not clear. The hypothesis we favor suggests can represent preneoplastic lesions in vivo. To evaluate this question in that in normal stem cells the integrated control of cellular greater detail, we have used 3T3 T mesenchymal stem cells as a model system. These cells express certain characteristics of preneoplastic cells differentiation and proliferation is stringently regulated, even though they can regulate their proliferation and even though they whereas in metaplastic, dysplastic, preneoplastic, and neoplas can undergononterminaland terminal differentiation into adipocytes. For tic cells, these stringent regulatory mechanisms are partially or example, they are immortal and aneuploid, and they show a proclivity to completely abrogated. As a result such cells would be expected undergo spontaneous or induced neoplastic transformation compared to to show aberrant differentiation and/or proliferation (4, 7, 9- normal human cells. The question we sought to answer in the current 22). In this regard, the term "stringent integrated control" experiments concerns whether predifferentiation growth arrest and/or describes the ability of stem cells or progenitor cells to make nonterminal differentiation in such preneoplastic cells is completely specific "decisions" that result in the expression of a specific reversible or whether these processes induce the expression of the new set of genes that stably programs the cells' subsequent prolif stable program that limits the cells' proliferativi' potential and reduces the cells' subsequent differentiation potential in a manner comparable to eration and differentiation potentialities. that which is thought to occur in normal stem cells. The results show A major focus of our experimental studies on carcinogenesis that arrest at both the predifferentiation state and at the nonterminal has therefore been directed at attempts to establish the biolog differentiation state is a completely reversible phenomenon that does not ical and molecular mechanisms that control cellular differentia limit the cells1 subsequent growth or differentiation potential. In fact, the tion in normal, preneoplastic, and cancerous cells. One diffi results show that, when nonterminally differentiated 3T3 T adipocytes culty with such an approach is to identify a model cell system are induced to dedifferentiate, they can subsequently redifferentiate into with which to study mechanisms for the regulation of cellular macrophages. We therefore suggest that preneoplasia as expressed in differentiation and its integral relationship to the control of 3T3 T mesenchymal stem cells is associated with the expression of cellular proliferation. In this regard, many cell systems have defects in the ability to integrally control cellular differentiation and proliferation. As a result, the data suggest that such cells express an been used in the past, but none has proven to be ideal. The increased proclivity to undergo metaplastic change and complete neo reason for this is that the control of growth and differentiation plastic transformation. in many model systems is regulated by highly variable or poorly defined regulatory mechanisms. For example, in some differ entiation systems specific physiological polypeptides are re INTRODUCTION quired to induce differentiation (7, 10, 20, 23-30), whereas in others they are not (8, 11, 12, 21, 22, 31-43). In some cells Carcinogenesis is a multistep process that has been reported DNA synthesis is required before expression of the differen to develop in association with the expression of defects in the tiated phenotype (11, 22, 27, 33), whereas in other cells it is control of both cellular proliferation and differentiation (1-8). not (26, 29, 31, 38-40, 42). Furthermore, in some cell types Recent studies furthermore suggest that the expression of de part of the differentiation program is reversible (23, 25, 26, 29, fects in the control of differentiation may occur in the early 32, 33, 35, 40), whereas in others it appears to be irreversible stages of carcinogenesis. For example, it has recently been (8,31,36,42,43). shown that UV irradiation, at dosages that initiate carcinogen By contrast, normal stem cells and/or progenitor cells appear esis, induces stable and heritable defects in stem cell differen to possess stringent regulatory mechanisms that integrate the tiation (7), and it has been demonstrated that an initiating control of cellular proliferation and differentiation. This con dosage of carcinogen can induce specific defects in the ability clusion is primarily based on in vitro studies using cells such as of mouse epidermal cells to terminally differentiate (8). The normal diploid human epidermal cells and hemopoietic stem fact that many metaplastic and dysplastic disease states that cells (1, 43-46). The expression of such stringent mechanisms are associated with aberrant differentiation represent preneo to integrally regulate cellular differentiation and proliferation plastic lesions also supports this conclusion. In this regard, correlates very well with the fact that normal cells, especially metaplasia is the process in which a normal stem cell changes those derived from humans and hamsters, show an extremely its pathway of differentiation so that one adult cell type is low frequency of spontaneous or carcinogen-induced neoplastic replaced by a different adult cell type, and dysplasia is the transformation (4, 5, 19, 45, 46). Received 11/19/85; revised 7/7/86; accepted 7/9/86. The goal of our current studies was to determine whether or The costs of publication of this article were defrayed in part by the payment not preneoplastic BALB/c 3T3 T mesenchymal stem cells can of page charges. This article must therefore be hereby marked advertisement in be demonstrated to possess defects in their regulatory mecha accordance with 18 U.S.C. Section 1734 solely to indicate this fact. 1Supported by NIH Grant CA 28240andby the Mayo Foundation to R. E. S. nisms that integrally control cellular differentiation and prolif R. L. S. was partially funded by National Cancer Institute Training Grant CA eration. That is, in these studies we specifically evaluated 09441. 2To whom requests for reprints should be addressed, at 51 IB Guggenheim whether the induction of differentiation activates a program Building, Mayo Clinic, Rochester, MN 55905. that limits cell proliferation and also limits the differentiation 5312 Downloaded from cancerres.aacrjournals.org on September 28, 2021. © 1986 American Association for Cancer Research. DIFFERENTIATION DEFECTS, METAPLASIA AND NEOPLASIA ensure that cultures were free of Mycoplasma contamination, the cells were periodically assayed by the method of Chen (51). New stock cultures were thawed from liquid nitrogen every 2 to 3 mo. Preparation of Plasma and Plasma Fractions That Induce Adipocyte Differentiation. The preparation of human plasma and plasma fractions that were used to induce differentiation in these cells has been described in detail elsewhere (26, 29, 30). Briefly, citrate-anticoagulated platelet- poor human plasma was derived from venous blood of normal donors. TD This fluid was used in its native state following further processing. Fractionation of human plasma was carried out according to a modifi cation of the technique described by Mann (52). More specifically, liai Õ.was added to citrate-anticoagulated human plasma to a final concentration of 0.1 M, and this solution was then adjusted to pH 8.6. It was stirred for 30 min and then sedimented by centrifugation at 3600 x g for 25 min. The supernatant was removed, and the barium citrate sediment, designated the cake, was then partially solubilized by the addition of 0.9% NaCl solution: 0.02 M sodium citrate to bring the Fig. 1. Illustration of the stages of adipocyte differentiation of 3T3 T mesen- volume to one-third of the original volume of plasma that was present chymal stem cells that are regulated during the G, phase of the cell cycle. Each when the BaCI2 was added. This suspension was stirred for 45 min and step is a prerequisite for the next step to occur, and once a cell has achieved the then subjected to centrifugation at 3600 x g for 25 min. The supernatant properties of a specific state, it is competent to respond to the signal(s) that induces progression to the next state. First, cells growth arrest at a specific state was saved and was designated CEPH (26, 29, 30). This plasma fraction in the G, phase of the cell cycle, designated GD(Arrow 1). Such cells
Recommended publications
  • Ascl1a/Dkk/Β-Catenin Signaling Pathway Is Necessary and Glycogen Synthase Kinase-3Β Inhibition Is Sufficient for Zebrafish Retina Regeneration
    Ascl1a/Dkk/β-catenin signaling pathway is necessary and glycogen synthase kinase-3β inhibition is sufficient for zebrafish retina regeneration Rajesh Ramachandran, Xiao-Feng Zhao, and Daniel Goldman1 Molecular and Behavioral Neuroscience Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109 Edited by David R. Hyde, University of Notre Dame, Notre Dame, IN, and accepted by the Editorial Board August 19, 2011 (received for review May 5, 2011) Key to successful retina regeneration in zebrafish are Müller glia necessary for proliferation of dedifferentiated MG in the injured (MG) that respond to retinal injury by dedifferentiating into a cy- retina and that glycogen synthase kinase-3β (GSK-3β) inhibition cling population of retinal progenitors. Although recent studies was sufficient to stimulate MG dedifferentiation into a pop- have identified several genes involved in retina regeneration, ulation of cycling multipotent progenitors in the uninjured ret- the signaling mechanisms underlying injury-dependent MG prolif- ina. Interestingly, Ascl1a knockdown limited the production of eration have remained elusive. Here we report that canonical Wnt neurons by progenitors in the GSK-3β inhibitor-treated retina. signaling controls the proliferation of MG-derived retinal progen- itors. We found that injury-dependent induction of Ascl1a sup- Results pressed expression of the Wnt signaling inhibitor, Dkk, and Ascl1a-Dependent Suppression of dkk Gene Expression in Injured induced expression of the Wnt ligand, Wnt4a. Genetic and phar- Retina. Wnt signaling is a conserved pathway that affects many macological inhibition of Wnt signaling suppressed injury-depen- fundamental developmental processes (18). Deregulated Wnt dent proliferation of MG-derived progenitors.
    [Show full text]
  • Mir-451A Suppresses Cell Proliferation, Metastasis and EMT Via Targeting YWHAZ in Hepatocellular Carcinoma
    European Review for Medical and Pharmacological Sciences 2019; 23: 5158-5167 MiR-451a suppresses cell proliferation, metastasis and EMT via targeting YWHAZ in hepatocellular carcinoma G.-Y. WEI1, M. HU2, L. ZHAO1, W.-S. GUO1 1Department of General Surgery, Henan Traditional Chinese Medicine Hospital, Zhengzhou, China 2Department of Infection Management, Henan Traditional Chinese Medicine Hospital, Zhengzhou, China Abstract. – OBJECTIVE: MicroRNAs (miR- lines. Moreover, miR-451a inhibited the prolif- NAs) have been identified to participate in eration, invasion and migration of HCC cells via the progression of hepatocellular carcinoma targeting YWHAZ. Our findings indicated that (HCC). However, the function of miR-451a in miR-451a could serve as a novel target for HCC HCC remains unknown. The aim of this study diagnosis and biological therapy. was to determine the function of miR-451a by construction of several experiments in HCC tis- Key Words: sues and cells. MiR-451a, Hepatocellular carcinoma (HCC), Prolifer- PATIENTS AND METHODS: The expression ation, Metastasis, YWHAZ. level of miR-451a in 69 paired of HCC and ad- jacent normal tissue samples was detected us- ing quantitative Real-time polymerase chain re- Introduction action (qRT-PCR). MiR-451a expression in HCC derived cell lines was detected as well. By trans- fecting with miR-451a mimics or inhibitor, the Hepatocellular carcinoma (HCC) accounts expression level of miR-451a in HepG2 or Huh-7 for 85-90% of primary liver cancer. HCC is the cells was up- or down-regulated. MTT (3-(4,5-di- fifth most common morbidity and third most methylthiazol-2-yl)-2,5-diphenyl tetrazolium bro- common mortality cancer worldwide1.
    [Show full text]
  • Dedifferentiation-Associated Changes in Morphology and Gene Expression in Primary Human Articular Chondrocytes in Cell Culture M
    Osteoarthritis and Cartilage (2002) 10, 62–70 © 2002 OsteoArthritis Research Society International 1063–4584/02/010062+09 $35.00/0 doi:10.1053/joca.2001.0482, available online at http://www.idealibrary.com on Dedifferentiation-associated changes in morphology and gene expression in primary human articular chondrocytes in cell culture M. Schnabel*, S. Marlovits†, G. Eckhoff*, I. Fichtel*, L. Gotzen*, V. Ve´csei† and J. Schlegel‡ *Department of Traumatology, Philipps-University of Marburg, Germany †Department of Traumatology, University of Vienna, Austria; Ludwig Boltzmann Institute of Biomechanics and Cell Biology, Vienna, Austria ‡Institute of Pathology, Munich Technical University, Germany Summary Objective: The aim of the present study was the investigation of differential gene expression in primary human articular chondrocytes (HACs) and in cultivated cells derived from HACs. Design: Primary human articular chondrocytes (HACs) isolated from non-arthritic human articular cartilage and monolayer cultures of HACs were investigated by immunohistochemistry, Northern analysis, RT-PCR and cDNA arrays. Results: By immunohistochemistry we detected expression of collagen II, protein S-100, chondroitin-4-sulphate and vimentin in freshly isolated HACs. Cultivated HACs, however, showed only collagen I and vimentin expression. These data were corroborated by the results of Northern analysis using specifc cDNA probes for collagens I, II and III and chondromodulin, respectively, demonstrating collagen II and chondromodulin expression in primary HACs but not in cultivated cells. Hybridization of mRNA from primary HACs and cultivated cells to cDNA arrays revealed additional transcriptional changes associated with dedifferentiation during propagation of chondrocytes in vitro.We found a more complex hybridization pattern for primary HACs than for cultivated cells.
    [Show full text]
  • Mouse Digit Tip Regeneration Is Mediated by Fate-Restricted Progenitor Cells
    Mouse digit tip regeneration is mediated by fate-restricted progenitor cells Jessica A. Lehoczkya, Benoît Robertb, and Clifford J. Tabina,1 aDepartment of Genetics, Harvard Medical School, Boston, MA 02115; and bInstitut Pasteur, Génétique Moléculaire de la Morphogenèse, Centre National de la Recherche Scientifique, Unité de Recherche Associée 2578, F-75015 Paris, France Contributed by Clifford J. Tabin, November 1, 2011 (sent for review September 19, 2011) Regeneration of appendages is frequent among invertebrates as tation of both the axolotl limb and the zebrafish fin strongly well as some vertebrates. However, in mammals this has been suggest that transdifferentiation does not significantly contribute largely relegated to digit tip regeneration, as found in mice and to the regenerates, and that instead the blastemas are made up of humans. The regenerated structures are formed from a mound of lineage-restricted cell populations (9–11). undifferentiated cells called a blastema, found just below the site Digit tip regeneration has been reported in mammals including of amputation. The blastema ultimately gives rise to all of the mice and juvenile humans (12, 13). Amputations of the terminal tissues in the regenerate, excluding the epidermis, and has classi- phalanx through levels associated with the nail organ are capable cally been thought of as a homogenous pool of pluripotent stem of regeneration, whereas more proximal amputations are not. cells derived by dedifferentiation of stump tissue, although this Intriguingly, mesenchymal nail bed cells in neonatal mice and has never been directly tested in the context of mammalian digit tip humans express the transcription factor Msx1 (14, 15), which is regeneration.
    [Show full text]
  • WNT Signaling in Lung Repair and Regeneration Ahmed A
    Molecules and Cells Minireview WNT Signaling in Lung Repair and Regeneration Ahmed A. Raslan1,2 and Jeong Kyo Yoon1,2,* 1Soonchunhyang Institute of Medi-bio Science and 2Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Korea *Correspondence: [email protected] https://doi.org/10.14348/molcells.2020.0059 www.molcells.org The lung has a vital function in gas exchange between the functions, the cellular composition and three-dimensional blood and the external atmosphere. It also has a critical structure of the lung must be maintained throughout an or- role in the immune defense against external pathogens ganism’s lifetime. Under normal conditions, the lung shows a and environmental factors. While the lung is classified as a low rate of cellular turnover relative to other organs, such as relatively quiescent organ with little homeostatic turnover, the skin and intestine, which exhibit rapid kinetics of cellular it shows robust regenerative capacity in response to injury, replacement characteristics (Bowden et al., 1968; Kauffman, mediated by the resident stem/progenitor cells. During 1980; Wansleeben et al., 2013). However, after injury or regeneration, regionally distinct epithelial cell populations with damage caused by different agents, including infection, toxic specific functions are generated from several different types compounds, and irradiation, the lung demonstrates a re- of stem/progenitor cells localized within four histologically markable ability to regenerate the damaged tissue (Hogan et distinguished regions: trachea, bronchi, bronchioles, and al., 2014; Lee and Rawlins, 2018; Wansleeben et al., 2013). alveoli. WNT signaling is one of the key signaling pathways If this regeneration process is not completed successfully, it involved in regulating many types of stem/progenitor cells leads to a disruption in proper lung function accompanied by in various organs.
    [Show full text]
  • Newly Identified Aspects of Tumor Suppression by RB
    Disease Models & Mechanisms 4, 581-585 (2011) doi:10.1242/dmm.008060 AT A GLANCE Newly identified aspects of tumor suppression by RB Patrick Viatour1,2,3 and Julien Sage1,2 The retinoblastoma (RB) tumor suppressor belongs to a interactions with E2F transcription factors (Chinnam and Goodrich, 2011; Knudsen and Knudsen, 2008). In this article and cellular pathway that plays a crucial role in restricting the the accompanying poster, we review recent evidence indicating that G1-S transition of the cell cycle in response to a large RB acts as a molecular adaptor at the crossroads of multiple number of extracellular and intracellular cues. Research pathways, depending on the cellular context. We also discuss the in the last decade has highlighted the complexity of idea that intact RB function might in some cases promote the early regulatory networks that ensure proper cell cycle steps of tumorigenesis, a provocative possibility for the first- progression, and has also identified multiple cellular identified tumor suppressor. functions beyond cell cycle regulation for RB and its two The RB pathway in cancer family members, p107 and p130. Here we review some Mutations targeting the RB pathway are almost universal in cancer, of the recent evidence pointing to a role of RB as a but different components of this pathway are selectively affected molecular adaptor at the crossroads of multiple in distinct cancer types (see ‘RB mutations in human cancers’ pathways, ensuring cellular homeostasis in different section of the poster). Events that affect upstream members of the contexts. In particular, we discuss the pro- and anti- pathway (e.g.
    [Show full text]
  • Akt Is Involved in the Inhibition of Cell Proliferation by EGF
    EXPERIMENTAL and MOLECULAR MEDICINE, Vol. 39, No. 4, 491-498, August 2007 Akt is involved in the inhibition of cell proliferation by EGF Soung Hoo Jeon1, Woo-Jeong Jeong1, proliferation and embryonic axis formation (Zeng et Jae-Young Cho1, Kee-Ho Lee2 al., 1997). Axin is a multi-domain scaffold protein and Kang-Yell Choi1,3 that associates directly with β-catenin, GSK3β, and phosphatase PP2A (Hsu et al., 1999). Axin is 1 implicated in down-regulation of Wnt/β-catenin Department of Biotechnology signaling (Ikeda et al., 1998; Itoh et al., 1998; Yonsei University Sakanaka et al., 1998; Kikuchi et al., 2006). There Seoul 120-752, Korea 2 are two vertebrate Axins (Axin 1 and Axin 2). Axin1 Laboratory of Molecular Oncology is constitutively expressed, but Axin 2 is induced Korea Institute of Radiological and Medical Sciences by active Wnt signaling and acts therefore in a Seoul 139-706, Korea negative feedback loop (Yan et al., 2001; Jho et 3 Corresponding author: Tel, 82-2-2123-2887; al., 2002; Lustig et al., 2002). Overexpressed Axin Fax, 82-2-362-7265; E-mail, [email protected] destabilizes β-catenin (Behrens et al., 1998; Hart et al., 1998; Ikeda et al.,1998; Kishida et al., 1998; Accepted 28 May 2007 Nakamura et al., 1998; Sakanaka et al., 1998; Yamamoto et al., 1998). Loss of Axin results in nu- Abbreviations: APC, adenomatos polyposis coli; BrdU, bromode- clear accumulation of β-catenin followed by forma- oxyuridine; DAPI, 4'6-diamidino-2-phenylindole; PI3K, phosphatidyl tion of the β-catenin-TCF transcriptional complex inositol 3-kinase involving transcriptional activation of its target genes (Sakanaka et al., 1998).
    [Show full text]
  • Dedifferentiation, Transdifferentiation, and Reprogramming: Future Directions in Regenerative Medicine
    82 Dedifferentiation, Transdifferentiation, and Reprogramming: Future Directions in Regenerative Medicine Cristina Eguizabal, PhD1 Nuria Montserrat, PhD1 Anna Veiga, PhD1,2 Juan Carlos Izpisua Belmonte, PhD1,3 1 Center for Regenerative Medicine in Barcelona Address for correspondence and reprint requests Juan Carlos Izpisua 2 Reproductive Medicine Service, Institut Universitari Dexeus, Belmonte, PhD, Gene Expression Laboratory, The Salk Institute for Barcelona, Spain Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 93027 3 Gene Expression Laboratory, The Salk Institute for Biological Studies, (e-mail: [email protected]). La Jolla, California Semin Reprod Med 2013;31:82–94 Abstract The main goal of regenerative medicine is to replace damaged tissue. To do this it is Keywords necessary to understand in detail the whole regeneration process including differenti- ► regenerative ated cells that can be converted into progenitor cells (dedifferentiation), cells that can medicine switch into another cell type (transdifferentiation), and somatic cells that can be ► stem cells induced to become pluripotent cells (reprogramming). By studying the regenerative ► dedifferentiation processes in both nonmammal and mammal models, natural or artificial processes ► transdifferentiation could underscore the molecular and cellular mechanisms behind these phenomena and ► reprogramming be used to create future regenerative strategies for humans. To understand any regenerative system, it is crucial to find the potency and differentiate and how they can revert to pluri- cellular origins of renewed tissues. Using techniques like potency (reprogramming) or switch lineages (dedifferentia- genetic lineage tracing and single-cell transplantation helps tion and transdifferentiation). to identify the route of regenerative sources. These tools were We synthesize the studies of different model systems to developed first in nonmammal models (flies, amphibians, and highlight recent insights that are integrating the field.
    [Show full text]
  • The Retinoblastoma Tumor Suppressor and Stem Cell Biology
    Downloaded from genesdev.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW The retinoblastoma tumor suppressor and stem cell biology Julien Sage Department of Pediatrics, Department of Genetics, Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford Cancer Institute, Stanford, California 94305, USA Stem cells play a critical role during embryonic develop- control of small cell cycle inhibitors of the INK4 and ment and in the maintenance of homeostasis in adult CIP/KIP families, to which p16Ink4a and p21Cip1,respec- individuals. A better understanding of stem cell biology, tively, belong. The module comprising INK4–CIP/KIP including embryonic and adult stem cells, will allow the cell cycle inhibitors; Cyclin/Cdk complexes; RB and its scientific community to better comprehend a number of two family members, p107 and p130; and E2F transcrip- pathologies and possibly design novel approaches to treat tion factors constitutes the RB pathway in cells. A patients with a variety of diseases. The retinoblastoma second critical component of RB’s control of the G1/S tumor suppressor RB controls the proliferation, differenti- progression is nontranscriptional and connects RB to ation, and survival of cells, and accumulating evidence p27Kip1 stabilization via Cdh1/APC and Skp2. RB has points to a central role for RB activity in the biology of been shown to control many other cellular processes stem and progenitor cells. In some contexts, loss of RB in addition to cell cycle progression in G1, including function in stem or progenitor cells is a key event in the cellular differentiation, by functionally interacting with initiation of cancer and determines the subtype of cancer transcription factors important for the development of arising from these pluripotent cells by altering their fate.
    [Show full text]
  • Lncrna SNHG14 Promotes the Progression of Cervical Cancer By
    Pathology - Research and Practice 215 (2019) 668–675 Contents lists available at ScienceDirect Pathology - Research and Practice journal homepage: www.elsevier.com/locate/prp LncRNA SNHG14 promotes the progression of cervical cancer by regulating miR-206/YWHAZ T ⁎ Nannan Jia, , Yuhuan Wanga, Guangli Baob, Juanli Yanb, Sha Jic a Shihezi University, Shihezi, Xinjiang 832000, China b The First Affiliated Hospital of the Medical College, Shihezi University, Shihezi, Xinjiang 832000, China c Xinjiang Municipal People’s Hospital, Urumqi, Xinjiang 830001, China ARTICLE INFO ABSTRACT Keywords: Accumulating evidence suggests that lncRNAs play key roles in many cancers. It has been reported that long SNHG14 non‐coding RNA SNHG14 promotes cell proliferation and metastasis in multiple cancers. However, the role and miR-206 underlying molecular mechanism of SNHG14 in cervical cancer (CC) remain largely unclear. In this study, we YWHAZ discovered that the relative expression of SNHG14 was significantly upregulated in CC tissues and cells, and CC associated with the overall survival of CC patients. Moreover, knockdown of SNHG14 significantly inhibited cell Progression proliferation, migration and invasion, and promoted cell apoptosis in CC. Molecular mechanism explorations revealed that SNHG14 acted as a sponge of miR-206 and that YWHAZ was a downstream target gene of miR-206 in CC. Spearman’s correlation analysis uncovered a significantly negative correlation between SNHG14 (or YWHAZ) and miR-206 expression, while a significantly positive correlation between SNHG14 and YWHAZ ex- pression in CC tissues. We also found that the effect of SNHG14 knockdown on the CC progression could be partly rescued by overexpression of YWHAZ at the same time.
    [Show full text]
  • Overexpression of YWHAZ Relates to Tumor Cell Proliferation and Malignant Outcome of Gastric Carcinoma
    FULL PAPER British Journal of Cancer (2013) 108, 1324–1331 | doi: 10.1038/bjc.2013.65 Keywords: YWHAZ (14-3-3z); gastric carcinoma; malignant outcome; prognostic factor Overexpression of YWHAZ relates to tumor cell proliferation and malignant outcome of gastric carcinoma Y Nishimura1,3, S Komatsu1,3, D Ichikawa1, H Nagata1, S Hirajima1, H Takeshita1, T Kawaguchi1, T Arita1, H Konishi1, K Kashimoto1, A Shiozaki1, H Fujiwara1, K Okamoto1, H Tsuda2 and E Otsuji1 1Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachihirokoji, Kamigyo-ku, Kyoto 602-8566, Japan and 2Department of Pathology, National Cancer Center Hospital, Tokyo, Japan Background: Several studies have demonstrated that YWHAZ (14-3-3z), included in the 14-3-3 family of proteins, has been implicated in the initiation and progression of cancers. We tested whether YWHAZ acted as a cancer-promoting gene through its activation/overexpression in gastric cancer (GC). Methods: We analysed 7 GC cell lines and 141 primary tumours, which were curatively resected in our hospital between 2001 and 2003. Results: Overexpression of the YWHAZ protein was frequently detected in GC cell lines (six out of seven lines, 85.7%) and primary tumour samples of GC (72 out of 141 cases, 51%), and significantly correlated with larger tumour size, venous and lymphatic invasion, deeper tumour depth, and higher pathological stage and recurrence rate. Patients with YWHAZ-overexpressing tumours had worse overall survival rates than those with non-expressing tumours in both intensity and proportion expression-dependent manner. YWHAZ positivity was independently associated with a worse outcome in multivariate analysis (P ¼ 0.0491, hazard ratio 2.3 (1.003–5.304)).
    [Show full text]
  • Retinoblastoma Protein (RB) Interacts with E2F3 to Control Terminal Differentiation of Sertoli Cells E
    Retinoblastoma protein (RB) interacts with E2F3 to control terminal differentiation of Sertoli cells E. Rotgers, A. Rivero-Müller, M. Nurmio, M. Parvinen, Florian Jean Louis Guillou, I. Huhtaniemi, N. Kotaja, S. Bourguiba-Hachemi, J. Toppari To cite this version: E. Rotgers, A. Rivero-Müller, M. Nurmio, M. Parvinen, Florian Jean Louis Guillou, et al.. Retinoblas- toma protein (RB) interacts with E2F3 to control terminal differentiation of Sertoli cells. Cell Death and Disease, Nature Publishing Group, 2014, 5, pp.1-11. 10.1038/cddis.2014.232. hal-01129839 HAL Id: hal-01129839 https://hal.archives-ouvertes.fr/hal-01129839 Submitted on 27 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Citation: Cell Death and Disease (2014) 5, e1274; doi:10.1038/cddis.2014.232 OPEN & 2014 Macmillan Publishers Limited All rights reserved 2041-4889/14 www.nature.com/cddis Retinoblastoma protein (RB) interacts with E2F3 to control terminal differentiation of Sertoli cells E Rotgers1,2, A Rivero-Mu¨ller1, M Nurmio1,2, M Parvinen1, F Guillou3, I Huhtaniemi1,4, N Kotaja1, S Bourguiba-Hachemi1,5,6 and J Toppari*,1,2,6 The retinoblastoma protein (RB) is essential for normal cell cycle control.
    [Show full text]