RESEARCH ARTICLE Genome-Guided Analysis of Physiological Capacities of Tepidanaerobacter acetatoxydans Provides Insights into Environmental Adaptations and Syntrophic Acetate Oxidation Bettina Müller1☯*, Shahid Manzoor2,3☯, Adnan Niazi2, Erik Bongcam-Rudloff2, Anna Schnürer1 1 Department of Microbiology, Swedish University of Agricultural Sciences, BioCenter, Uppsala, Sweden, 2 Department of Animal Breeding and Genetics Science, Swedish University of Agricultural Science, SLU- Global Bioinformatics Centre, Uppsala, Sweden, 3 University of the Punjab, Lahore, Pakistan ☯ These authors contributed equally to this work. *
[email protected] OPEN ACCESS Citation: Müller B, Manzoor S, Niazi A, Bongcam- Rudloff E, Schnürer A (2015) Genome-Guided Abstract Analysis of Physiological Capacities of Tepidanaerobacter acetatoxydans Provides Insights This paper describes the genome-based analysis of Tepidanaerobacter acetatoxydans into Environmental Adaptations and Syntrophic strain Re1, a syntrophic acetate-oxidising bacterium (SAOB). Principal issues such as envi- Acetate Oxidation. PLoS ONE 10(3): e0121237. doi:10.1371/journal.pone.0121237 ronmental adaptations, metabolic capacities, and energy conserving systems have been in- vestigated and the potential consequences for syntrophic acetate oxidation discussed. Academic Editor: John R Battista, Louisiana State University and A & M College, UNITED STATES Briefly, in pure culture, T. acetatoxydans grows with different organic compounds and pro- duces acetate as the main product. In a syntrophic consortium with a hydrogenotrophic Received: September 18, 2014 methanogen, it can also reverse its metabolism and instead convert acetate to formate/H2 Accepted: January 30, 2015 and CO2. It can only proceed if the product formed is continuously removed. This process Published: March 26, 2015 generates a very small amount of energy that is scarcely enough for growth, which makes Copyright: © 2015 Müller et al.