Cluster Algebras: an Introduction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
COMBINATORIAL Bn-ANALOGUES of SCHUBERT POLYNOMIALS 0
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 348, Number 9, September 1996 COMBINATORIAL Bn-ANALOGUES OF SCHUBERT POLYNOMIALS SERGEY FOMIN AND ANATOL N. KIRILLOV Abstract. Combinatorial Bn-analogues of Schubert polynomials and corre- sponding symmetric functions are constructed and studied. The development is based on an exponential solution of the type B Yang-Baxter equation that involves the nilCoxeter algebra of the hyperoctahedral group. 0. Introduction This paper is devoted to the problem of constructing type B analogues of the Schubert polynomials of Lascoux and Sch¨utzenberger (see, e.g., [L2], [M] and the literature therein). We begin with reviewing the basic properties of the type A polynomials, stating them in a form that would allow subsequent generalizations to other types. Let W = Wn be the Coxeter group of type An with generators s1, ... ,sn (that is, the symmetric group Sn+1). Let x1, x2, ... be formal variables. Then W naturally acts on the polynomial ring C[x1,...,xn+1] by permuting the variables. Let IW denote the ideal generated by homogeneous non-constant W -symmetric polynomials. By a classical result [Bo], the cohomology ring H(F ) of the flag variety of type A can be canonically identified with the quotient C[x1,...,xn+1]/IW .This ring is graded by the degree and has a distinguished linear basis of homogeneous cosets Xw modulo IW , labelled by the elements w of the group. Let us state for the record that, for an element w W of length l(w), ∈ (0) Xw is a homogeneous polynomial of degree l(w); X1=1; the latter condition signifies proper normalization. -
CURRICULUM VITAE David Gabai EDUCATION Ph.D. Mathematics
CURRICULUM VITAE David Gabai EDUCATION Ph.D. Mathematics, Princeton University, Princeton, NJ June 1980 M.A. Mathematics, Princeton University, Princeton, NJ June 1977 B.S. Mathematics, M.I.T., Cambridge, MA June 1976 Ph.D. Advisor William P. Thurston POSITIONS 1980-1981 NSF Postdoctoral Fellow, Harvard University 1981-1983 Benjamin Pierce Assistant Professor, Harvard University 1983-1986 Assistant Professor, University of Pennsylvania 1986-1988 Associate Professor, California Institute of Technology 1988-2001 Professor of Mathematics, California Institute of Technology 2001- Professor of Mathematics, Princeton University 2012-2019 Chair, Department of Mathematics, Princeton University 2009- Hughes-Rogers Professor of Mathematics, Princeton University VISITING POSITIONS 1982-1983 Member, Institute for Advanced Study, Princeton, NJ 1984-1985 Postdoctoral Fellow, Mathematical Sciences Research Institute, Berkeley, CA 1985-1986 Member, IHES, France Fall 1989 Member, Institute for Advanced Study, Princeton, NJ Spring 1993 Visiting Fellow, Mathematics Institute University of Warwick, Warwick England June 1994 Professor Invité, Université Paul Sabatier, Toulouse France 1996-1997 Research Professor, MSRI, Berkeley, CA August 1998 Member, Morningside Research Center, Beijing China Spring 2004 Visitor, Institute for Advanced Study, Princeton, NJ Spring 2007 Member, Institute for Advanced Study, Princeton, NJ 2015-2016 Member, Institute for Advanced Study, Princeton, NJ Fall 2019 Visitor, Mathematical Institute, University of Oxford Spring 2020 -
An FPT Algorithm for the Embeddability of Graphs Into Two-Dimensional Simplicial Complexes∗
An FPT Algorithm for the Embeddability of Graphs into Two-Dimensional Simplicial Complexes∗ Éric Colin de Verdière† Thomas Magnard‡ Abstract We consider the embeddability problem of a graph G into a two-dimensional simplicial com- plex C: Given G and C, decide whether G admits a topological embedding into C. The problem is NP-hard, even in the restricted case where C is homeomorphic to a surface. It is known that the problem admits an algorithm with running time f(c)nO(c), where n is the size of the graph G and c is the size of the two-dimensional complex C. In other words, that algorithm is polynomial when C is fixed, but the degree of the polynomial depends on C. We prove that the problem is fixed-parameter tractable in the size of the two-dimensional complex, by providing a deterministic f(c)n3-time algorithm. We also provide a randomized algorithm with O(1) expected running time 2c nO(1). Our approach is to reduce to the case where G has bounded branchwidth via an irrelevant vertex method, and to apply dynamic programming. We do not rely on any component of the existing linear-time algorithms for embedding graphs on a fixed surface; the only elaborated tool that we use is an algorithm to compute grid minors. 1 Introduction An embedding of a graph G into a host topological space X is a crossing-free topological drawing of G into X. The use and computation of graph embeddings is central in the communities of computational topology, topological graph theory, and graph drawing. -
The Scientific Context
Center for Quantum Geometry of Moduli Spaces Proposal for the Danish National Research Foundation The Scientific Context: The role of mathematics in our understanding of nature has been recognized for millennia. Its importance is especially poignant in modern theoretical physics as the cost of experiment escalates and the mathematical complexity of physical theories increases. Major challenge: Discover the mathematical mechanisms to define quantum field theory as a mathematical entity, to justify mathematically the recipes used by physicists, and to unify quantum theory with gravity. Classical and quantum mechanics rests on solid mathematical foundations, which were developed over the last two centuries. In contrast, quantum field theory, which plays a central role in modern theoretical physics, lacks a mathematical foundation. The mathematical difficulties involve averaging over infinite-dimensional spaces, which have defied rigorous interpretation and yet are effective in practice according to explicit recipes in physics. For example, the Standard Model of particle physics successfully predicts to a dozen decimals experimental results from high-energy colliders such as CERN or SLAC. Quantum field theory has enjoyed several important successes in the last two decades where a number of models were constructed despite the difficulties described above. In all these cases, the theory admits a large family of symmetries, and the problematic infinite-dimensional averages reduce to averages over smaller ensembles, called moduli spaces, which are in many cases finite-dimensional and permit mathematically rigorous calculations. Also, low-dimensional models unifying gravity with quantum theory have been developed successfully, and the key geometrical objects are again moduli spaces. Quantum geometry, so-named since the quantization arises from geometric methods designed to make a passage from classical geometry to quantum theory, plays the fundamental role in all these constructions. -
The Octagonal Pets by Richard Evan Schwartz
The Octagonal PETs by Richard Evan Schwartz 1 Contents 1 Introduction 11 1.1 WhatisaPET?.......................... 11 1.2 SomeExamples .......................... 12 1.3 GoalsoftheMonograph . 13 1.4 TheOctagonalPETs . 14 1.5 TheMainTheorem: Renormalization . 15 1.6 CorollariesofTheMainTheorem . 17 1.6.1 StructureoftheTiling . 17 1.6.2 StructureoftheLimitSet . 18 1.6.3 HyperbolicSymmetry . 21 1.7 PolygonalOuterBilliards. 22 1.8 TheAlternatingGridSystem . 24 1.9 ComputerAssists ......................... 26 1.10Organization ........................... 28 2 Background 29 2.1 LatticesandFundamentalDomains . 29 2.2 Hyperplanes............................ 30 2.3 ThePETCategory ........................ 31 2.4 PeriodicTilesforPETs. 32 2.5 TheLimitSet........................... 34 2.6 SomeHyperbolicGeometry . 35 2.7 ContinuedFractions . 37 2.8 SomeAnalysis........................... 39 I FriendsoftheOctagonalPETs 40 3 Multigraph PETs 41 3.1 TheAbstractConstruction. 41 3.2 TheReflectionLemma . 43 3.3 ConstructingMultigraphPETs . 44 3.4 PlanarExamples ......................... 45 3.5 ThreeDimensionalExamples . 46 3.6 HigherDimensionalGeneralizations . 47 2 4 TheAlternatingGridSystem 48 4.1 BasicDefinitions ......................... 48 4.2 CompactifyingtheGenerators . 50 4.3 ThePETStructure........................ 52 4.4 CharacterizingthePET . 54 4.5 AMoreSymmetricPicture. 55 4.5.1 CanonicalCoordinates . 55 4.5.2 TheDoubleFoliation . 56 4.5.3 TheOctagonalPETs . 57 4.6 UnboundedOrbits ........................ 57 4.7 TheComplexOctagonalPETs. 58 4.7.1 ComplexCoordinates. -
Arxiv:1812.02806V3 [Math.GT] 27 Jun 2019 Sphere Formed by the Triangles Bounds a Ball and the Vertex in the Identification Space Looks Like the Centre of a Ball
TRAVERSING THREE-MANIFOLD TRIANGULATIONS AND SPINES J. HYAM RUBINSTEIN, HENRY SEGERMAN AND STEPHAN TILLMANN Abstract. A celebrated result concerning triangulations of a given closed 3–manifold is that any two triangulations with the same number of vertices are connected by a sequence of so-called 2-3 and 3-2 moves. A similar result is known for ideal triangulations of topologically finite non-compact 3–manifolds. These results build on classical work that goes back to Alexander, Newman, Moise, and Pachner. The key special case of 1–vertex triangulations of closed 3–manifolds was independently proven by Matveev and Piergallini. The general result for closed 3–manifolds can be found in work of Benedetti and Petronio, and Amendola gives a proof for topologically finite non-compact 3–manifolds. These results (and their proofs) are phrased in the dual language of spines. The purpose of this note is threefold. We wish to popularise Amendola’s result; we give a combined proof for both closed and non-compact manifolds that emphasises the dual viewpoints of triangulations and spines; and we give a proof replacing a key general position argument due to Matveev with a more combinatorial argument inspired by the theory of subdivisions. 1. Introduction Suppose you have a finite number of triangles. If you identify edges in pairs such that no edge remains unglued, then the resulting identification space looks locally like a plane and one obtains a closed surface, a two-dimensional manifold without boundary. The classification theorem for surfaces, which has its roots in work of Camille Jordan and August Möbius in the 1860s, states that each closed surface is topologically equivalent to a sphere with some number of handles or crosscaps. -
Arxiv:Math/0405482V2 [Math.CO] 12 Sep 2016 (A) Lozenge Tiling (B) Lozenge Dual (C) Rhombus Tiling (D) Rhombus Dual
FROM DOMINOES TO HEXAGONS DYLAN P. THURSTON Abstract. There is a natural generalization of domino tilings to tilings of a polygon by hexagons, or, dually, configurations of oriented curves that meet in triples. We show exactly when two such tilings can be connected by a series of moves analogous to the domino flip move. The triple diagrams that result have connections to Legendrian knots, cluster algebras, and planar algebras. 1. Introduction The study of tilings of a planar region by lozenges, as in Figure 1(a), or more generally by rhombuses, as in Figure 1(c), has a long history in combinatorics. Interesting questions include deciding when a region can be tiled, connectivity of the space of tilings under the basic move $ , counting the number of tilings, and behavior of a random tiling. One useful tool for studying these tilings is the dual picture, as in Figures 1(b). It consists of replacing each rhombus in the tiling by a cross of two strands connecting opposite, parallel sides. If we trace a strand through the tiling it comes out on a parallel face on the opposite side of the region, independently of the tiling of the region. Lozenge tilings give patterns of strands with three families of parallel (non-intersecting strands). If we drop the restriction to three families of parallel strands, as in Figure 1(d), and take any set of strands connecting boundary points which are both generic (only two strands intersect at a time) and minimal (no strand intersects itself and no two strands intersect more than once), then there is a corresponding dual tiling by rhombuses, as in Figure 1(c). -
Annales Sciennifiques Supérieuke D L ÉCOLE Hormale
ISSN 0012-9593 ASENAH quatrième série - tome 46 fascicule 5 septembre-octobre 2013 aNNALES SCIENnIFIQUES d L ÉCOLE hORMALE SUPÉRIEUkE Alexander B. GONCHAROV & Richard KENYON Dimers and cluster integrable systems SOCIÉTÉ MATHÉMATIQUE DE FRANCE Ann. Scient. Éc. Norm. Sup. 4 e série, t. 46, 2013, p. 747 à 813 DIMERS AND CLUSTER INTEGRABLE SYSTEMS ʙʏ Aʟɴʀ B. GONCHAROV ɴ Rɪʜʀ KENYON Aʙʀ. – We show that the dimer model on a bipartite graph Γ on a torus gives rise to a quantum integrable system of special type, which we call a cluster integrable system. The phase space of the classical system contains, as an open dense subset, the moduli space LΓ of line bundles with connections on the graph Γ. The sum of Hamiltonians is essentially the partition function of the dimer model. We say that two such graphs Γ1 and Γ2 are equivalent if the Newton polygons of the correspond- ing partition functions coincide up to translation. We define elementary transformations of bipartite surface graphs, and show that two equivalent minimal bipartite graphs are related by a sequence of elementary transformations. For each elementary transformation we define a birational Poisson iso- morphism LΓ LΓ providing an equivalence of the integrable systems. We show that it is a cluster 1 → 2 Poisson transformation, as defined in [10]. We show that for any convex integral polygon N there is a non-empty finite set of minimal graphs Γ for which N is the Newton polygon of the partition function related to Γ. Gluing the varieties LΓ for graphs Γ related by elementary transformations via the corresponding cluster Poisson transformations, we get a Poisson space X N . -
Tightening Curves on Surfaces Monotonically with Applications
Tightening Curves on Surfaces Monotonically with Applications † Hsien-Chih Chang∗ Arnaud de Mesmay March 3, 2020 Abstract We prove the first polynomial bound on the number of monotonic homotopy moves required to tighten a collection of closed curves on any compact orientable surface, where the number of crossings in the curve is not allowed to increase at any time during the process. The best known upper bound before was exponential, which can be obtained by combining the algorithm of de Graaf and Schrijver [J. Comb. Theory Ser. B, 1997] together with an exponential upper bound on the number of possible surface maps. To obtain the new upper bound we apply tools from hyperbolic geometry, as well as operations in graph drawing algorithms—the cluster and pipe expansions—to the study of curves on surfaces. As corollaries, we present two efficient algorithms for curves and graphs on surfaces. First, we provide a polynomial-time algorithm to convert any given multicurve on a surface into minimal position. Such an algorithm only existed for single closed curves, and it is known that previous techniques do not generalize to the multicurve case. Second, we provide a polynomial-time algorithm to reduce any k-terminal plane graph (and more generally, surface graph) using degree-1 reductions, series-parallel reductions, and ∆Y -transformations for arbitrary integer k. Previous algorithms only existed in the planar setting when k 4, and all of them rely on extensive case-by-case analysis based on different values of k. Our algorithm≤ makes use of the connection between electrical transformations and homotopy moves, and thus solves the problem in a unified fashion. -
Coloured Quivers for Rigid Objects and Partial Triangulations: The
COLOURED QUIVERS FOR RIGID OBJECTS AND PARTIAL TRIANGULATIONS: THE UNPUNCTURED CASE ROBERT J. MARSH AND YANN PALU Abstract. We associate a coloured quiver to a rigid object in a Hom-finite 2-Calabi–Yau triangulated category and to a partial triangulation on a marked (unpunctured) Riemann surface. We show that, in the case where the category is the generalised cluster category associated to a surface, the coloured quivers coincide. We also show that compatible notions of mutation can be defined and give an explicit description in the case of a disk. A partial description is given in the general 2-Calabi–Yau case. We show further that Iyama-Yoshino reduction can be interpreted as cutting along an arc in the surface. Introduction Let (S,M) be a pair consisting of an oriented Riemann surface S with non-empty boundary and a set M of marked points on the boundary of S, with at least one marked point on each component of the boundary. We further assume that (S,M) has no component homeomorphic to a monogon, digon, or triangle. A partial triangulation R of (S,M) is a set of noncrossing simple arcs between the points in M. We define a mutation of such triangulations, involving replacing an arc α of R with a new arc depending on the surface and the rest of the partial triangulation. This allows us to associate a coloured quiver to each partial triangulation of M in a natural way. The coloured quiver is a directed graph in which each edge has an associated colour which, in general, can be any integer. -
Arxiv:Math/9912128V1 [Math.RA] 15 Dec 1999 Iigdiagrams
TOTAL POSITIVITY: TESTS AND PARAMETRIZATIONS SERGEY FOMIN AND ANDREI ZELEVINSKY Introduction A matrix is totally positive (resp. totally nonnegative) if all its minors are pos- itive (resp. nonnegative) real numbers. The first systematic study of these classes of matrices was undertaken in the 1930s by F. R. Gantmacher and M. G. Krein [20, 21, 22], who established their remarkable spectral properties (in particular, an n × n totally positive matrix x has n distinct positive eigenvalues). Earlier, I. J. Schoenberg [41] discovered the connection between total nonnegativity and the following variation-diminishing property: the number of sign changes in a vec- tor does not increase upon multiplying by x. Total positivity found numerous applications and was studied from many dif- ferent angles. An incomplete list includes: oscillations in mechanical systems (the original motivation in [22]), stochastic processes and approximation theory [25, 28], P´olya frequency sequences [28, 40], representation theory of the infinite symmetric group and the Edrei-Thoma theorem [13, 44], planar resistor networks [11], uni- modality and log-concavity [42], and theory of immanants [43]. Further references can be found in S. Karlin’s book [28] and in the surveys [2, 5, 38]. In this paper, we focus on the following two problems: (i) parametrizing all totally nonnegative matrices; (ii) testing a matrix for total positivity. Our interest in these problems stemmed from a surprising representation-theoretic connection between total positivity and canonical bases for quantum groups, dis- covered by G. Lusztig [33] (cf. also the surveys [31, 34]). Among other things, he extended the subject by defining totally positive and totally nonnegative elements for any reductive group. -
The Yang-Baxter Equation, Symmetric Functions, and Schubert Polynomials
DISCRETE MATHEMATICS ELSEVIER Discrete Mathematics 153 (1996) 123 143 The Yang-Baxter equation, symmetric functions, and Schubert polynomials Sergey Fomin a'b'*, Anatol N. Kirillov c a Department of Mathematics, Room 2-363B, Massachusetts Institute of Technolooy, Cambridge, MA 02139, USA b Theory of Aloorithms Laboratory, SPIIRAN, Russia c Steklov Mathematical Institute, St. Petersbur9, Russia Received 31 August 1993; revised 18 February 1995 Abstract We present an approach to the theory of Schubert polynomials, corresponding symmetric functions, and their generalizations that is based on exponential solutions of the Yang-Baxter equation. In the case of the solution related to the nilCoxeter algebra of the symmetric group, we recover the Schubert polynomials of Lascoux and Schiitzenberger, and provide simplified proofs of their basic properties, along with various generalizations thereof. Our techniques make use of an explicit combinatorial interpretation of these polynomials in terms of configurations of labelled pseudo-lines. Keywords: Yang-Baxter equation; Schubert polynomials; Symmetric functions 1. Introduction The Yang-Baxter operators hi(x) satisfy the following relations (cf. [1,7]): hi(x)hj(y) = hj(y)hi(x) if li -j[ >_-2; hi(x)hi+l (x + y)hi(y) = hi+l (y)hi(x + y)hi+l(X); The role the representations of the Yang-Baxter algebra play in the theory of quantum groups [9], the theory of exactly solvable models in statistical mechanics [1], low- dimensional topology [7,27,16], the theory of special functions, and other branches of mathematics (see, e.g., the survey [5]) is well known. * Corresponding author. 0012-365X/96/$15.00 (~) 1996--Elsevier Science B.V.