Verification of Geometric Model-Based Plant Phenotyping

Total Page:16

File Type:pdf, Size:1020Kb

Verification of Geometric Model-Based Plant Phenotyping sensors Article Verification of Geometric Model-Based Plant Phenotyping Methods for Studies of Xerophytic Plants Paweł Drapikowski 1,*, Ewa Kazimierczak-Grygiel 2, Dominik Korecki 1 and Justyna Wiland-Szyma ´nska 2,3 1 Institute of Control and Information Engineering, Faculty of Electrical Engineering, Poznan University of Technology, Piotrowo 3a, 60-965 Poznan, Poland; [email protected] 2 Botanical Garden, Adam Mickiewicz University, D ˛abrowskiego 165, 60-594 Poznan, Poland; [email protected] (E.K.-J.); [email protected] (J.W.-S.) 3 Department of Plant Taxonomy, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland * Correspondence: [email protected]; Tel.: +48-616652874 Academic Editor: Simon X. Yang Received: 16 February 2016; Accepted: 31 May 2016; Published: 27 June 2016 Abstract: This paper presents the results of verification of certain non-contact measurement methods of plant scanning to estimate morphological parameters such as length, width, area, volume of leaves and/or stems on the basis of computer models. The best results in reproducing the shape of scanned objects up to 50 cm in height were obtained with the structured-light DAVID Laserscanner. The optimal triangle mesh resolution for scanned surfaces was determined with the measurement error taken into account. The research suggests that measuring morphological parameters from computer models can supplement or even replace phenotyping with classic methods. Calculating precise values of area and volume makes determination of the S/V (surface/volume) ratio for cacti and other succulents possible, whereas for classic methods the result is an approximation only. In addition, the possibility of scanning and measuring plant species which differ in morphology was investigated. Keywords: plant digitalization; morphological parameters; DAVID laser scanning system 1. Introduction Plant phenotyping is the comprehensive assessment of complex plant traits including their architecture. Classical methods are used to study variability, adaptation to environmental conditions and pace of growth during the vegetation period. So far, plant phenotyping has been mainly limited to crop plants or the model plant Arabidopsis thaliana (L.) Heynh [1]. In many cases, classical biometric measurement methods are sufficient. However, there are plants whose complex spatial structure and susceptibility to damage make employing conventional measurement techniques impossible or exceedingly difficult. Therefore, there is a need for new platforms and solutions that enable phenotypic evaluation of such species. In such cases, non-contact measurement techniques need to be used: preparation of a three-dimensional (3D) computer model (digitalization) and capturing plant traits based on it [1,2]. One group of plants that has not been used as an object for 3D phenotyping is xerophytes. Representatives of this remarkable group are interesting for several reasons. These plants show various morphological, anatomical and physiological adaptations to living in dry conditions and in sustaining an intensive herbivory [3–7]. They constitute the main vegetation in some desert and semi-desert Sensors 2016, 16, 924; doi:10.3390/s16070924 www.mdpi.com/journal/sensors Sensors 2016, 16, 924 2 of 14 environments and are therefore a subject of intensive ecological study [8]. Their medicinal properties Sensors 2016, 16, 924 2 of 14 are recognized by both traditional and contemporary medicine as well as veterinary science [9–12]. Xerophytesmedicinal properties are also are desirable recognized ornamental by both plantstraditional worldwide. and contemporary The demand medicine for these as well plants as is so highveterinary that their science existence [9–12]. in the wild is threatened [13]. Therefore, many xerophytes, including the whole cactiXerophytes family and are also genera desirableAloe L.ornamental and Pachypodium plants worldwide.Lindl [14 The,15 ],demand are protected for these by plants international is so law underhigh that the their Washington existence in Convention the wild is threaten (CITES)ed as [13]. well Therefore, as by national many xerophytes, laws. Therefore, including customsthe officerswhole must cacti be family able to and recognize genera Aloe them L.properly and Pachypodium to prevent Lindl illegal [14,15], traffic. are protected The diversity by international of these plants law under the Washington Convention (CITES) as well as by national laws. Therefore, customs is, however, so great that only specialists are able to recognize them and classify them accordingly. officers must be able to recognize them properly to prevent illegal traffic. The diversity of these Comprehensive virtual guides that would enable rapid and simple identification of these plants do plants is, however, so great that only specialists are able to recognize them and classify them not exist.accordingly. Comprehensive virtual guides that would enable rapid and simple identification of Climatethese plants change do not as exist. well population growth have created an urgent need for sustainable high-yield crop production.Climate change Phenotypic as well studies population of plants growth adapted have to created difficult an environmental urgent need for conditions sustainable can be helpfulhigh-yield in finding crop new production. ways for cropPhenotypic improvement studies [of16 ].plants adapted to difficult environmental Variousconditions types can be of helpful scanners in finding make non-contactnew ways for plant crop improvement digitalization [16]. possible. Most often they work by castingVarious structured types light of scanners in various make patterns non-contact onto plant the objectdigitalization and recording possible. theMost images often they (Figure work1)[ 17]. On theby basiscasting of structured disruptions light in in the various pattern patterns caused onto by the the object object’s and surface,recording a the three-dimensional images (Figure 1) point [17]. On the basis of disruptions in the pattern caused by the object’s surface, a three-dimensional cloud is determined, which is further triangulated into the form of a triangle mesh. The triangle mesh point cloud is determined, which is further triangulated into the form of a triangle mesh. The computer model is then processed to determine morphological parameters of interest. triangle mesh computer model is then processed to determine morphological parameters of interest. Figure 1. Scanning a succulent plant in the pot with the structured light-based DAVID FigureLaserscanner 1. Scanning [17]. a succulent plant in the pot with the structured light-based DAVID Laserscanner [17]. Non-contact measurements of selected characteristics are possible using the Ubiquitous Sensor Non-contactNetwork proposed measurements by Suk et al. of [18]. selected An example characteristics of image-based are possible plant usingphenotyping the Ubiquitous on a much Sensor Networklarger proposed scale wasby presented Suk et al.by [18Kircherer]. An example et al. [19], of and image-based numerous additional plant phenotyping examples can on abe much found larger [1,2,20–23]. scale was presented by Kircherer et al. [19], and numerous additional examples can be found [1,2,20– Scanning larger objects is feasible with the use of, for instance, a Kinect scanner [24]. Recently, 23]. the photogrammetric method for creating computer models has been gaining popularity. It uses a Scanningpreviously largercaptured objects set of is images. feasible There with are the no use limits of, forto the instance, size of objects: a Kinect the scanner only restriction [24]. Recently, is the the photogrammetricability to take a method photograph. for creatingProfessional computer photographic models equipment has been is not gaining required, popularity. only a digital It uses a previouslycamera is captured necessary set [25]. of These images. scanning There methods are no limits require to relatively the size oflow-cost objects: devices the only which restriction offer is the abilityacceptable to take metrological a photograph. characteristics. Professional Extensive photographic metrological equipment and usability is not descriptions required, onlyof those a digital cameradevices is necessary for plant measurement [25]. These scanninghave been published methods [2 require6,27]. Better relatively results low-cost in scanning devices plants whichof very offer acceptablecomplex metrological shapes havecharacteristics. been achieved with Extensive hand-h metrologicaleld scanners, ande.g., usabilityArtec S [28] descriptions or HandyScan of those devicesEXASCAN for plant [29]. measurement Also, triangulation have been scanners published (typically [26 ,27more]. Better accurate), results mounted in scanning on special plants of measuring arms [30,31], can be used for this purpose, e.g., Artec S and Perceptron ScanWorks V5 very complex shapes have been achieved with hand-held scanners, e.g., Artec S [28] or HandyScan with the Romer Infinite 2.0 arm. However, their prices are far higher than those of hand-held EXASCANdevices. [ 29]. Also, triangulation scanners (typically more accurate), mounted on special measuring arms [30,31], can be used for this purpose, e.g., Artec S and Perceptron ScanWorks V5 with the Romer Infinite 2.0 arm. However, their prices are far higher than those of hand-held devices. Sensors 2016, 16, 924 3 of 14 One frequently measured parameter in plant biology is S/V (surface to volume ratio). It is easy to determine it for
Recommended publications
  • Field Release of the Leaf-Feeding Moth, Hypena Opulenta (Christoph)
    United States Department of Field release of the leaf-feeding Agriculture moth, Hypena opulenta Marketing and Regulatory (Christoph) (Lepidoptera: Programs Noctuidae), for classical Animal and Plant Health Inspection biological control of swallow- Service worts, Vincetoxicum nigrum (L.) Moench and V. rossicum (Kleopow) Barbarich (Gentianales: Apocynaceae), in the contiguous United States. Final Environmental Assessment, August 2017 Field release of the leaf-feeding moth, Hypena opulenta (Christoph) (Lepidoptera: Noctuidae), for classical biological control of swallow-worts, Vincetoxicum nigrum (L.) Moench and V. rossicum (Kleopow) Barbarich (Gentianales: Apocynaceae), in the contiguous United States. Final Environmental Assessment, August 2017 Agency Contact: Colin D. Stewart, Assistant Director Pests, Pathogens, and Biocontrol Permits Plant Protection and Quarantine Animal and Plant Health Inspection Service U.S. Department of Agriculture 4700 River Rd., Unit 133 Riverdale, MD 20737 Non-Discrimination Policy The U.S. Department of Agriculture (USDA) prohibits discrimination against its customers, employees, and applicants for employment on the bases of race, color, national origin, age, disability, sex, gender identity, religion, reprisal, and where applicable, political beliefs, marital status, familial or parental status, sexual orientation, or all or part of an individual's income is derived from any public assistance program, or protected genetic information in employment or in any program or activity conducted or funded by the Department. (Not all prohibited bases will apply to all programs and/or employment activities.) To File an Employment Complaint If you wish to file an employment complaint, you must contact your agency's EEO Counselor (PDF) within 45 days of the date of the alleged discriminatory act, event, or in the case of a personnel action.
    [Show full text]
  • Traditional Information and Antibacterial Activity of Four Bulbine Species (Wolf)
    African Journal of Biotechnology Vol. 10 (2), pp. 220-224, 10 January, 2011 Available online at http://www.academicjournals.org/AJB DOI: 10.5897/AJB10.1435 ISSN 1684–5315 © 2011 Academic Journals Full Length Research Paper Traditional information and antibacterial activity of four Bulbine species (Wolf) R. M. Coopoosamy Department of Nature Conservation, Mangosuthu University of Technology, P O Box 12363, Jacobs4026, Durban, KwaZulu-Natal, South Africa. E-mail: [email protected]. Tel: +27 82 200 3342. Fax: +27 31 907 7665. Accepted 7 December, 2010 Ethnobotanical survey of Bulbine Wolf, (Asphodelaceae) used for various treatment, such as, diarrhea, burns, rashes, blisters and insect bites, was carried out in the Eastern Cape Province of South Africa. Information on the parts used and the methods of preparation was collected through questionnaire which was administered to the herbalists, traditional healers and rural dwellers which indicated the extensive use of Bulbine species. Most uses of Bulbine species closely resemble that of Aloe . Dried leaf bases and leaf sap are the commonest parts of the plants used. Preparations were in the form of decoctions and infusions. Bulbine frutescens was the most frequently and commonly used of the species collected for the treatment of diarrhoea, burns, rashes, blisters, insect bites, cracked lips and mouth ulcers. The leaf, root and rhizome extracts of B. frutescens, Bulbine natalensis, Bulbine latifolia and Bulbine narcissifolia were screened for antibacterial activities to verify their use by traditional healers. Key words: Herbal medicine, diarrhea, medicinal plants, Bulbine species, antibacterial activity. INTRODUCTION Many traditionally used plants are currently being investi- developing countries where traditional medicine plays a gated for various medicinal ailments such as treatment to major role in health care (Farnsworth, 1994; Srivastava et cure stomach aliments, bolding, headaches and many al., 1996).
    [Show full text]
  • Genetic Diversity of Aloe Species in Kenya and the Efficacy of Aloe Secundiflora, Aloe Lateritia and Aloe Turkanesis on Fusarium
    (icnetic diversity of Aloe species in Kenya and the efficacy of Aloe secundiflora, Aloe lateritia and Aloe turkanesis on Fusarium oxysporum and Pythium ultimum 1 A research thesis submitted for examination in partial fulfillment for the requirements for the award of Master of Science in Microbiology 156/68748/2011 SCHOOL OF BIOLOGICAL SCIENCES COLLEGE OF BIOLOGICAL AND PHYSICAL SCIENCES UNIVERSITY OF NAIROBI December, 2015 University of N AIROBI Library DECLARATION I his thesis is my original work and has not been presented for a degree in anj other University or any other institution of higher learning. Micheni C. Mugambi Da.e...2j..i .'.l2 ..:,.2 -O lS .......... I his thesis has been submitted with our approval as Supervisors. Dr. Maina Wagacha School of Biological Sciences Universiii_tt£-Nairobi Date .J.V l.& l. Dr. Nelson Amugune School of Biological Sciences University of Nairobi Sign..!!p^.^ff.. ........ Dr. Simon T. Gichuki Kenya Agricultural and Livestock Research Organization (KALRO) Sign.....C ^dLJ ..... Date....c£-£)t5 ii DEDICATION This thesis is dedicated to my loving mum Elyjoy Muthoni Michcni and dad Isaac Micheni Nkari who have gone out of their way to support my education. I also dedicate this work to my brothers Maurice Murimi and Brian Muchiri Micheni who have been a constant source of encouragement. iii ACKNOWLEDGEMENTS I am heavily indebted to my supervisors Dr. Maina Wagacha, Dr. Nelson Amugune and Dr.Simon Gichuki for their invaluable support, training, mentorship, and advice throughout this work. Without your support, this work would not have achieved anything significant. I would also like to thank Dr.
    [Show full text]
  • Reproductive Biology of Aloe Peglerae
    THE REPRODUCTIVE BIOLOGY AND HABITAT REQUIREMENTS OF ALOE PEGLERAE, A MONTANE ENDEMIC ALOE OF THE MAGALIESBERG MOUNTAIN RANGE, SOUTH AFRICA Gina Arena 0606757V A Dissertation submitted to the Faculty of Science, University of the Witwatersrand, in fulfillment of the requirements for the degree of Master of Science Johannesburg, South Africa June 2013 DECLARATION I declare that this Dissertation is my own, unaided work. It is being submitted for the Degree of Master of Science at the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination at any other University. Gina Arena 21 day of June 2013 Supervisors Prof. C.T. Symes Prof. E.T.F. Witkowski i ABSTRACT In this study I investigated the reproductive biology and pollination ecology of Aloe peglerae, an endangered endemic succulent species of the Magaliesberg Mountain Range in South Africa. The aim was to determine the pollination system of A. peglerae, the effects of flowering plant density on plant reproduction and the suitable microhabitat conditions for this species. Aloe peglerae possesses floral traits that typically conform to the bird-pollination syndrome. Pollinator exclusion experiments showed that reproduction is enhanced by opportunistic avian nectar-feeders, mainly the Cape Rock-Thrush (Monticola rupestris) and the Dark- capped Bulbul (Pycnonotus tricolor). Insect pollinators did not contribute significantly to reproductive output. Small-mammals were observed visiting flowers at night, however, the importance of these visitors as pollinators was not quantified in this study. Interannual variation in flowering patterns dictated annual flowering plant densities in the population. The first flowering season represented a typical mass flowering event resulting in high seed production, followed by a second low flowering year of low seed production.
    [Show full text]
  • Chemistry, Biological and Pharmacological Properties of African Medicinal Plants
    International Organization for Chemical Sciences in Development IOCD Working Group on Plant Chemistry CHEMISTRY, BIOLOGICAL AND PHARMACOLOGICAL PROPERTIES OF AFRICAN MEDICINAL PLANTS Proceedings of the first International IOCD-Symposium Victoria Falls, Zimbabwe, February 25-28, 1996 Edited by K. HOSTETTMANN, F. CHEVYANGANYA, M. MAIL LARD and J.-L. WOLFENDER UNIVERSITY OF ZIMBABWE PUBLICATIONS INTERNATIONAL ORGANIZATION FOR CHEMICAL SCIENCES IN DEVELOPMENT WORKING GROUP ON PLANT CHEMISTRY CHEMISTRY, BIOLOGICAL AND PHARMACOLOGICAL PROPERTIES OF AFRICAN MEDICINAL PLANTS Proceedings of the First International IOCD-Symposium Victoria Falls, Zimbabwe, February 25-28, 1996 Edited by K. HOSTETTMANN, F. CHINYANGANYA, M. MAILLARD and J.-L. WOLFENDER Inslitut de Pharmacoynosie et Phytochimie. Universite de Umsanne. PEP. Cli-1015 Lausanne. Switzerland and Department of Pharmacy. University of Zimbabwe. P.O. BoxM.P. 167. Harare. Zim babw e UNIVERSITY OF ZIMBABWE PUBLICATIONS 1996 First published in 1996 by University of Zimbabwe Publications P.O. Box MP 203 Mount Pleasant Harare Zimbabwe Cover photos. African traditional healer and Harpagophytum procumbens (Pedaliaceae) © K. Hostettmann Printed by Mazongororo Paper Converters Pvt. Ltd., Harare Contents List of contributors xiii 1. African plants as sources of pharmacologically exciting biaryl and quaternary! alkaloids 1 G. Bringnumn 2. Strategy in the search for bioactive plant constituents 21 K. Hostettmann, J.-L. Wolfender S. Rodrigue:, and A. Marston 3. International collaboration in drug discovery and development. The United States National Cancer Institute experience 43 (i.M. Cragg. M.R. Boyd. M.A. Christini, ID Maws, K.l). Mazan and B.A. Sausville 4. Tin: search for. and discovery of. two new antitumor drugs. Navelbinc and Taxotere. modified natural products 69 !' I'diee.
    [Show full text]
  • Doctor of Philosophy (Md) School of Pharmacy
    Development, safety and efficacy evaluation of actinic damage retarding nano-pharmaceutical treatments in oculocutaneous albinism. J. M Chifamba (R931614G) B. App Chem (Hons), M Phil (Upgraded to D.Phil.), Dip QA, Dip SPC, Dip Pkg Thesis submitted in fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY (MD) Main Supervisor: Prof C. C Maponga 1 Associate Supervisor: Dr A Dube (Nano-technologist) 2 Associate Supervisor: Dr D. I Mutangadura (Specialist dermatologist) 3, 4 1School of Pharmacy, CHS, University of Zimbabwe, Zimbabwe 2School of Pharmacy, University of the Western Cape, South Africa 3Fellow of the American academy of dermatology 4Fellow of the International academy of dermatology SCHOOL OF PHARMACY COLLEGE OF HEALTH SCIENCES © Harare, September 2015 i This work is dedicated to the everlasting memory of my dearly departed father, his scholarship, mentorship and principles shall always be my beacon. Esau Jeniel Mapundu Chifamba (15/03/1934-08/06/2015) ii ACKNOWLEDGEMENTS “Art is I, science is we”, Claude Bernard 1813-1878 Any work of this size and scope inevitably draws on the expertise and direction from others. I therefore wish to proffer my utmost gratitude to the following individuals and institutions for their infallible inputs and support. My profound appreciation goes to Prof C C Maponga and Dr A. Dube for crafting, steering and nurturing my interests and research pursuits in nano-pharmaceuticals. Indeed, I have found this discipline to be most intellectually fulfilling. I wish to further acknowledge the mentorship, validation and insight into dermato-pharmacokinetics from the specialist dermatologist Dr D I Mutangadura. Many thanks go to Prof M Gundidza for the contacts, guidance and refereeing in research methodologies, scientific writing and analytical work.
    [Show full text]
  • Seed Dispersal and Seed Banks in Aloe Marlothii (Asphodelaceae) ⁎ C.T
    Available online at www.sciencedirect.com South African Journal of Botany 78 (2012) 276–280 www.elsevier.com/locate/sajb Short communication Seed dispersal and seed banks in Aloe marlothii (Asphodelaceae) ⁎ C.T. Symes School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Private Bag 3, WITS 2050, South Africa Received 5 January 2011; received in revised form 1 June 2011; accepted 20 June 2011 Abstract Aloe marlothii flowers during dry winter months (July–September) and produces large numbers of wind dispersed seeds. Fire disturbance in a population of several thousand A. marlothii plants at Suikerbosrand Nature Reserve, Gauteng, permitted a series of seed dispersal experiments to be conducted. Germination trials indicated that seedling emergence decreased with increased distance from a well defined aloe stand and burn area margin, with seeds dispersed up to 25 m. Flowering frequency and total seed production were positively correlated with plant height, with seed production estimated to range from 26,000 to 375,000 seeds/plant. Although a large number of seeds are produced by flowering plants the survival rate of seeds did not extend beyond the following flowering season. © 2011 SAAB. Published by Elsevier B.V. All rights reserved. Keywords: Mega-herbivore; Monocotyledon; Succulent; Suikerbosrand; Xanthorrhoeaceae 1. Introduction Pollination is primarily by birds but little is known about the ecology and seed dispersal of this species (Symes et al., 2009). Aloe marlothii A. Berger (Asphodelaceae) is a winter Numerous studies have investigated pollination in other aloes flowering succulent with a widespread distribution in the (Hoffman, 1988; Ratsirarson, 1995; Stokes and Yeaton, 1995; grassland and savanna biomes of South Africa (Reynolds, Pailler et al., 2002; Johnson et al., 2006; Hargreaves et al., 2008; 1969; Glen and Hardy, 2000; Van Wyk and Smith, 2005).
    [Show full text]
  • Dry Forest Trees of Madagascar
    The Red List of Dry Forest Trees of Madagascar Emily Beech, Malin Rivers, Sylvie Andriambololonera, Faranirina Lantoarisoa, Helene Ralimanana, Solofo Rakotoarisoa, Aro Vonjy Ramarosandratana, Megan Barstow, Katharine Davies, Ryan Hills, Kate Marfleet & Vololoniaina Jeannoda Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, Surrey, TW9 3BW, UK. © 2020 Botanic Gardens Conservation International ISBN-10: 978-1-905164-75-2 ISBN-13: 978-1-905164-75-2 Reproduction of any part of the publication for educational, conservation and other non-profit purposes is authorized without prior permission from the copyright holder, provided that the source is fully acknowledged. Reproduction for resale or other commercial purposes is prohibited without prior written permission from the copyright holder. Recommended citation: Beech, E., Rivers, M., Andriambololonera, S., Lantoarisoa, F., Ralimanana, H., Rakotoarisoa, S., Ramarosandratana, A.V., Barstow, M., Davies, K., Hills, BOTANIC GARDENS CONSERVATION INTERNATIONAL (BGCI) R., Marfleet, K. and Jeannoda, V. (2020). Red List of is the world’s largest plant conservation network, comprising more than Dry Forest Trees of Madagascar. BGCI. Richmond, UK. 500 botanic gardens in over 100 countries, and provides the secretariat to AUTHORS the IUCN/SSC Global Tree Specialist Group. BGCI was established in 1987 Sylvie Andriambololonera and and is a registered charity with offices in the UK, US, China and Kenya. Faranirina Lantoarisoa: Missouri Botanical Garden Madagascar Program Helene Ralimanana and Solofo Rakotoarisoa: Kew Madagascar Conservation Centre Aro Vonjy Ramarosandratana: University of Antananarivo (Plant Biology and Ecology Department) THE IUCN/SSC GLOBAL TREE SPECIALIST GROUP (GTSG) forms part of the Species Survival Commission’s network of over 7,000 Emily Beech, Megan Barstow, Katharine Davies, Ryan Hills, Kate Marfleet and Malin Rivers: BGCI volunteers working to stop the loss of plants, animals and their habitats.
    [Show full text]
  • Aloe Scientific Primer International Aloe Science Council
    The International Aloe Science Council Presents an Aloe Scientific Primer International Aloe Science Council Commonly Traded Aloe Species The plant Aloe spp. has long been utilized in a variety of ways throughout history, which has been well documented elsewhere and need not be recounted in detail here, particularly as the purpose of this document is to discuss current and commonly traded aloe species. Aloe, in its various species, can presently and in the recent past be found in use as a decorative element in homes and gardens, in the creation of pharmaceuticals, in wound care products such as burn ointment, sunburn protectant and similar applications, in cosmetics, and as a food, dietary supplements and other health and nutrition related items. Recently, various species of the plant have even been used to weave into clothing and in mattresses. Those species of Aloe commonly used in commerce today can be divided into three primary categories: those used primarily in the production of crude drugs, those used primarily for decorative purposes, and those used in health, nutritional and related products. For reference purposes, this paper will outline the primary species and their uses, but will focus on the species most widely used in commerce for health, nutritional, cosmetic and supplement products, such as aloe vera. Components of aloe vera currently used in commerce The Aloe plant, and in particular aloe vera, has three distinct raw material components that are processed and found in manufactured goods: leaf juice; inner leaf juice; and aloe latex. A great deal of confusion regarding the terminology of this botanical and its components has been identified, mostly because of a lack of clear definitions, marketing, and other factors.
    [Show full text]
  • Phoenix Active Management Area Low-Water-Use/Drought-Tolerant Plant List
    Arizona Department of Water Resources Phoenix Active Management Area Low-Water-Use/Drought-Tolerant Plant List Official Regulatory List for the Phoenix Active Management Area Fourth Management Plan Arizona Department of Water Resources 1110 West Washington St. Ste. 310 Phoenix, AZ 85007 www.azwater.gov 602-771-8585 Phoenix Active Management Area Low-Water-Use/Drought-Tolerant Plant List Acknowledgements The Phoenix AMA list was prepared in 2004 by the Arizona Department of Water Resources (ADWR) in cooperation with the Landscape Technical Advisory Committee of the Arizona Municipal Water Users Association, comprised of experts from the Desert Botanical Garden, the Arizona Department of Transporation and various municipal, nursery and landscape specialists. ADWR extends its gratitude to the following members of the Plant List Advisory Committee for their generous contribution of time and expertise: Rita Jo Anthony, Wild Seed Judy Mielke, Logan Simpson Design John Augustine, Desert Tree Farm Terry Mikel, U of A Cooperative Extension Robyn Baker, City of Scottsdale Jo Miller, City of Glendale Louisa Ballard, ASU Arboritum Ron Moody, Dixileta Gardens Mike Barry, City of Chandler Ed Mulrean, Arid Zone Trees Richard Bond, City of Tempe Kent Newland, City of Phoenix Donna Difrancesco, City of Mesa Steve Priebe, City of Phornix Joe Ewan, Arizona State University Janet Rademacher, Mountain States Nursery Judy Gausman, AZ Landscape Contractors Assn. Rick Templeton, City of Phoenix Glenn Fahringer, Earth Care Cathy Rymer, Town of Gilbert Cheryl Goar, Arizona Nurssery Assn. Jeff Sargent, City of Peoria Mary Irish, Garden writer Mark Schalliol, ADOT Matt Johnson, U of A Desert Legum Christy Ten Eyck, Ten Eyck Landscape Architects Jeff Lee, City of Mesa Gordon Wahl, ADWR Kirti Mathura, Desert Botanical Garden Karen Young, Town of Gilbert Cover Photo: Blooming Teddy bear cholla (Cylindropuntia bigelovii) at Organ Pipe Cactus National Monutment.
    [Show full text]
  • OO Vol 5 49-74 Nectarivory 116.Docx
    Ornithological Observations An electronic journal published by the Animal Demography Unit at the University of Cape Town and the BirdLife South Africa Ornithological Observations accepts papers containing faunistic information about birds. This includes descriptions of distribution, behaviour, breeding, foraging, food, movement, measurements, habitat and plumage. It will also consider for publication a variety of other interesting or relevant ornithological material: reports of projects and conferences, annotated checklists for a site or region, specialist bibliographies, and any other interesting or relevant material. Editor: Arnold van der Westhuizen NECTAR-FEEDING BY SOUTHERN AFRICAN BIRDS, WITH SPECIAL REFERENCE TO THE MOUNTAIN ALOE ALOE MARLOTHII Derek Engelbrecht, Joe Grosel and Daniel Engelbrecht Recommended citation format: Engelbrecht D, Grosel J, Engelbrecht D 2014. Nectar-feeding by southern African birds, with special reference to the Mountain Aloe Aloe marlothii. Ornithological Observations, Vol 5: 49-74 URL: http://oo.adu.org.za/content.php?id=116 Published online: 17 March 2014 - ISSN 2219-0341 - Ornithological Observations, Vol 5: 49-74 49 NECTAR-FEEDING BY SOUTHERN AFRICAN BIRDS, Opportunistic nectarivory by species not specifically adapted for this WITH SPECIAL REFERENCE TO THE MOUNTAIN diet, i.e. facultative nectarivory, is common and widespread amongst ALOE ALOE MARLOTHII birds although it wasn’t recognised as such in early literature. Perhaps the earliest evidence of facultative nectarivory in southern Derek Engelbrecht1*,
    [Show full text]
  • Evolutionary History and Leaf Succulence As
    Grace et al. BMC Evolutionary Biology (2015) 15:29 DOI 10.1186/s12862-015-0291-7 RESEARCH ARTICLE Open Access Evolutionary history and leaf succulence as explanations for medicinal use in aloes and the global popularity of Aloe vera Olwen M Grace1,2*, Sven Buerki3, Matthew RE Symonds4, Félix Forest1, Abraham E van Wyk5, Gideon F Smith6,7,8, Ronell R Klopper5,6, Charlotte S Bjorå9, Sophie Neale10, Sebsebe Demissew11, Monique SJ Simmonds1 and Nina Rønsted2 Abstract Background: Aloe vera supports a substantial global trade yet its wild origins, and explanations for its popularity over 500 related Aloe species in one of the world’s largest succulent groups, have remained uncertain. We developed an explicit phylogenetic framework to explore links between the rich traditions of medicinal use and leaf succulence in aloes. Results: The phylogenetic hypothesis clarifies the origins of Aloe vera to the Arabian Peninsula at the northernmost limits of the range for aloes. The genus Aloe originated in southern Africa ~16 million years ago and underwent two major radiations driven by different speciation processes, giving rise to the extraordinary diversity known today. Large, succulent leaves typical of medicinal aloes arose during the most recent diversification ~10 million years ago and are strongly correlated to the phylogeny and to the likelihood of a species being used for medicine. A significant, albeit weak, phylogenetic signal is evident in the medicinal uses of aloes, suggesting that the properties for which they are valued do not occur randomly across the branches of the phylogenetic tree. Conclusions: Phylogenetic investigation of plant use and leaf succulence among aloes has yielded new explanations for the extraordinary market dominance of Aloe vera.
    [Show full text]