UNIVERSITY of BRASÍLIA – Unb INSTITUTE of GEOSCIENCES – IG GRADUATE RESEARCH PROGRAM in GEOLOGY TAXONOMY, PALEOECOLOGY

Total Page:16

File Type:pdf, Size:1020Kb

UNIVERSITY of BRASÍLIA – Unb INSTITUTE of GEOSCIENCES – IG GRADUATE RESEARCH PROGRAM in GEOLOGY TAXONOMY, PALEOECOLOGY UNIVERSITY OF BRASÍLIA – UnB INSTITUTE OF GEOSCIENCES – IG GRADUATE RESEARCH PROGRAM IN GEOLOGY TAXONOMY, PALEOECOLOGY AND CHRONOBIOSTRATIGRAPHY ACROSS THE EDIACARAN-CAMBRIAN BOUNDARY: TAMENGO AND GUAICURUS FORMATIONS Doctoral thesis N° 157 Doctoral thesis by Rodrigo Rodrigues Adôrno Supervisor: Prof. Dermeval Aparecido Do Carmo Brasília, May 2019 UNIVERSITY OF BRASÍLIA – UnB INSTITUTE OF GEOSCIENCES – IG GRADUATE RESEARCH PROGRAM IN GEOLOGY Rodrigo Rodrigues Adôrno TAXONOMY, PALEOECOLOGY AND CHRONOBIOSTRATIGRAPHY ACROSS THE EDIACARAN-CAMBRIAN BOUNDARY: TAMENGO AND GUAICURUS FORMATIONS Thesis submitted to the coordination of the graduate research program in geology, University of Brasília, in partial fulfillment of the requirements for the degree of doctor on geology. Area of concentration: Biostratigraphy and Paleoecology Supervisor and Chair of Committee: Prof. Dermeval Aparecido do Carmo (IG/UnB – BR) Committee Members: Prof. Shuhai Xiao - Virginia Polytechnic Institute and State University – USA Prof. Juliana de Moraes Leme Basso - IAG-USP – BR Prof. Martino Giorgioni - IG/UnB – BR Brasília, May 2019 TAXONOMY, PALEOECOLOGY AND CHRONOBIOSTRATIGRAPHY ACROSS THE EDIACARAN-CAMBRIAN BOUNDARY: TAMENGO AND GUAICURUS FORMATIONS Thesis submitted to the coordination of the graduate research program in geology, University of Brasília, in partial fulfillment of the requirements for the degree of doctor on geology. Area of concentration: Biostratigraphy and Paleoecology Supervisor: Professor Dermeval Aparecido do Carmo Committee Members: _________________________________________ Professor Martino Giorgioni University of Brasília (UnB) _________________________________________ Professor Shuhai Xiao Virginia Polytechnic Institute and State University (USA) _________________________________________ Professor Juliana de Moraes Leme Basso University of São Paulo (USP) Brasília, May 2019 i DEDICATION I dedicate this thesis to my wife, Gabriela Adôrno, and my parents, Rui Adôrno and Cirene Adôrno, for the love and support during my PhD journey. I also dedicate this thesis to Prof. Detlef. H. G. Walde, for being an outstanding professor and an inspiration to my study. ii ACKNOWLEDGMENTS My sincere thanks to all who have contributed directly or indirectly to this work. I extend my sincere thanks to all those who eventually have not been included in the list of contributors below. My special thanks to my lovely wife Gabriela Adôrno, my parents Rui Adôrno and Cirene Adôrno, my sister Daniany and brother-in-law Carlos Silva for the closest accompaniment and support, indispensable to the good progress of the whole doctoral journey. Thanks also to the Germs family in the person of Dr. Gerard Germs, Alta Germs and Nandi Germs for the warm hospitality in Oudtshoorn in 2014 during fieldwork in South Africa and Namibia under Dr. Germs supervision. To the Geological Survey of Namibia in the name of Dr. Gabi Schneider and the geologist Ralph Muyamba who provided logistics support and access to the outcrops as well as documents needed to transport samples collected in Namibia. To Alfred Uchman, Institute of Geological Sciences, Jagiellonian University, Poland, for providing access to some rare articles. To Dr. Lucas V. Warren for contributing constructively through discussions and also for yielding samples for analyses of sections not visited by the author in South America, making possible studies of international correlation. To the IZIKO Museum in Cape Town South Africa and Museum of Earth Sciences of the Geological Survey of Brazil, for providing access to the type-material of Cloudina riemkeae and the type-material of Cloudina lucianoi in Namibia and Brazil, respectively imperative to the comparison work performed in the taxonomic study. I am also grateful to the X-ray diffraction laboratory of the Institute of Geosciences of the University of Brasília in the name of Professor Dr. Edi M. Guimarães and the Geol. MSc Gabriela Fazio, who in addition to performing mineralogical analyses, also participated actively in the research during field works in the Corumbá region. To the laboratory of Micropaleontology where this doctorate was executed, especially to the fellow researchers: Geol. MSc Matheus Denezine who contributed in a unique way to discussions, analyses, preparation of samples and slides; to Dr. Evelin Sanchez to Geol. MSc Thais Tobias, who greatly cooperated with constructive discussions and support especially for providing data that served as a starting point and reference for the palynological analyses presented in this research; to Dr. Lucas S. Antinietto and Geol. MSc Amanda Moreira for the encouragement, constructive discussions and also for participating in the acquisition of SEM images presented in this thesis and the published articles; to Geol. André Alvim for providing data of his ProIC carried out with samples of the Guaicurus Formation in Corumbá. To other colleagues of the laboratory of micropaleontology among which I must highlight the valuable contribution of Biol. MSc Lívia Golçalves, Geol. MSc Guilherme M. Caixeta, Geol. Juliana R. Vasconcelos, Geol. Maria Eduarda Ramos and Lívio Gonçalves. Special thanks to the collaborating professors Dr. Lucieth Vieira, Prof. Detlef H. G. Walde, to Prof. Martino Giorgioni for all support and knowledge transfer. To Laboratory of Electron Microprobe of the Institute of Geosciences of the UnB and the Laboratory of Microscopy of the Institute of Biology by the metallization of the material imaged in the SEM. My gratitude also goes to the Geological Survey of Brazil - GSB in the person of Geol. MSc Noevaldo Araujo Teixera, head of the Center for Technological Innovation- CEDES and Technical Training Committee CTC-GSB for all support, and to ensure the continuity of the research in its most delicate moment, without its aid in formalizing this iii doctorate in the SGB, it would not have been viable. To the several colleagues from the GSB, of which I must highlight the great friends and supporters, Dr. Edgar Iza, Dra. Isabel Iza, Dr. Norma M. C. Cruz, Geol. MSc Tiago Buch, Geol. MSc Leandro Guimarães, Dr. Cassiano Castro, MSc Marcos C. Baptista and the technical support provided by the librarian Danielle Menezes C. da Costa. My special gratitude goes to the invaluable scientific support provided by Prof. Bernie Erdtmann from the Freie Universität Berlin and for participating in two fieldworks in Corumbá-MS. Finally, I would like to express my special gratitude to Prof. Dermeval A. Do Carmo for all support, guidance, and cooperation throughout the execution of this research. I could not fail to express my gratitude to PETROBRAS - Petróleo Brasileiro S.A. for financial support, and in particular to Milene F. Figueredo and Oscar Strohschoen Junior for encouragement and scientific support. To FINATEC for assistance in administrative affairs supporting scientific projects in Brazilia. I would also like to thank Prof. Shuhai Xiao, Virginia Polytechnic Institute and State University, USA, Dr. Chuanming Zhou, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences (NIGPAS), and Dr. Claudio Gaucher, National University of Uruguay, for discussions and for sharing bibliographic references, as well as to thank the Geological Survey of Namibia and Dr. Helke Moche. I would like to thank Professor Hong Hua and Dr. Yaoping Cai of the State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an, China, for discussion and partnership in comparative studies on cloudinids. Finally, I thank the mining companies Votorantim (ITAU) and Corcal, the engineering geologist Felisberto Santiago, the Brazilian Army and the Corumbá Fire Brigade for their support during fieldwork. To the Federal University of Mato Grosso do Sul-UFMS for logistics assistance in Corumbá and to Prof. Aguinaldo Silva from the UFMS. iv “Every new beginning comes from some other beginning's end” “Todo novo começo, nasce do fim de outro começo” Lucius Annaeus Seneca v TABLE OF CONTENTS Page DEDICATION ii ACKNOWLEDGMENTS iii TABLE OF CONTENTS vi LIST OF FIGURES vii LIST OF TABLES x RESUMO EXPANDIDO I EXPANDED ABSTRACT IX CHAPTER – 1: INTRODUCTION 1 1.1. SPECIFIC OBJECTIVES 9 1.1. EDIACARAN PERIOD AND LIFE RECORD 10 1.2. UPPERMOST EDIACARAN STRATA IN SOUTH AMERICA 16 1.2.1. CORUMBÁ GROUP, BRAZIL 18 1.2.2. ARROYO DEL SOLDADO GROUP, URUGUAY 20 1.2.3. SIERRAS BAYAS GROUP AND CERRO NEGRO FORMATION, ARGENTINA 22 1.2.4. ITAPUCUMI GOUP, PARAGUAY 25 1.2.5. SETE LAGOAS FORMATION, BAMBUÍ GROUP 26 1.3. UPPERMOST EDIACARAN STRATA IN ÁFRICA 28 1.4. UPPERMOST EDIACARAN STRATA IN CHINA 30 1.5. UPPERMOST EDIACARAN STRATA IN THE USA 32 1.6. UPPERMOST EDIACARAN STRATA IN CANADA 34 1.7. UPPERMOST EDIACARAN STRATA IN OMAN 35 1.8. UPPERMOST EDIACARAN STRATA IN SIBERIA 37 CHAPTER – 2: LOCATION AND ACCESS ROADS TO THE STUDY SECTIONS IN BRAZIL 39 CHAPTER – 3: METHODOLOGY 40 CHAPTER – 4: RESULTS 44 4.1. DESCRIPTION OF TAMENGO FORMATION SECTIONS 44 4.1.1. PORTO SOBRAMIL SECTION 45 4.1.2. ECOPARQUE CACIMBA SECTION 47 4.1.3. CORCAL QUARRY SECTION 48 4.1.4. LAGINHA QUARRY SECTION 51 4.1.5. PORTO FIGUEIRAS SECTION 53 4.1.6. DISCUSSION ON LITHOSTRATIGRAPHIC RECORD 54 4.2. STUDIED FOSSIL ASSEMBLAGE OF TAMENGO AND GUAICURUS FORMATIONS 54 4.2.1. DISCUSSION ON FOSSIL ASSEMBLAGE 73 4.3. PALEOECOLOGY AND PALEOENVIRONMENTAL INFERENCES 74 4.3.1. DISCUSSION ON PALEOECOLOGY AND PALEOENVIRONMENTAL INFERENCES 81 4.4. BIOSTRATIGRAPHIC ESSAY 82 4.4.1. Cloudina Assemblage Superzone - new unit 84 4.4.2. Cloudina lucianoi/Corumbella werneri
Recommended publications
  • Discovery of Bilaterian-Type Through-Guts in Cloudinomorphs from the Terminal Ediacaran Period
    ARTICLE https://doi.org/10.1038/s41467-019-13882-z OPEN Discovery of bilaterian-type through-guts in cloudinomorphs from the terminal Ediacaran Period James D. Schiffbauer 1,2*, Tara Selly 1,2*, Sarah M. Jacquet 1, Rachel A. Merz3, Lyle L. Nelson4, Michael A. Strange5, Yaoping Cai6 & Emily F. Smith 4 The fossil record of the terminal Ediacaran Period is typified by the iconic index fossil Cloudina and its relatives. These tube-dwellers are presumed to be primitive metazoans, but resolving 1234567890():,; their phylogenetic identity has remained a point of contention. The root of the problem is a lack of diagnostic features; that is, phylogenetic interpretations have largely centered on the only available source of information—their external tubes. Here, using tomographic analyses of fossils from the Wood Canyon Formation (Nevada, USA), we report evidence of recog- nizable soft tissues within their external tubes. Although alternative interpretations are plausible, these internal cylindrical structures may be most appropriately interpreted as digestive tracts, which would be, to date, the earliest-known occurrence of such features in the fossil record. If this interpretation is correct, their nature as one-way through-guts not only provides evidence for establishing these fossils as definitive bilaterians but also has implications for the long-debated phylogenetic position of the broader cloudinomorphs. 1 Department of Geological Sciences, University of Missouri, Columbia, MO 65211, USA. 2 X-ray Microanalysis Core, University of Missouri, Columbia, MO 65211, USA. 3 Biology Department, Swarthmore College, Swarthmore, PA 19081, USA. 4 Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD 21218, USA.
    [Show full text]
  • Soft−Part Preservation in Two Species of the Arthropod Isoxys from the Middle Cambrian Burgess Shale of British Columbia, Canada
    Soft−part preservation in two species of the arthropod Isoxys from the middle Cambrian Burgess Shale of British Columbia, Canada DIEGO C. GARCÍA−BELLIDO, JEAN VANNIER, and DESMOND COLLINS García−Bellido, D.C., Vannier, J., and Collins, D. 2009. Soft−part preservation in two species of the arthropod Isoxys from the middle Cambrian Burgess Shale of British Columbia, Canada. Acta Palaeontologica Polonica 54 (4): 699–712. doi:10.4202/app.2009.0024 More than forty specimens from the middle Cambrian Burgess Shale reveal the detailed anatomy of Isoxys, a worldwide distributed bivalved arthropod represented here by two species, namely Isoxys acutangulus and Isoxys longissimus. I. acutangulus had a non−mineralized headshield with lateral pleural folds (= “valves” of previous authors) that covered the animal’s body almost entirely, large frontal spherical eyes and a pair of uniramous prehensile appendages bearing stout spiny outgrowths along their anterior margins. The 13 following appendages had a uniform biramous design—i.e., a short endopod and a paddle−like exopod fringed with marginal setae with a probable natatory function. The trunk ended with a flap−like telson that protruded beyond the posterior margin of the headshield. The gut of I. acutangulus was tube−like, running from mouth to telson, and was flanked with numerous 3D−preserved bulbous, paired features inter− preted as digestive glands. The appendage design of I. acutangulus indicates that the animal was a swimmer and a visual predator living off−bottom. The general anatomy of Isoxys longissimus was similar to that of I. acutangulus although less information is available on the exact shape of its appendages and visual organs.
    [Show full text]
  • E:\Published Issues\Episodes\20
    540 by Shuhai Xiao1, Guy M. Narbonne2, Chuanming Zhou3, Marc Laflamme4, Dmitriy V. Grazhdankin5, Malgorzata Moczydlowska-Vidal6, Huan Cui7 Towards an Ediacaran Time Scale: Problems, Protocols, and Prospects 1 Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, USA. E-mail: [email protected] 2 Department of Geological Sciences and Geological Engineering, Queen’s University, Kingston, Ontario K7L 3N6, Canada 3 Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China 4 University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada 5 Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of the Russian Academy of Sciences, prospekt Akademika Koptyuga 3, Novosibirsk 630090, Russia 6 Department of Earth Sciences, Uppsala University, Villavägen 16, SE 752 36 Uppsala, Sweden 7 Department of Geoscience and NASA Astrobiology Institute, University of Wisconsin, Madison, Wisconsin 53706, USA (Received: 23/12/2015; Accepted: 4/9/2016) DOI:10.18814/epiiugs/2016/v39i4/103886 The Ediacaran Period follows the Cryogenian data to constrain the age, duration, and global extent of Period in the wake of a snowball Earth glaciation and the Shuram negative δ13C excursion, to calibrate and precedes the Cambrian Period with its rising tide of correlate Ediacaran acanthomorph biozones, and to animal radiation. It is also the longest among all determine the temporal relationship among the Shuram stratigraphically
    [Show full text]
  • Palaeoecology of the Early Cambrian Sinsk Biota from the Siberian Platform
    Palaeogeography, Palaeoclimatology, Palaeoecology 220 (2005) 69–88 www.elsevier.com/locate/palaeo Palaeoecology of the Early Cambrian Sinsk biota from the Siberian Platform Andrey Yu. Ivantsova, Andrey Yu. Zhuravlevb,T, Anton V. Legutaa, Valentin A. Krassilova, Lyudmila M. Melnikovaa, Galina T. Ushatinskayaa aPalaeontological Institute, Russian Academy of Sciences, ul. Profsoyuznaya 123, Moscow 117997, Russia bA´rea y Museo de Paleontologı´a, faculdad de Ciences, Universidad de Zaragoza, C/ Pedro Cerbuna, 12, E-50009, Zaragoza, Spain Received 1 February 2002; accepted 15 January 2004 Abstract The Sinsk biota (Early Cambrian, Botoman Stage, Siberian Platform) inhabited an open-marine basin within the photic zone, but in oxygen-depleted bottom waters. Its rapid burial in a fine-grained sediment under anoxic conditions led to the formation of one of the earliest Cambrian Lagerst7tte. All the organisms of the biota were adapted to a life under dysaerobic conditions. It seems possible that the adaptations of many Cambrian organisms, which composed the trophic nucleus of the Sinsk Algal Lens palaeocommunity to low oxygen tensions allowed them to diversify in the earliest Palaeozoic, especially during the Cambrian. Nowadays these groups comprise only a negligible part of communities and usually survive in settings with low levels of competition. Nonetheless, the organization of the Algal Lens palaeocommunity was not simple, it consisted of diverse trophic guilds. The tiering among sessile filter-feeders was well developed with the upper tier at the 50 cm level. In terms of individuals, the community was dominated by sessile filter-feeders, vagrant detritophages, and diverse carnivores/scavengers. The same groups, but in slightly different order, comprised the bulk of the biovolume: vagrant epifaunal and nektobenthic carnivores/ scavengers, sessile filter-feeders, and vagrant detritophages.
    [Show full text]
  • RELATING EDIACARAN FRONDS 1 T. Alexander Dececchi *, Guy M
    1 RELATING EDIACARAN FRONDS 2 T. Alexander Dececchi *, Guy M. Narbonne, Carolyn Greentree, and Marc 3 Laflamme 4 T. Alexander Dececchi* and Guy M. Narbonne, Department of Geological Sciences 5 and Geological Engineering, Kingston, Queen's University, Ontario, K7L 3N6, Canada. 6 E-mail: [email protected], [email protected]. 7 Carolyn Greentree, School of Earth, Atmosphere and Environment, Monash 8 University, Clayton, Victoria, 3800, Australia. Email [email protected]. 9 Marc Laflamme. Department of Chemical and Physical Sciences, University of 10 Toronto, Mississauga, 3359 Mississauga Road, Mississauga, Ontario, L5L 1C6, 11 Canada. E-mail: [email protected]. 12 13 Abstract 14 Ediacaran fronds are key components of terminal-Proterozoic ecosystems. They 15 represent one of the most widespread and common body forms ranging across all 16 major Ediacaran fossil localities and time slices postdating the Gaskiers glaciation, 17 but uncertainty over their phylogenetic affinities has led to uncertainty over issues 18 of homology and functional morphology between, and within, organisms displaying 19 this ecomorphology. Here we present the first large scale, multi-group cladistic 20 analysis of Ediacaran organisms, sampling 20 ingroup taxa with previously asserted 21 affinities to the Arboreomorpha, Erniettomorpha and Rangeomorpha. Using a newly 22 derived morphological character matrix that incorporates multiple axes of potential 23 phylogenetically informative data, including architectural, developmental, and 24 structural qualities, we seek to illuminate the evolutionary history of these 25 organisms. We find strong support for existing classification schema and devise 26 apomorphy-based definitions for each of the three frondose clades examined here. 27 Through a rigorous cladistics framework it is possible to discern the pattern of 28 evolution within, and between, these clades, including the identification of 29 homoplasies and functional constraints.
    [Show full text]
  • PHYLOGENY and DISTRIBUTION by LARS E
    [Papers in Palaeontology, 2019, pp. 1–17] CAMBRIAN RHYNCHONELLIFORM NISUSIOID BRACHIOPODS: PHYLOGENY AND DISTRIBUTION by LARS E. HOLMER1,2 , MOHAMMAD-REZA KEBRIA-EE ZADEH3, LEONID E. POPOV4, MANSOUREH GHOBADI POUR2,4,5,J.JAVIERALVARO 6, VACHIK HAIRAPETIAN7 and ZHIFEI ZHANG1 1Shaanxi Key Laboratory of Early Life & Environments, State Key Laboratory for Continental Dynamics, Northwest University, Xi’an, 710069, China 2Department of Earth Sciences, Palaeobiology, SE-752 36, Uppsala, Sweden; [email protected] 3Department of Geology, Payame Noor University, Semnan, Iran; [email protected] 4Department of Earth Sciences, National Museum of Wales, Cathays Park, Cardiff, CF10 3NP, UK; [email protected] 5Department of Geology, Faculty of Sciences, Golestan University, Gorgan, 49138-15739, Iran; [email protected] 6Instituto de Geociencias (CSIC-UCM), Dr. Severo Ochoa 7, Madrid, 28040, Spain; [email protected] 7Department of Geology, Khorasgan (Isfahan) Branch, Islamic Azad University, PO Box 81595-158, Isfahan, Iran; [email protected] Typescript received 18 July 2018; accepted in revised form 6 November 2018 Abstract: A comprehensive review and phylogenetic analy- an early separation of the lineages of spinose and non-spi- sis of genera and species presently assigned to the rhyn- nose nisusiids. The non-spinose nisusiids probably evolved chonelliform superfamily Nisusioidea and family Nisusiidae in Laurentia by the end of Cambrian Series 4. The new suggests that this short-lived but important group of bra- nisusiid genus Bellistrophia is described. The new species chiopods first appeared in peri-Gondwana during the second Nisusia multicostata represents the first documented rhyn- half of the Cambrian Series 2, before going extinct by the chonelliform (kutorginide) brachiopod from the Miaolingian end of Drumian times.
    [Show full text]
  • Burgess Shale−Type Biotas Were Not Entirely Burrowed Away
    Downloaded from geology.gsapubs.org on September 25, 2015 Burgess shale−type biotas were not entirely burrowed away Robert R. Gaines1, Mary L. Droser2, Patrick J. Orr3, Daniel Garson2, Emma Hammarlund4,5, Changshi Qi6, and Donald E. Canfi eld4 1Geology Department, Pomona College, 185 E. Sixth Street, Claremont, California 91711, USA 2Department of Earth Sciences, University of California−Riverside, Riverside, California 92521, USA 3UCD School of Geological Sciences, University College Dublin, Dublin 4, Ireland 4Nordic Center for Earth Evolution, DK-5230 Odense M, Denmark 5Department of Palaeozoology, Swedish Museum of Natural History, SE-104 05 Stockholm, Sweden 6Yunnan Key Laboratory for Palaeobiology, Yunnan University, Kunming 650091, China ABSTRACT tion, a deepened redox boundary in sediment pore waters (e.g., Thayer, Burgess Shale−type biotas occur globally in the Cambrian record 1983; Ziebis et al., 1996), and increased sulfate availability in the global and offer unparalleled insight into the Cambrian explosion, the initial ocean (Canfi eld and Farquhar, 2009), all of which would affect the preser- Phanerozoic radiation of the Metazoa. Deposits bearing exception- vation potential of labile tissues. ally preserved soft-bodied fossils are unusually common in Cambrian An increase in depth of bioturbation and intensity of sediment mix- strata; more than 40 are now known. The well-documented decline of ing accompanying the expansion of the infaunal habitat through the early soft-bodied preservation following the Middle Cambrian represents Paleozoic is well documented in carbonate platform settings (Ausich and the closure of a taphonomic window that was only intermittently Bottjer, 1982; Droser and Bottjer, 1988, 1989). In muddy settings, sedi- open in marine environments thereafter.
    [Show full text]
  • Chemostratigraphic Correlations Across the First Major Trilobite
    www.nature.com/scientificreports OPEN Chemostratigraphic correlations across the frst major trilobite extinction and faunal turnovers between Laurentia and South China Jih-Pai Lin 1*, Frederick A. Sundberg2, Ganqing Jiang3, Isabel P. Montañez4 & Thomas Wotte5 During Cambrian Stage 4 (~514 Ma) the oceans were widely populated with endemic trilobites and three major faunas can be distinguished: olenellids, redlichiids, and paradoxidids. The lower–middle Cambrian boundary in Laurentia was based on the frst major trilobite extinction event that is known as the Olenellid Biomere boundary. However, international correlation across this boundary (the Cambrian Series 2–Series 3 boundary) has been a challenge since the formal proposal of a four-series subdivision of the Cambrian System in 2005. Recently, the base of the international Cambrian Series 3 and of Stage 5 has been named as the base of the Miaolingian Series and Wuliuan Stage. This study provides detailed chemostratigraphy coupled with biostratigraphy and sequence stratigraphy across this critical boundary interval based on eight sections in North America and South China. Our results show robust isotopic evidence associated with major faunal turnovers across the Cambrian Series 2–Series 3 boundary in both Laurentia and South China. While the olenellid extinction event in Laurentia and the gradual extinction of redlichiids in South China are linked by an abrupt negative carbonate carbon excursion, the frst appearance datum of Oryctocephalus indicus is currently the best horizon to achieve correlation between the two regions. Te international correlation of the traditional lower–middle Cambrian boundary has been exceedingly difcult primarily due to apparent diachroniety of the datum species used to defne the boundary refecting the endemic faunas.
    [Show full text]
  • New Finds of Skeletal Fossils in the Terminal Neoproterozoic of the Siberian Platform and Spain
    New finds of skeletal fossils in the terminal Neoproterozoic of the Siberian Platform and Spain ANDREY YU. ZHURAVLEV, ELADIO LIÑÁN, JOSÉ ANTONIO GÁMEZ VINTANED, FRANÇOISE DEBRENNE, and ALEKSANDR B. FEDOROV Zhuravlev, A.Yu., Liñán, E., Gámez Vintaned, J.A., Debrenne, F., and Fedorov, A.B. 2012. New finds of skeletal fossils in the terminal Neoproterozoic of the Siberian Platform and Spain. Acta Palaeontologica Polonica 57 (1): 205–224. A current paradigm accepts the presence of weakly biomineralized animals only, barely above a low metazoan grade of or− ganization in the terminal Neoproterozoic (Ediacaran), and a later, early Cambrian burst of well skeletonized animals. Here we report new assemblages of primarily calcareous shelly fossils from upper Ediacaran (553–542 Ma) carbonates of Spain and Russia (Siberian Platform). The problematic organism Cloudina is found in the Yudoma Group of the southeastern Si− berian Platform and different skeletal taxa have been discovered in the terminal Neoproterozoic of several provinces of Spain. New data on the morphology and microstructure of Ediacaran skeletal fossils Cloudina and Namacalathus indicate that the Neoproterozoic skeletal organisms were already reasonably advanced. In total, at least 15 skeletal metazoan genera are recorded worldwide within this interval. This number is comparable with that known for the basal early Cambrian. These data reveal that the terminal Neoproterozoic skeletal bloom was a real precursor of the Cambrian radiation. Cloudina,the oldest animal with a mineralised skeleton on the Siberian Platform, characterises the uppermost Ediacaran strata of the Ust’−Yudoma Formation. While in Siberia Cloudina co−occurs with small skeletal fossils of Cambrian aspect, in Spain Cloudina−bearing carbonates and other Ediacaran skeletal fossils alternate with strata containing rich terminal Neoprotero− zoic trace fossil assemblages.
    [Show full text]
  • The Endemic Radiodonts of the Cambrian Stage 4 Guanshan Biota of South China
    Editors' choice The endemic radiodonts of the Cambrian Stage 4 Guanshan Biota of South China DE-GUANG JIAO, STEPHEN PATES, RUDY LEROSEY-AUBRIL, JAVIER ORTEGA-HERNÁNDEZ, JIE YANG, TIAN LAN, and XI-GUANG ZHANG Jiao, D.-G., Pates, S., Lerosey-Aubril, R., Ortega-Hernández, J., Yang, J., Lan, T., and Zhang, X.-G. 2021. The endemic radiodionts of the Cambrian Stage 4 Guanshan Biota of South China. Acta Palaeontologica Polonica 66 (2): 255–274. The Guanshan Biota (South China, Cambrian, Stage 4) contains a diverse assemblage of biomineralizing and non-biomin- eralizing animals. Sitting temporally between the Stage 3 Chengjiang and Wuliuan Kaili Biotas, the Guanshan Biota con- tains numerous fossil organisms that are exclusive to this exceptional deposit. The Guanshan Konservat-Lagerstätte is also unusual amongst Cambrian strata that preserve non-biomineralized material, as it was deposited in a relatively shallow water setting. In this contribution we double the diversity of radiodonts known from the Guanshan Biota from two to four, and describe the second species of Paranomalocaris. In addition, we report the first tamisiocaridid from South China, and confirm the presence of a tetraradial oral cone bearing small and large plates in “Anomalocaris” kunmingensis, the most abundant radiodont from the deposit. All four radiodont species, and three genera, are apparently endemic to the Guanshan Biota. When considered in the wider context of geographically and temporally comparable radiodont faunas, endemism in Guanshan radiodonts is most likely a consequence of the shallower and more proximal environment in which they lived. The strong coupling of free-swimming radiodonts and benthic communities underlines the complex relationship between the palaeobiogeographic and environmental distributions of prey and predators.
    [Show full text]
  • Field Workshop on the Ediacaran Nama Group of Southern Namibia
    1 2 3 Field Workshop on the Ediacaran Nama Group of southern Namibia 4 21–25 August 2016, Windhoek to Fish River Canyon, Southern Namibia 5 Among all established geological periods, the Ediacaran Period is the longest, lasting from 6 635 Ma to 541 Ma. It is within this 94 million years of geological history that the Earth had 7 transformed from a world dominated by microbes to one increasingly influenced by animal 8 activities. Important evolutionary innovations occurred in the Ediacaran Period, including the 9 rise of macroscopic animals, complex ecological interactions, and metazoan biomineralization. 10 Resolving the causes and consequences of these biological innovations is a major focus of recent 11 geobiological investigation. However, without a solid geological time framework, Ediacaran 12 workers are facing significant challenges to assemble the pieces of the puzzle from different 13 parts of the world. To develop a better understanding of Ediacaran time and life, a group of 25 14 geologists, geochemists, sedimentologists, and paleontologists gathered together to examine the 15 terminal Ediacaran Nama Group at a field workshop sponsored by IGCP 587 “Identity, Facies 16 and Time: The Ediacaran (Vendian) Puzzle” and the ICS Subcommission on Ediacaran 17 Stratigraphy. 18 The terminal Ediacaran Nama Group near Aus, southern Namibia, holds a special place in 19 the history of Ediacaran paleontology. Some of the earliest complex Ediacara fossils were first 20 reported from the Nama Group (Gürich, 1929; Fedonkin et al., 2007; Xiao, 2008). This 21 succession contains important geological information about the Shuram carbon isotope excursion 22 (potentially the greatest C-isotope excursion in Earth history), the expansion of animal 23 bioturbation, the rise of animal skeletonization and biomineralization, and the decline and final 24 demise of the Ediacara biota.
    [Show full text]
  • Precambrian-Cambrian Transition: Death Valley, United States
    Precambrian-Cambrian transition: Death Valley, United States Frank A. Corsetti* Department of Geological Sciences, University of California, Santa Barbara, California 93106, USA James W. Hagadorn* Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA ABSTRACT The Death Valley region contains one of the best exposed and often visited Precambrian- Cambrian successions in the world, but the chronostratigraphic framework necessary for understanding the critical biologic and geologic events recorded in these sections has been in- adequate. The recent discovery of Treptichnus (Phycodes) pedum within the uppermost para- sequence of the lower member of the Wood Canyon Formation allows correlation of the Pre- cambrian-Cambrian boundary to this region and provides a necessary global tie point for the Death Valley section. New carbon isotope chemostratigraphic profiles bracket this biostrati- graphic datum and record the classic negative carbon isotope excursion at the boundary. For the first time, biostratigraphic, chemostratigraphic, and lithostratigraphic information from pretrilobite strata in this region can be directly compared with similar data from other key sec- tions that record the precursors of the Cambrian explosion. Few Precambrian-Cambrian boundary sections contain both the facies-restricted boundary fossil T. pedum and carbon iso- tope data, as found in Death Valley. Thus, the Death Valley succession provides a critical link toward our understanding of the correlation between
    [Show full text]