Efficient Grap h Representations This page intentionally left blank http://dx.doi.org/10.1090/fim/019

FIELDS INSTITUT E MONOGRAPHS

THE FIELD S INSTITUT E FO R RESEARC H I N MATHEMATICA L SCIENCE S

Efficient Grap h Representations

Jeremy P . Spinra d

American Mathematica l Societ y Providence, Rhod e Islan d The Field s Institut e for Researc h i n Mathematical Science s

The Field s Institute i s named i n honour o f the Canadia n mathematicia n Joh n Charle s Fields (1863-1932) . Field s wa s a visionar y wh o receive d man y honour s fo r hi s scientifi c work, including election to the Royal Society o f Canada i n 190 9 and to the Royal Society of London i n 1913 . Amon g othe r accomplishment s i n the servic e o f the internationa l math - ematics community , Field s wa s responsibl e fo r establishin g th e world' s mos t prestigiou s prize fo r mathematic s research—th e Field s Medal . The Fields Institute fo r Researc h i n Mathematical Science s i s supported b y grants fro m the Ontario Ministry o f Education an d Trainin g and the Natural Science s and Engineerin g Research Counci l o f Canada . Th e Institut e i s sponsore d b y McMaste r University , th e University o f Toronto, the Universit y o f Waterloo, an d Yor k University , an d ha s affiliate d universities i n Ontari o an d acros s Canada .

2000 Mathematics Subject Classification. Primar y 05C62 , 05C17 , 05C50 , 05C85 , 05-00, 05-02, 68R10 , 68W01 , 68P05 , 68Q30, 68-01 .

For additiona l informatio n an d update s o n this book , visi t www.ams.org/bookpages/fim-19

Library o f Congress Cataloging-in-Publicatio n Dat a Spinrad, Jerem y P. Efficient grap h representation s / Jerem y P . Spinrad . p. cm. — (Fields Institut e monograph s ; 19) Includes bibliographica l reference s an d index. ISBN 0-8218-2815- 0 (acid-fre e paper ) 1. Representations o f graphs. I . Title. II . Series. QA166.242.S65 200 3 200304510 6 511/.-dc21 CI P

Copying an d reprinting . Individua l reader s o f this publication , an d nonprofi t librarie s acting fo r them, ar e permitted t o make fai r us e of the material, suc h as to copy a chapter fo r use in teachin g o r research . Permissio n i s granted t o quot e brie f passage s fro m thi s publicatio n i n reviews, provide d the customary acknowledgmen t o f the source i s given. Republication, systemati c copying , or multiple reproduction o f any material in this publicatio n is permitte d onl y unde r licens e fro m th e America n Mathematica l Society . Request s fo r suc h permission shoul d be addressed to the Acquisitions Department , America n Mathematica l Society , 201 Charle s Street , Providence , Rhod e Islan d 02904-2294 , USA . Requests ca n also b e made by e-mail to [email protected] . © 200 3 by the American Mathematica l Society . Al l rights reserved . The America n Mathematica l Societ y retain s al l rights except thos e grante d to the United State s Government . Printed i n the United State s o f America. @ Th e paper use d i n this boo k i s acid-free an d falls withi n the guidelines established t o ensure permanenc e an d durability. This publicatio n wa s prepared b y The Fields Institute . Visit the AMS home pag e at http: //www. ams. org/ 10 9 8 7 6 5 4 3 2 1 0 8 07 06 05 04 03 Contents

Explanatory Remark s 1 Chapter 1 . Introductio n 5 1.1. Grap h Theor y Backgroun d an d Terminolog y 6 1.2. Algorith m Backgroun d an d Terminolog y 6 1.3. Representatio n Backgroun d 8 1.4. Exampl e o f a Nic e Representation 1 1 1.5. Overvie w o f Problems i n Graph Representatio n 1 2 1.6. Exercise s 1 5

Chapter 2 . Implici t Representatio n 1 7 2.1. Implici t Representatio n an d Universa l Graph s 2 1 2.2. Generalize d Implici t Representatio n 2 2 2.3. Representation s wit h Ver y Shor t Label s 2 3 2.4. Distanc e Labelin g o f Graphs 2 5 2.5. Exercise s 2 7

Chapter 3 . Intersectio n an d Containmen t Representation s 3 1 3.1. Chordalit y an d Transitiv e Orientatio n 3 1 3.2. Technique s fo r Interva l Graph s 3 3 3.3. Generalization s o f s 3 4 3.4. Permutatio n Graph s an d Generalization s 3 8 3.5. Containmen t Representation s 4 1 3.6. Overla p Representation s 4 2 3.7. Generalize d Intersectio n Model s 4 4 3.8. Perfec t Graph s 4 6 3.9. Exercise s 4 7

Chapter 4 . Rea l Numbers i n Graph Representation s 5 3 4.1. Warren' s Theore m 5 4 4.2. Continuou s Nongeometri c Variable s 5 6 4.3. Decidabilit y Result s 5 7 4.4. Exercise s 5 7

Chapter 5 . Classe s Which us e Globa l Informatio n 5 9 5.1. Path s i n Trees 5 9 5.2. Chorda l Comparabilit y Graph s 6 0 5.3. Fill-i n Scheme s 6 5 5.4. Closur e Operation s 6 6 5.5. Weakl y Chorda l Graph s 6 7 vi Content s

5.6. Othe r Fill-i n Scheme s 6 8 5.7. Exercise s 6 8

Chapter 6 . Visibilit y Graph s 7 3 6.1. Countin g Visibilit y Graph s 7 4 6.2. Cliqu e Cove r Representatio n 7 4 6.3. Induce d Visibilit y Graph s 7 6 6.4. Optimizatio n o n Visibility Graph s 8 0 6.5. Lin e o f Sigh t Graph s an d Othe r Variant s 8 0 6.6. Exercise s 8 1

Chapter 7 . Intersectio n o f Graph Classe s 8 5 7.1. Som e Fundamental Propertie s 8 5 7.2. Intersection s o f Fundamental Propertie s 8 7 7.3. Weakl y Chorda l Comparabilit y Graph s 8 8 7.4. Othe r Generalize d Classe s 9 0 7.5. Observation s Regardin g AT-fre e co-AT-fre e Graph s 9 1 7.6. Ope n Problem s o n the Generalize d Classe s 9 4 7.7. Exercise s 9 5

Chapter 8 . Grap h Classe s Define d b y Forbidden Subgraph s 9 7 8.1. s 9 7 8.2. Classe s Which ar e too Larg e to hav e Efficien t Representation s 10 0 8.3. Relatio n Betwee n Recognitio n Problem s 10 5 8.4. Classe s define d b y Forbidding Set s o f s 10 5 8.5. Dilwort h Numbe r an d Pose t Widt h 10 7 8.6. Exercise s 10 9

Chapter 9 . Chorda l Bipartit e Graph s 11 1 9.1. T-fre e Matrice s 11 1 9.2. Countin g an d Representatio n 11 2 9.3. Characterization s 11 8 9.4. Recognitio n 12 0 9.5. Optimizatio n Problem s o n Chorda l Bipartit e Graph s 12 3 9.6. Variant s o f Chordal Bipartit e Graph s 12 5 9.7. Subclasse s o f Chordal Bipartit e Graph s 12 6 9.8. Perfec t Eliminatio n Bipartit e Graph s 13 0 9.9. Bipartit e Graph s wit h Forbidde n Induce d Subgraph s 13 1 9.10. Exercise s 13 2 Chapter 10 . Matrice s 13 5 10.1. Smal l Forbidden Classe s o f Matrices 13 5 10.2. Linea r Matrice s 13 6 10.3. Forbidde n 2 by 2 Identity Matrice s 13 8 10.4. Forbiddin g (™ ) 13 9 10.5. Othe r Classe s o f Interest 14 2 10.6. Th e Problem s o f Counting an d Representatio n 14 2 10.7. Othe r Matri x Propertie s 14 5 10.8. Exercise s 14 5

Chapter 11 . Decompositio n 149 Contents vi i

11.1. Substitutio n Decompositio n an d Verte x Partitioning 14 9 11.2. Joi n Decompositio n 16 0 11.3. Recursivel y Decomposabl e Graph s 16 3 11.4. Clique-widt h an d NLC-widt h 16 4 11.5. Cliqu e Separato r Decompositio n 16 7 11.6. Ske w Partition 17 0 11.7. 2-Joi n 17 4 11.8. Exercise s 17 5

Chapter 12 . Eliminatio n Scheme s 18 1 12.1. Distanc e Hereditar y Graph s 18 1 12.2. Strongl y Chorda l Graph s 18 2 12.3. k-Simplicia l Eliminatio n Scheme s 18 4 12.4. Doubl y an d Duall y Chorda l Graph s 18 5 12.5. Exercise s 18 7

Chapter 13 . Recognitio n s 19 1 13.1. Chorda l Graph s 19 1 13.2. Interva l Graph s 19 3 13.3. Circular-Ar c Grap h Recognitio n 19 7 13.4. Restriction s o n Intervals an d Arc s 20 4 13.5. Trapezoi d Graph s an d Relate d Classe s 20 8 13.6. Circl e Graphs 21 2 13.7. Circula r Permutatio n Graph s 21 7 13.8. Weakl y Chorda l Graph s 21 8 13.9. Path s i n Tree s 21 9 13.10. NP-complet e Classe s 22 2 13.11. Ope n Classe s 22 4 13.12. Exercise s 22 4

Chapter 14 . Robus t Algorithm s fo r Optimizatio n Problem s 23 1 14.1. Robus t Algorithm s whic h ar e Faster Tha n Recognitio n 23 3 14.2. Problem s Helpe d b y a Representation 24 1 14.3. Ope n Problem s fo r Robus t Algorithm s 24 7 14.4. Complexit y Issue s 24 9 14.5. Exercise s 25 2

Chapter 15 . Characterizatio n an d Constructio n 25 7 15.1. Chorda l Graph s 25 7 15.2. Uni t Interva l Graph s 25 9 15.3. Uni t Circular-Ar c Graph s 26 0 15.4. Constructio n Proble m fo r NP-complet e Classe s 26 1 15.5. Exercise s 26 2

Chapter 16 . Application s 26 5 16.1. Computationa l Biolog y 26 5 16.2. Network s 26 8 16.3. Programmin g Language s 27 2 16.4. A Cautionary Tal e 27 2 16.5. Exercise s 27 3 viii Content s

Glossary 27 7 Survey o f Results o n Grap h Classe s 30 3 Bibliography 31 9 Index 33 7 This page intentionally left blank Glossary

I shoul d not e that thes e definition s sometime s ma y b e i n conflic t wit h genera l use o f a term . I f a ter m i s use d i n a specifi c manne r i n thi s book , an d thi s spe - cific usag e i s simple to explain , I choose to includ e th e definitio n whic h applie s t o this boo k rathe r tha n a mor e genera l definitio n whic h migh t b e harde r t o under - stand. Fo r example , thi s boo k doe s no t discus s multigraphs , an d i n som e case s the definitio n I choos e to includ e woul d no t correspon d t o standard definition s o n multigraphs. I also do not worry about the fact that m y definition o f order notatio n symbols i s nonstandard i f negative function s ar e allowed , sinc e these ar e use d onl y for tim e analyse s i n this book .

Adjacent Verte x x i s adjacent t o vertex y i f there i s an edg e fro m x t o y.

Adjacency lists: A form o f graph representatio n i n which neighbor s o f vertex i ar e stored i n a linke d list . I n general , thi s lis t i s assume d t o b e unordered , i n th e sense that verte x j ma y preced e verte x k o n a n adjacenc y lis t eve n though j < k. However, i t i s possible to sort al l adjacency list s in 0(n+ra) time , i f this i s desired. Technically, a n adjacenc y lis t i s a matri x o f linke d lists , thu s allowin g th e lis t o f neighbors o f vertex i to b e accesse d i n constant time .

Adjacency matrix: A form o f graph representatio n i n which a graph i s stored a s a n n x n matrix . Th e entr y (i , j) o f the adjacenc y matri x i s 1 i f i ha s a n edg e t o j, and 0 otherwise.

Anti-hole: A hole (chordles s induce d cycl e o f length a t leas t 4 ) i n the complemen t graph.

Arboricity: Th e arboricit y o f G i s the minimu m numbe r o f forests suc h that ever y edge o f G i s contained i n one o f these forests .

Arc: A connected subse t o f a circle . Als o use d a s a n alternat e nam e fo r edge , es - pecially i n a tree.

A steroidal triple: A trio o f mutually nonadjacen t vertice s x,y yz wit h th e propert y that fo r each pair o f vertices in the trio, there is a path between these vertices which avoids all neighbors o f the third vertex in the trio. Graph s without asteroida l triple s are als o calle d AT-free .

277 278 Glossary

AT-free: A graph i s AT-free i f it contain s n o asteroidal triples .

Augmented : Entrie s ar e th e sam e a s i n th e adjacenc y matrix , except wit h I s alon g the mai n diagona l rather tha n Os .

Autonomous set: Alternativ e nam e fo r module .

Balanced k-module: A subset S o f vertices induce s a balanced /c-modul e i f there i s a partitio n Si , S2 o f S suc h that |S|/ 3 < |Si | < 2|S|/3 , an d S i ca n b e partitione d into at mos t k subsets Si ^ i n such a way that ever y vertex o f S 2 i s either adjacen t to ever y vertex o f Si^, o r to n o vertex i n S^ .

Bandwidth: Th e bandwidt h o f a n orderin g o f th e vertice s o f G i s th e maximu m difference betwee n endpoin t position s o f an y edge . Th e NP-complet e bandwidt h problem ask s whether ther e i s any ordering o f the vertices which has bandwidth a t most k.

Berge graph: A grap h withou t an y od d hole s o r od d anti-hole s o f lengt h greate r than three ; thes e hav e recentl y bee n show n to b e equivalen t t o perfec t graphs , re - solving a famou s ope n question .

Biconvex graph: with the property that ther e ar e orderings o f each color class satisfying fo r all x, the neighbors o f x occur consecutively in the ordering.

Bipartite adjacency matrix: Matri x representatio n o f a bipartite graph . Row s cor - respond t o vertice s fro m on e colo r class , column s t o vertice s fro m th e othe r colo r class, with a 1 in row i column j i f vertex i i s adjacent t o vertex j, an d 0 otherwise.

Bipartite graph: A grap h wit h th e propert y tha t vertice s ca n b e partitione d int o sets X, Y suc h that ever y edg e goes between a vertex i n X an d a vertex i n Y. Th e sets X an d Y ar e calle d colo r classe s o f G.

Bisimplicial edge: An edge (x, y) o f a bipartite graph such that N(#) U N(y) induce s a complet e bipartite graph .

Bit: A single digi t i n a binary (0/1 ) representatio n o f an object .

Block: I n a partition o f a set, eac h subse t i s called a block .

Bounded substitution diameter decomposition: A grap h ha s substitutio n decom - position diamete r k i f ever y prim e nod e i n th e decompositio n tre e ha s a t mos t k children. I f a clas s o f graph s ha s substitutio n decompositio n diamete r a t mos t k for k fixed , the n the clas s has bounded substitutio n decompositio n diameter .

Bounded tolerance graph: Toleranc e grap h suc h tha t n o toleranc e valu e i s large r than th e lengt h o f th e interval . Thi s implie s tha t i f a n interva l correspondin g t o vertex x contain s the interva l correspondin g t o y, th e vertice s mus t b e adjacent . Glossary 279

Boxicity: Th e minimu m dimensio n d suc h tha t a grap h ca n b e represente d a s a n intersection grap h o f c/-dimensiona l rectangles , wit h al l rectangle s oriente d alon g the axes . Boxicit y 1 graphs correspon d t o interva l graphs .

Brittle graph: A grap h G i s brittle i f there i s a n eliminatio n schem e fo r G whic h successively remove s eithe r a vertex whic h i s not a midpoin t o f an y P4 , o r no t a n endpoint o f any P4 .

Ci'. A chordless cycl e on i vertices.

Certificate: A certificate o f a property i s a proo f tha t th e propert y holds . Certifi - cates ar e important i n the theory o f NP-completeness; N P ca n be define d i n term s of existenc e o f polynomia l siz e certificates . Certificate s ar e use d i n a numbe r o f ways i n this book ; i n , th e existenc e o f a certificat e o f siz e f(n) ) ca n b e a separat e proble m fro m finding a n 0(f(n ) algorith m t o solv e th e problem , an d our discussio n o f robust algorithm s deal s wit h issue s whic h aris e i f w e are give n a certificate that a graph is in a class as opposed to when such a certificate i s not given.

Chain graph: A bipartite graph with the property that fo r eac h pair o f vertices u, v from th e sam e colo r class , either ~N(u) C N(^) o r N(v ) C N(u) .

Child: In a rooted tree , children o f v ar e neighbors o f v other than the parent o f v.

Chord: In a cycle , a n edg e whic h goe s between vertice s whic h ar e no t consecutiv e on the cycle . O n a circle , a straight lin e connecting tw o points o n the circle .

Chordal graph: A graph wit h n o induced (i.e . chordless ) cycl e o f length > 3 .

Chordal bipartite graph: A bipartite graph with no chordless cycles of length greater than 4 . A n important characterizatio n i s that G i s chordal bipartit e i f and onl y i f the bipartit e adjacenc y matri x ha s a T-fre e ordering .

Chromatic number: Th e minimu m numbe r o f colors necessar y to colo r a graph .

Circle graph: Intersection grap h o f chords o f a circle .

Circle order: Containment grap h o f disks i n the plane .

Circuit: Alternativ e nam e fo r cycle .

Circular-arc graph: Intersection grap h o f arcs o f a circle.

Circular permutation graph: s o f curves connecting points on two concentric circle s o f differen t diameter , suc h tha t n o pai r o f curve s intersect s a t more than on e point .

Circular Is property: A circular orderin g o f a set, whic h obey s a se t o f restriction s requiring particula r subset s to appea r consecutivel y i n the circula r order . 280 Glossary

Classically NP-complete: A proble m P i s classicall y NP-complet e o n a restricte d domain D o f input s (suc h a s a clas s o f graphs ) i f ever y proble m i n N P ca n b e mapped i n polynomia l tim e an d spac e t o a n instanc e o f P fro m Z) , such tha t th e answer to the original problem is the same as the answer to the instance mapped to.

Claw-free graph: A graph wit h n o induced subgrap h equa l to K\$.

Clique: A set o f mutually adjacen t vertices .

Clique cutset: A cutse t whic h i s also a clique .

Clique separator: Alternat e nam e fo r cliqu e cutset .

Clique separator decomposition: A for m o f grap h decompositio n whic h take s a n arbitrary cliqu e cutse t C , decompose s th e grap h int o S L) C fo r eac h connecte d component S o f G — C, an d decompose s eac h subgraph recursively .

Clique problem: I n decisio n form , th e proble m o f whether a n inpu t grap h G has a clique o f siz e equa l t o inpu t numbe r k. Als o use d i n optimizatio n for m t o denot e the problem o f determining the cardinality o f the maximum cliqu e in a graph. Th e decision proble m i s NP-complete .

Clique tree representation: A n intersectio n mode l fo r a chorda l grap h G. Ther e i s a tre e T , suc h eac h nod e o f T correspond s t o a maxima l cliqu e o f G , an d clique s containing eac h individual verte x v correspon d t o a connected subtre e o f T. G ha s a cliqu e tree representation i f and onl y i f G i s chordal, an d thi s representation ca n be foun d i n linear time .

Clique-width: Th e minimu m numbe r o f label s neede d t o construc t a grap h fro m one vertex graphs using the operations union, addition o f all edges between vertice s with label i and vertices with label j, an d the relabeling operation which gives label j to al l vertices with curren t labe l i.

Clone: A clon e c of vertex v with respect to a set o f vertices S i s a vertex such tha t N(c) D S - v = N(v) OS -v.

Closure: Th e ^-closur e o f a grap h i s forme d b y repeatedl y addin g edge s betwee n nonadjacent pair s x , y o f vertice s suc h tha t degree(x ) + degree(y) i s a t leas t £; , until no further edge s can be added. I n a variant calle d fc'-closure, edges are adde d between nonadjacen t x,y suc h that \N(x) U N(y)\ i s at leas t k.

Co-: Fo r a graph clas s C, a graph i s a co-C graph i f the complemen t i s in C.

Co-NP: A decisio n proble m P i s i n co-N P i f the proble m o f decidin g whethe r th e answer t o P i s no i s in NP; i.e. , n o answer s hav e a polynomial siz e certificate . Glossary 281

Cograph: In th e origina l definition , a grap h whic h ca n b e buil t fro m singl e verte x graphs usin g the operations o f complement an d union . A n important characteriza - tion i s that thes e ar e exactly the graphs withou t an y P4 .

Coloring: A n assignmen t o f number s (calle d colors ) t o vertice s o f a graph , suc h that n o edg e connect s vertice s wit h th e sam e color . Th e questio n o f whethe r i t is possibl e t o colo r a grap h wit h k color s i s NP-complet e eve n fo r k = 3 . I n th e optimization versio n o f the colorin g problem, th e goa l i s to colo r a graph wit h th e minimum numbe r o f different colors .

Color class: I n thi s book , thi s refer s t o on e o f the subset s o f vertices use d t o par - tition a bipartite graph . Mor e generally , a colo r clas s i s a se t o f vertices give n th e same colo r b y a coloring assignment .

Comparability graph: An undirecte d grap h suc h that al l edges can b e assigne d di - rections, suc h that i n the directe d grap h wheneve r a —> b and b — * c , then a —> • c.

Complement: Th e complemen t o f G , writte n a s G , ha s th e sam e verte x se t a s G , and a n edg e fro m x t o y i n G i f and onl y i f there i s no edge fro m x t o y i n G .

Complete graph: Alternative nam e fo r clique .

Complete bipartite graph. A bipartite grap h whic h ha s a n edg e betwee n eac h pai r of vertices fro m differen t colo r classes .

Completely k-decomposable: A graph i s completely /c-decomposabl e with respect t o a decompositio n i f ever y induce d subgrap h containin g mor e tha n k vertice s k i s decomposable.

Completion problem: Th e completio n proble m fo r a clas s o f graphs C ask s fo r th e minimum numbe r o f edges necessary t o add t o a n input grap h G , s o that th e aug - mented grap h i s in G .

Composition sequence: A clas s o f graph s ha s a compositio n sequenc e i f ther e i s a countabl e sequenc e Gi,..,G;,.. . o f graph s i n th e clas s suc h tha t eac h Gi i s a n induced subgrap h o f G^+i , an d ever y grap h i n the clas s i s a subgraph o f som e Gi in the sequence .

Connected component: Maxima l connecte d subgraph .

Connected graph: A grap h suc h that ther e i s a path betwee n eac h pai r o f vertices.

Connected matrix: A matri x suc h that n o pair o f rows and column s induce s 12-

Consecutive Is property: A n orderin g o f a se t whic h obey s restriction s requirin g elements i n various subsets t o occu r consecutively .

Construction problem: Th e problem o f constructing a form o f graph representation . 282 Glossary

Containment graph: Th e containmen t grap h o f a se t o f object s ha s a verte x cor - responding t o eac h objects , an d a directe d edg e fro m x t o y i f objec t x contain s object y.

Containment representation: A representation o f a graph a s a containment graph .

Contraction: Th e grap h forme d b y contractio n o f a n edg e (x , y) replace s th e pai r of vertices x , y b y a new vertex z , with N(z ) = N(x) U N(y).

Convex graph: Bipartite grap h suc h that vertice s o f one colo r clas s can be ordere d so that fo r ever y verte x v fro m th e othe r colo r class , N(v ) occur s consecutivel y i n the ordering .

Convex fan: A polygon P i n whic h ther e i s a singl e endpoin t v wit h th e propert y that ever y other endpoint w o f P i s either a neighbor o f v on P, o r the line segment connecting v an d w i s entirely insid e o f P.

Convex vertex: Give n a mode l fo r a visibilit y graph , a vertex i s conve x i f i t map s to a n endpoin t correspondin g t o a polygon angl e o f less than 18 0 degrees.

Cook's theorem: Th e theore m provin g th e NP-completenes s o f CNF-satisfiability . Almost al l NP-completeness proof s eventuall y deriv e fro m Cook' s theorem .

Cotree: A representation o f a cograph. Vertice s correspond t o leave s o f a tree, an d internal node s o f th e tre e ar e labele d wit h 0 an d 1 . Tw o vertice s u,v o f G ar e adjacent i f and onl y i f the least commo n ancesto r o f u and v in the cotree has labe l 1. G can be represented b y a cotree i f and onl y i f G i s a cograph .

Counting problem: Th e proble m o f determining th e numbe r o f graphs i n a class.

Covering graph: Th e undirecte d grap h forme d b y removin g direction s fro m th e transitive reductio n o f a partial order .

Cowly perfect: Litera l translatio n o f on e o f my favorit e name s fo r a grap h class , vachement parfait , whic h unfortunatel y di d no t find a plac e i n thi s book . Thos e interested i n correc t name s fo r grap h classe s coul d debat e whethe r o r no t suc h a class should b e bull-free .

Cutset: A set S o f vertices suc h that G - S i s disconnected .

Cycle: A sequenc e o f vertices i>i , i>2,..., Vf c such that fo r i i n the rang e l../c-l , Vi is adjacent t o ^+i, an d Vk is adjacent t o v\.

Cycle-free partial order: A partial orde r suc h that th e underlyin g graph i s chordal.

Decision problem: A proble m suc h tha t th e answe r i s either ye s o r no . Th e ter m NP-complete applie s b y definitio n t o decisio n problems . Glossary 283

Degree: Fo r th e purpose s o f thi s boo k (i n whic h self-loop s ar e neve r used) , th e number o f edges out o f a vertex .

Deletion problem: Th e deletio n proble m fo r a clas s C o f graphs ask s fo r th e min - imum numbe r o f edge s necessar y t o delet e fro m a n inpu t grap h G s o tha t th e resulting grap h i s in C.

Dense: Havin g man y edges . Ofte n use d i n a n informa l sense , but sometime s use d to mea n numbe r o f edges i s ©(n 2).

Descendant: A vertex d i n a rooted tre e i s a descendan t o f v i f the pat h fro m th e root t o d goes through v.

Deterministically k-decomposable: A graph i s deterministically decomposabl e wit h respect t o a decompositio n i f fo r ever y possibl e choic e o f recursiv e decompositio n steps, ever y prim e componen t ha s siz e at mos t k.

Diameter. Th e diamete r o f a graph i s the maximu m distanc e betwee n an y pai r o f vertices.

Digraph: Directe d graph .

Dilworth Number: Th e maximu m cardinalit y o f a set S o f vertices i n a graph suc h that fo r al l pairs o f vertices x , y i n 5, som e neighbo r o f x i s not i n N[y] and som e neighbor o f y i s not i n N[x].

Dimension: Th e minimum number o f linear extensions o f a partial order which give the partial order a s their intersection. I n other words, the minimum number o f lists of vertices o f a partial order P suc h that x < y i f and only i f x precede s y in all lists.

Disk intersection graph: Intersection grap h o f disk s i n the plane , wher e a dis k de - notes a circl e plu s the interio r o f a circle ; thus, i f on e dis k contain s th e other , th e corresponding vertice s ar e adjacent .

Distance: Th e distance betwee n x an d y i s the lengt h o f the shortest bat h betwee n x an d y.

Distance hereditary graph: A grap h suc h tha t fo r ever y pai r o f vertice s x , y, al l chordless paths fro m x to y hav e the same length. Relevanc e to this book come s in part fro m a n elimination schem e characterization; a connected grap h G i s distance hereditary i f and only i f it can be reduced to a single vertex by repeated eliminatio n of twins o r pendant vertices .

Distance labeling: Generalizatio n o f implici t representatio n t o th e distanc e func - tion. Eac h verte x i s assigne d a label , an d th e distanc e betwee n x an d y ca n b e computed usin g only the labe l informatio n store d a t x an d y. 284 Glossary

Dominating pair. A pai r o f vertice s x , y i s a dominatin g pai r i f fo r al l vertice s z , every path fro m x t o y contain s a t leas t on e neighbor o f z.

Dominating set: A set S o f vertices suc h that ever y verte x o f V - S i s adjacent t o at leas t on e verte x i n S. Decidin g whethe r a grap h ha s a dominatin g se t o f siz e input numbe r k i s NP-complete. I n the optimization version , i t i s necessary to find the smalles t cardinalit y dominatin g set .

Domination graph: A grap h G with the propert y tha t fo r ever y induce d subgrap h H o f G , there i s a pair o f vertices x, y suc h that N(x) C N[y ] i n H.

Dot-product representation: Representatio n o f a grap h i n whic h eac h verte x i s as- sociated wit h a vector , an d vertice s ar e adjacen t i f and onl y i f the dot-produc t o f the corresponding vector s i s at leas t 1 . Th e dot-product dimensio n i s the minimu m number o f element s i n vector s whic h ca n b e use d t o represen t G. Representin g graphs wit h constan t dot-produc t dimensio n implicitl y i s open.

Doubly : A grap h i s doubly chorda l i f there i s an orderin g o f the ver - tices v\V2-.v n suc h that eac h vi i s simplicial i n the graph induce d b y Vi..v n, an d Vi has a maximal neighbo r i n the grap h induce d b y Vi+i..v n.

Doubly convex graph: Alternate nam e fo r biconve x graph .

Dually chordal graph: Grap h whic h ca n b e ordere d v\..v n suc h that eac h Vi has a maximal neighbo r i n the grap h induce d b y Vi..v n.

Edge: A connectio n between two vertices. Thi s can be written as an unordered pai r or a s u - v fo r a n undirected graph , an d a s an ordere d pai r o r u— > v fo r a directe d graph.

Efficient representation: Thi s i s a n informa l ter m use d throughou t th e book . I n general, i t mean s tha t thi s for m o f representatio n ha s importan t advantage s ove r standard methods fo r representing a class of graphs, even though the representatio n might no t b e space optimal, an d adjacenc y testin g might no t take constant tim e o r be distributed t o bits store d a t vertices .

Elimination scheme: A n orderin g v\V2-.v n o f vertice s o f a graph , suc h tha t eac h vertex Vi satisfies som e particular propert y P i n the grap h induce d b y Vi..v n.

Envelope: Th e envelop e o f a set o f lin e segment s consist s o f the unio n o f line sub- segments o n the infinit e fac e o f the unio n o f the segments .

EPT graph: Intersection grap h o f paths i n a tree, where w e say two paths intersec t if they shar e a common edg e (i.e . tw o paths whic h intersec t onl y a t a vertex mus t correspond t o nonadjacen t vertices) . Glossary 285

External visibility graph: A grap h i n whic h vertice s correspon d t o endpoint s o f a polygon, an d tw o vertice s ar e adjacen t i f the lin e segmen t connectin g the m i s en - tirely outsid e the polygon . f-diagram: Structur e use d i n a representation o f co-comparability graphs . Vertice s correspond t o curves connecting points o n two parallel lines , with curve s intersect - ing (a t leas t once ) i f an d onl y i f th e correspondin g vertice s ar e adjacent . Thi s representation i s possible i f and onl y i f G i s a co- .

Feedback vertex set: A set S i s a feedbac k verte x se t i f G - S i s acyclic. Th e feed - back verte x se t proble m ask s fo r the minimu m cardinalit y feedbac k verte x set ; th e decision versio n o f feedback verte x se t i s NP-complete .

Ferrers digraph: A directed grap h suc h that fo r al l pair s x , y, eithe r N[x ] contain s N(y) o r N[y] contains N(x).

Ferrers dimension: Th e Ferrer s dimensio n o f a directe d grap h G i s the minimu m number o f Ferrers digraphs whic h yiel d G a s their intersection .

Fill-in scheme: A method fo r constructin g a graph b y repeatedl y addin g edge s t o the curren t grap h usin g som e se t o f rules.

Generalized implicit graph question: Th e open questio n a s to whether ever y hered - itary clas s o f graphs with 2^ n) member s has a generalized implici t representation .

Generalized implicit representation: Fo r a graph clas s with 2^ n^ graph s o n n ver - tices, a representation whic h store s 0(f(n)/n) bit s a t eac h vertex , suc h that adja - cency betwee n x an d y ca n be tested usin g onl y the bit s stored a t x an d y.

Global information: Informatio n representin g a graph i s global i f it can be accesse d from mor e than on e specifi c verte x o f the graph .

Graph: An ordered pai r (V , E), wher e V i s a set o f vertices and E i s a set o f edges. Edges ar e unordere d pair s o f vertices.

Graph class: A (usuall y infinite ) se t o f graphs.

Graph isomorphism: Th e proble m o f determining whethe r tw o graphs ar e isomor - phic. N o polynomial algorithm fo r graph isomorphism i s known, and graph isomor - phism i s not know n to b e NP-complete .

Greedy algorithm: A n algorithm whic h add s to its current solutio n sequentiall y ac - cording t o som e criterion , an d neve r backtrack s b y removin g a n elemen t fro m it s current solution .

Greedy coloring: The assignmen t o f colors to vertices accordin g to a n order , whic h assigns th e nex t verte x v th e smalles t colo r numbe r whic h ha s no t alread y bee n assigned to a neighbor o f v. I n the context o f circular-arc graph coloring , the orde r 286 Glossary corresponds t o nex t ar c i n the circular-ar c model .

Grid: Grid i s used i n tw o differenc e sense s i n this book . I f a geometrically define d class o f graphs i s defined, placin g the model on a grid means assigning integer coor - dinates to all objects used in the definition. Th e grid is also a special graph in which endpoints hav e label s (b,c) fo r 6 , c in som e range s l..i,l.. j an d tw o vertice s (6 , c) and (d , e) ar e adjacen t i f and onl y i f b = d and c differs fro m e by 1 , or c = e an d b differs fro m d by 1 . A graph i s a grid graph i f it i s an induced subgraph o f the grid.

Grid intersection graph. Intersectio n grap h o f a se t o f lin e segment s i n the plane , where eac h lin e segment i s either horizonta l o r vertical .

Hamilton cycle: A Hamilton cycl e i n a grap h i s a cycl e whic h goe s through ever y vertex exactly once. Als o called Hamilton circut. Th e problem o f deciding whethe r a grap h ha s a Hamilto n cycl e i s NP-complete, a s i s deciding whethe r a graph ha s a similarl y define d Hamilto n path .

Height: I n this book, the height o f a poset i s the length o f a longest path (o r size of a maximu m chain ) i n the poset . Thus , w e would sa y a bipartite pose t ha s heigh t 1, while this i s called heigh t 2 in som e texts.

Helly property: A set ha s the Hell y property i f for al l subsets S suc h that eac h pair of object s i n S ha s a commo n intersection , the n th e entir e se t S ha s a t leas t on e common intersectio n point . Fo r intersectio n representation s o f graphs, thi s mean s that al l cliques share a common poin t i n the representation .

Hereditary: A clas s o f graph s i s hereditar y i f fo r ever y G i n th e clas s an d ever y vertex v o f G , G - v i s also i n the class .

Hole: Chordles s cycl e o f lengt h a t leas t 4 . Thi s boo k allow s hole s t o b e o f eve n length, whil e som e papers reserv e the nam e fo r od d lengt h chordles s cycles .

Homogeneous Pair. Verte x set s A,B suc h tha t |A | + |JB | > 2 , A i s a modul e o f G — B, an d B i s a module o f G — A. Als o known a s a 2-module .

Homogeneous set: Alternativ e nam e fo r module .

House: Th e specifi c grap h o n 5 vertices consistin g o f a cycl e o n 4 vertices, an d a 5th vertex adjacen t t o 2 neighbors i n the cycle .

Hypergraph: A differ s fro m a graph i n that eac h edg e (calle d a hyper - edge) i s a subset o f any number o f vertices, rather tha n bein g a subset o f exactly 2 vertices.

Identity matrix: A square matrix wit h I s on the mai n diagonal , an d O s everywhere else. Glossary 287

Immediate predecessor/successor. I n a partial order , thes e ar e vertice s whic h hav e edges to/from v i n the transitive reduction .

Implicit graph conjecture: Th e conjectur e tha t ever y hereditar y clas s o f graph s which ha s 2°(nlogn) graph s o n n vertice s mus t hav e a n implici t representation .

Implicit representation: Grap h representation whic h stores O(logn) bits per vertex , such that adjacenc y betwee n x an d y ca n be tested usin g onl y the bit s store d a t x and y.

Indegree: The numbe r o f edges into a vertex o f a directed graph .

Independent set: A se t o f mutuall y nonadjacen t vertices . Determinin g whethe r a graph ha s a n independen t se t o f siz e inpu t paramete r k i s NP-complete . I n th e optimization problem , yo u as k fo r th e maximu m cardinalit y independen t set .

Induced subgraph: The subgraph induce d b y a set S o f vertices i n a graph G has S as its vertex set , with tw o vertices adjacen t i n the induce d subgrap h i f and onl y i f these vertices ar e adjacen t i n G.

Induced visibility graph: A grap h whic h i s a n induce d subgrap h o f som e visibilit y graph.

Intersection class: A graph clas s whic h correspond s exactl y t o intersectio n graph s of a particular typ e o f object .

Intersection graph: Th e intersectio n grap h o f a se t o f object s ha s a verte x corre - sponding t o eac h object , wit h x an d y adjacen t i f an d onl y i f th e correspondin g objects hav e a nonempty intersection .

Interval dimension: Th e interva l dimensio n o f a partia l orde r P i s the minimu m number o f interval order s whic h yiel d P a s their intersection .

Interval filament graph: Th e intersectio n grap h o f a se t o f curve s connectin g end - points o n a fixed line L, where al l curves are required to stay abov e L i n the plane , and betwee n th e tw o endpoints .

Interval graph: Intersection grap h o f intervals o n the line .

Interval number. Th e interva l numbe r o f G i s the smalles t i suc h tha t G ca n b e represented usin g i interval s fo r eac h vertex, wit h vertice s x an d y adjacen t i f an d only i f at leas t on e o f x's interval s has a nonempty intersectio n wit h a t leas t on e o f y's intervals .

Interval order: A partia l orde r i s a n interva l orde r i f element s ca n b e associate d with intervals on the line, such that x < y i f and only i f the interval associated wit h x lie s entirely to the lef t o f the interva l associate d wit h y. 288 Glossary

Inversion-free: A n inversion-free orderin g o f a graph i s an ordering V\V2..v n of the vertices, suc h that fo r al l i < j < k < / , i f there i s an edge fro m vi to Vk and Vj to vi, ther e mus t b e an edg e fro m vi to vi. A graph i s inversion-free i f it admit s a n inversion-free ordering .

Isomorphic: Tw o graphs Gi,G2 ar e isomorphic i f there i s a one-to-one, onto map - ping / fro m vertice s o f G\ t o vertices o f G2, such that x i s adjacent t o y i n G\ i f and onl y i f f{x) i s adjacent t o f(y) i n G2. Grap h isomorphis m i s a famou s ope n problem, in the sense that i t is not known to be either polynomially solvable or NP- complete. A clas s o f graphs i s isomorphism-complete i f solvin g th e isomorphis m problem o n the class with a polynomial tim e algorith m woul d impl y a polynomia l time algorith m fo r general grap h isomorphism .

Isooriented: A set o f objects whos e principa l axe s ar e either mutuall y paralle l o r perpendicular.

Join decomposition: A for m o f graph decompositio n base d o n splits ; a spli t i s a partition o f the verte x se t int o S\ , S% suc h tha t bot h S\ an d $ 2 hav e a t leas t 2 vertices, an d edge s whic h g o fro m S\ t o 5 2 for m a complet e bipartit e graph . I f G ha s a spli t £1 , S2, G i s decomposed int o Si U m, S2 U m, wher e m i s a marke r vertex whic h has edges to exactly thos e vertices whic h have neighbors i n the other partition class . Th e two sets Si U m an d S2 U m ar e then decompose d recursively . k-tree: A graph whic h can be constructed fro m a fc-clique by repeatedly addin g a vertex adjacen t exactl y to some fc-clique in the current tree . k-module: A se t M o f vertice s whic h ca n b e partitione d int o a t mos t k subset s M1..Mk suc h that eac h Mi i s a module i n G - M U M*.

Kf. A clique on i vertices.

Kij: A with i vertices in one color class, and j i n the other.

Labeled graph: A labele d grap h ha s name s attache d t o vertices . Fo r example , i f we hav e tw o graphs, on e of which correspond s t o the path 1,2, 3 and the other t o the pat h 1,3,2 , thes e ar e differen t labele d graph s (the y hav e differen t answer s t o the questio n o f whether verte x 1 is adjacen t t o 2) , althoug h th e tw o graphs ar e isomorphic.

Leaf. In an undirected tree , a vertex o f degree 1 . In a rooted tree, a vertex with no children.

Lexicographic breadth first search: An important restrictio n o f breadth firs t search , designed originall y fo r recognizin g chorda l graphs . Initially , al l vertices ar e placed in a single set. Th e algorithm repeatedl y remove s a vertex v fro m th e last curren t set, an d divides al l subsets int o neighbor s o f v and nonneighbors o f v, placin g the subset o f nonneighbors immediatel y befor e the subset o f neighbors. Glossary 289

Line graph: Th e lin e grap h o f G ha s a verte x fo r eac h edg e o f G , an d a n edg e between tw o vertices o f the lin e graph i f and onl y i f the correspondin g edge s hav e a commo n endpoint . H i s a lin e grap h i f an d onl y i f H i s the lin e grap h o f som e graph G.

Line-of-sight graph: Give n a se t o f objects , a line-of-sigh t grap h ha s a verte x fo r each object an d an edge between vertices i f some line segment between these object s avoids all other objects. I n some cases, restrictions are placed on the segments, such as requiring the lin e segment t o be horizontal .

Linear extension: Fo r a partial orde r P , a total orderin g T o f elements o f P suc h that wheneve r x < y i n P, x < y i n T.

Linear matrix: A 0/1 matri x whic h doe s no t contai n an y induce d 2x2 induce d submatrix wit h al l values equal to 1 .

Linear time: Tim e proportional to the siz e o f the input plu s the siz e o f the output .

Linked list: A fundamental dat a structur e i n computer science . I f items ar e store d in a linke d list , reachin g the ith. item i n the lis t require s steppin g throug h eac h o f the i- 1 preceding item s i n the list .

Literal: I n a satisfiability problem , a literal i s either x o r x fo r som e variable x.

Local complementation: Loca l complementatio n o f G a t v change s a grap h b y re - placing the subgrap h induce d b y neighbors o f v with it s complement .

Local information: Informatio n associate d wit h specifi c vertice s o f a graph .

Local Structure: Alternativ e nam e fo r implici t representation . log: logx is defined (i n the tradition o f computer science ) to be the base 2 logarithm of x.

Matching: A se t o f edge s i s a matchin g i f eac h verte x i s a n endpoin t o f a t mos t one edg e i n the set . Computin g a maximu m cardinalit y matchin g ca n b e don e i n polynomial time , bu t finding a n 0(n 2) algorith m fo r matchin g woul d b e consid - ered a n extraordinar y achievement , s o that i f yo u ca n sho w a proble m i s a s har d as maximu m matchin g yo u hav e give n som e evidenc e o f the difficult y o f finding a linear tim e algorithm .

Maximal: A set S i s maximal with respect t o a property i f there i s no set S' whic h properly contain s S an d ha s the property .

Maximal neighbor. A maximal neighbo r o f v i s a neighbo r x o f v suc h that fo r al l neighbors w o f v, N(w) i s a subset o f N[x\. 290 Glossary

Maximum: A set S i s maximum wit h respec t t o a property i f there i s no se t wit h larger cardinalit y whic h ha s the property .

Maximum cut: An NP-complete graph problem, askin g whether there is a partition V\, V2 of the vertice s suc h tha t a t leas t k edge s hav e on e endpoin t i n V\ an d th e other endpoin t i n V^ . Als o known a s max cu t an d simpl e max cut .

Minimal: A set S i s minimal with respect t o a property i f there i s no proper subse t of S whic h ha s the property .

Minimal fill problem: Th e proble m o f finding a set S o f edges to ad d t o G s o that G U S i s chordal, an d there i s no proper subse t S' o f S suc h that GU S f i s chordal. A se t S of edge s i s a minima l fill se t i f an d onl y i f ever y edg e o f S i s the uniqu e chord i n som e 4-eycl e o f G U S.

Minimal separator: Unfortunately , thi s ter m ha s severa l differen t meaning s i n th e field. I n thi s book , a se t S i s a minimal separato r i f there i s some pai r o f vertice s a, b such tha t a and b are i n differen t component s o f G — 5, an d fo r ever y prope r subset S' o f 5 , a an d b are i n th e sam e componen t of G — S. Not e tha t thi s i s not identica l to a cutset S suc h that n o proper subse t o f 5 i s a cutset, whic h i s an alternative usag e o f the term minima l separator .

Minimum: A se t S i s minimum wit h respec t t o a property i f there i s no se t whic h has smalle r cardinalit y wit h th e property . Ever y minimu m se t i s minima l fo r a property, bu t a set ca n be minima l an d no t minimum .

Minimum fill problem: Th e proble m o f minimizing the numbe r o f edges which ca n be adde d t o G s o that th e grap h i s chordal. Th e decisio n versio n i s NP-complete.

Model: Man y o f the grap h classe s discusse d i n this boo k ar e describe d i n terms o f relations (intersection , containment, visibility , and others) betwee n a set o f objects. In suc h cases , w e say that w e are give n a model i f w e are give n the objects , rathe r than bein g give n the grap h i n a standard forma t suc h a s adjacenc y list s o r a n ad - jacency matrix .

Modular decomposition: Alternat e nam e fo r substitutio n decomposition .

Module: A se t M o f vertice s suc h tha t fo r ever y verte x v o f V - M , v i s eithe r adjacent t o ever y vertex o f M, o r v i s adjacent t o n o vertex o f M.

N(v), N[v]: N(u) i s the se t o f vertices adjacen t t o v, an d N[v] includes both v an d N(v).

N-free poset: A partia l order such that th e transitive reduction contains no induced AT, where a n N i s a se t o f fou r vertice s u,v,w,x wit h edge s (w,u), (x,u), (x,v), forming a shape roughl y equa l to the lette r T V i f u and v ar e placed o n top wit h w and x o n bottom . Glossary 291

Neighborhood: Th e se t o f vertices whic h ca n b e reac h fro m a vertex usin g a singl e edge.

NLC-width: Th e NLC-width o f a graph G is the minimum number k o f labels which can b e use d t o construc t G fro m singl e vertex labele d graph s usin g the unio n an d relabel operations . Th e relabe l operatio n assign s al l vertice s wit h curren t labe l i the labe l j. Th e unio n operatio n take s tw o disjoin t graph s G\fi

Node: Alternativ e nam e fo r vertex , use d especiall y i n trees.

Nondetermistically k-decomposable: A graph is nondeterministically /c-decomposabl e with respec t t o a decompositio n i f there exist s a sequenc e o f decompositio n step s which decompose s the graph int o prime component s o f size at mos t k.

NP: A decisio n proble m i s i n N P i f there i s a polynomia l siz e certificat e fo r ever y instance o f the proble m fo r whic h the answe r i s yes.

NP-complete: A proble m X i s NP-complet e i f i t i s i n NP , an d ever y proble m i n NP ca n b e polynomiall y transforme d t o X. Thi s i s a larg e topic whic h canno t b e treated full y i n this book ; reader s unfamilia r wit h the term ar e advise d to consul t [206] fo r mor e information . I n general , NP-completenes s o f a proble m i s use d a s strong evidenc e o f the intractabilit y o f the problem ; a t th e least , a polynomial al - gorithm to solve an NP-complete problem would require an enormous breakthrough. o: f(n ) i s o(g(n) ) i f fo r ever y constan t c there exist s a constan t n o suc h tha t fo r all n > no, f(ri) < cg(n). Intuitively , thi s means that f(n ) grow s more slowl y tha n g(n) eve n i f constants ar e ignored. Fo r the purpose s o f this book , the simple r defi - nition that f(n ) i s o(g(n)) wheneve r f(n ) i s 0(g(n)) bu t g(n ) i s not 0(f(n) ) wil l b e equivalent fo r al l function s studie d here , though th e definition s ar e no t equivalen t in general . A typical us e i s posing the questio n o f finding a n o(f(n) ) algorith m t o solve a problem, wher e the fastes t know n algorith m ha s running tim e B(f(n)) .

0: f(n) i s 0(g(n)) i f there exist constants c , no such that fo r all n > no , f(n) < cg(n). Intuitively, g(n ) grow s at leas t a s quickly a s f(n), i f constant factor s ar e ignored .

Optimization problem: A proble m i n which the goa l i s to find a maximum o r min - imum set . Man y problem s hav e a decisio n (yes/no ) o r optimizatio n versio n o f th e problem.

Order notation: Mathematica l notatio n designe d to compar e growt h rate s o f func - tions, whil e ignorin g constan t factors . I n this book , w e will us e the symbol s o , O , Q, and O , whic h correspon d t o <,<,>,= i f we ignore constant factors .

Ordered chordal graph: Give n a grap h G an d a n orderin g O o f th e vertices , G i s ordered chordal i f there is no chordless cycle C o f length at leas t 4 such that vertice s 292 Glossary occur i n the sam e order i n C a s in O.

Orientation: Assignmen t o f directions to edge s o f an undirecte d graph .

Outdegree: The numbe r o f edges out o f a vertex i n a directed graph .

Outerplanar graph: A graph wit h a planar embeddin g suc h that ever y vertex i s on the oute r face .

Overlap graph: The overla p grap h o f a set o f objects ha s a vertex fo r eac h object , and a n edg e betwee n vertice s i f and onl y i f the object s hav e a nonempty intersec - tion, an d neithe r objec t contain s the other .

Pim. A chordless path o n i vertices .

Parallel module: A module whic h induce s a disconnected graph .

Parent: I n a rooted tree, the next vertex on the path to the root i s called the parent.

Partial k-tree: A (no t necessaril y induced ) subgrap h o f a k-tree.

Partially complemented representation: A form o f representation i n which fo r eac h vertex u , you are given either a list o f neighbors o f v, o r a list o f nonneighbors o f v.

Partial order. Normally , a partia l orde r o n a se t o f element s i s a relatio n whic h is reflexive , transitive , an d antisymmetric . Sinc e thi s boo k deal s graph s withou t self-loops, th e term s partia l orde r an d transitiv e grap h ar e sometime s viewe d a s equivalent.

Partition: Divisio n o f a se t int o subsets , suc h that eac h elemen t i s i n exactl y on e subset. Th e subset s ar e ofte n referre d t o a s blocks o f the partition .

Partitioning: I n general, the process o f subdividing block s of a partition base d on a particular rule . I n this book, w e focus o n partitions which correspond to subsets o f the vertice s o f a graph, an d a subdivision rul e whic h divide s block s int o neighbor s and nonneighbor s o f some vertex x whic h i s not i n the block .

Path: A sequence o f vertices i>i , V2, ••, ^n suc h that eac h Vi is adjacent t o Vi+i.

Path graph: Intersectio n graph s o f undirecte d path s i n undirecte d trees . Differ s from EP T graph s i n the path s whic h shar e a commo n tre e nod e bu t n o commo n tree edge correspond to adjacent vertice s in a path graph, an d nonadjacent vertice s in an EPT graph .

Path orderable graph: A graph whic h admit s a n ordering v\V2.*v n suc h that fo r al l sets o f 3 independent vertice s wit h Vi < Vj < Vk in th e ordering , ever y pat h fro m Vi to Vk goes through a t leas t on e neighbor o f Vj. Glossary 293

Pathwidth: Th e pathwidt h proble m trie s t o minimiz e th e siz e o f th e maximu m clique ove r al l interva l completion s o f a graph . Determinin g whethe r a G ha s a n interval completion with maximum clique size k for input variable k is NP-complete.

Pendant vertex: A vertex o f degree 1 .

Perfect elimination ordering/scheme: Thes e terms , (perfec t eliminatio n schem e and perfec t eliminatio n orderin g ar e use d interchangeably ) refe r t o a n eliminatio n scheme define d b y successiv e remova l o f a simplicia l vertex . A graph i s chordal i f and onl y i f it ha s a perfect eliminatio n scheme .

Perfect elimination bipartite graph: A grap h i n which al l edges can be removed b y repeatedly removin g both endpoint s o f a bisimplicial edge .

Perfect graph: A graph G i n whic h fo r ever y induce d subgrap h H o f G , th e chro - matic numbe r o f H i s equal to the siz e o f the larges t cliqu e i n H.

Perfect matching: A matching i s perfect i f every vertex i s an endpoint o f some edge in the matching .

Perfectly orderable graph: A grap h G whic h ha s a n orderin g O wit h th e propert y that fo r ever y induced subgraph H o f G, greedy coloring o f H whic h color s vertices in the orde r whic h the vertice s appea r i n O produces a n optimal coloring .

Permutation diagram: Intersectio n mode l (a s describe d below ) o f a permutatio n graph.

Permutation graph: Intersectio n grap h o f lin e segments , wher e eac h lin e segmen t connects a point o n lin e L\ wit h a point o n the paralle l lin e L2.

Phylogeny problem: Th e problem o f finding the tree describing the evolution o f dis- tinct specie s fro m a commo n ancesto r species . I n th e perfec t phylogen y problem , distinct specie s ar e assigne d set s o f attributes, an d yo u wan t a n evolutionar y tre e such that eac h interna l nod e i s given a se t o f attributes, an d th e se t o f nodes wit h a give n attribute for m a connected subtre e o f the evolutionar y tree .

PI graph: Intersection graph s o f triangles suc h that eac h triangle ha s one endpoin t on lin e Li, an d tw o endpoints o n the paralle l lin e L2.

PI* graph: Intersection graph o f triangles such that al l endpoints are on two parallel lines Li, L2- Differ s fro m P I graph s i n that som e triangles ca n hav e two endpoint s on Li, whil e others hav e two endpoints o n L 2.

Planar graph: A grap h whic h ca n be drawn i n the plane suc h that n o pair o f edges crosses each other .

Polygon-: Intersection grap h o f a set o f polygons embedde d i n a circle. 294 Glossary

Poset: Alternat e nam e fo r partia l order .

Postorder. A postorder traversal o f a tree visits all children o f a node before visitin g the nod e itself .

PQ-tree: A tree whic h i s used t o represen t possibl e ordering s o f a set ; element s o f the se t ar e store d a s leave s o f the tree . Th e se t o f lea f descendant s o f a particula r internal node i must occu r consecutively i n the ordering. Interna l nodes are labeled either P o r Q ; childre n o f a P nod e ca n b e permuted i n an y orde r wit h respec t t o the final output list , whil e children o f a Q node are assigned a n ordering, an d mus t appear i n either thi s orde r o r i n reverse orde r i n the output list .

Prime: Indecomposabl e wit h respec t t o a particular for m o f graph decomposition .

Probe interval graph: A grap h i n whic h eac h verte x correspond s t o a n interval , and eac h verte x i s labele d eithe r a s a prob e o r nonprobe . Tw o vertice s ar e adja - cent i f the correspondin g interval s hav e a nonempty intersection , an d a t leas t on e of the vertices is a probe. Thes e arose from a n application i n computational biology .

Projective plane: Althoug h the theory o f projective plane s i s quite a broad subject , they ar e use d i n onl y on e wa y i n thi s book . W e us e th e fac t tha t fo r infinitel y many value s n, i t i s possible to create a 0/1 matri x M wit h n row s and n columns , such that eac h row has ^(n1/2) 1 entries, and eac h pair o f rows ri, r2 has exactly 1 common colum n c such that M[ri , c] — M[r2, c] = 1 .

Proper circular-arc graph: Intersection grap h o f a set o f arcs o n a circle , such tha t no arc contain s anothe r ar c i n the set .

Proper interval graph: Intersection grap h o f a set o f intervals on the line , such tha t no interva l contain s an y othe r interval . Th e clas s i s equivalen t t o uni t interva l graphs.

Pruning sequence: A n elimination schem e defined b y successive removal o f pendant vertices o r one vertex fro m a pair o f twins. G has a pruning sequenc e i f and onl y i f G i s distance hereditary .

Pseudoline: Pseudoline s connec t point s i n the plane via curves, and hav e the prop- erty that eac h pair o f pseudolines cros s each other a t mos t once .

Queue: A data structur e whic h allow s the operation s insertio n an d remova l o f the vertex whic h ha s been i n the queu e fo r th e longes t amoun t o f time.

Quotient graph: Th e quotien t grap h o f a prim e modul e M wit h respec t t o sub - stitution decompositio n ha s on e vertex fo r eac h maxima l prope r submodul e o f M , with tw o vertice s adjacen t i n th e quotien t grap h i f ther e ar e edge s betwee n th e corresponding maxima l submodule s i n the origina l graph . Glossary 295

Random graph: For thi s book , a random grap h i s the resul t o f choosin g eac h edg e to b e i n the grap h o r no t i n the grap h wit h equa l probability .

Realizer. A se t o f linear extension s o f a partial orde r P whic h produc e P a s thei r common intersection .

Recognition problem: Th e problem o f determining whethe r a graph i s a member o f a clas s o f graphs.

Reconstructible vertex: A vertex i s reconstructible fro m a se t o f information i f ad - jacencies t o al l other vertice s ca n b e deduce d fro m thi s information . Thi s i s use d in a more specifi c manne r whe n dealin g with AT-fre e co-AT-fre e graphs , wher e w e specify a se t o f rules whic h allo w the determinatio n o f adjacencies t o a vertex .

Rectangle number: Th e rectangle number o f G is the minimum numbe r k such that every verte x ca n b e associate d wit h k isooriente d rectangles , an d x i s adjacen t t o y i f and onl y i f some rectangle associate d wit h x ha s a nonempty intersectio n wit h some rectangle associat e wit h y.

Rectangle overlap graph: Intersectio n grap h o f isooriente d rectangula r region s i n the plane . W e not e tha t a rectangl e i s considere d a s a regio n o f space , s o that i f one rectangle contains another they are considered to have a nonempty intersection .

Reduced matrix: Th e reduce d M' matri x o f a T-fre e matri x m i s a 0/1 matri x suc h that 1 entries o f M' correspon d to entries o f M whic h are 1 , and ar e not redundan t 1 entries .

Redundant 1: A redundant 1 in a T-fre e matri x i s a 1 entry whic h woul d creat e a T i f the entr y wa s change d t o 0 . Thes e I s ar e calle d redundant , sinc e i t i s unnec- essary to store the positions o f redundant I s in our representation o f T-free matrices .

Refinement: Th e process o f taking a partition o f a set, an d gettin g a new partitio n by dividing set s into subsets .

Representation problem: Th e problem o f finding a form o f representation fo r a class of graphs whic h satisfie s som e conditio n (e. g finding a n implici t representation , o r finding a space-optima l representatio n whic h allow s constan t tim e adjacenc y test - ing). Thi s i s separate fro m th e construction problem , i n that i t deal s only with th e existence o f suc h a representatio n rathe r tha n constructio n o f representation s fo r individual graphs .

Representative graph: Alternate nam e fo r quotien t graph .

Robust algorithm: A robust algorith m fo r solvin g a problem P o n an input clas s C is required to always answer P correctl y when the input i s in class C, and when the input i s not in C may either answer P correctl y or answer that the input i s not in C.

Rooted tree: A rooted tre e i s a directed graph , whic h has a n underlying tre e an d a special vertex r calle d the root. Direction s ar e assigne d s o that ever y vertex o f the 296 Glossary tree i s reachable vi a a directed pat h fro m r .

Sandwich problem: Give n a se t o f edge s E\ an d a se t o f edge s E2 th e sandwic h problem fo r a clas s o f graphs ask s whethe r ther e i s any grap h G i n the clas s suc h that G contains ever y edg e fro m E\, an d ever y edg e i n G comes fro m E2.

Satisfiability: Th e proble m o f determinin g whethe r a Boolea n formul a give n i n conjunctive norma l for m ha s a trut h assignmen t suc h tha t th e entir e formul a i s evaluated a s true. Thi s wa s the first proble m show n to b e NP-complete .

Semiorder. A partial orde r suc h that eac h elemen t e can b e mappe d t o a numbe r w(e), and there i s a fixed threshold t such that x < y i f and onl y i f w(y) — w(x) > t.

Separator. Alternat e nam e fo r cutset .

Series module: A module whic h induce s a subgraph M suc h that th e complemen t of M i s disconnected .

Series-parallel graph: Although there ar e slightly differen t definition s co-existin g i n the literature , i n this boo k a graph i s series-parallel i f all edges can b e removed b y a sequenc e o f removal o f degree 1 vertices, and remova l o f degree 2 vertices v wit h neighbors w,x followe d b y additio n o f an edg e w,x i f such a n edg e doe s no t exis t already.

Series-parallel poset: A partial orde r whic h ca n be constructed fro m singl e elemen t partial order s usin g the operations disjoin t unio n an d join, wher e join make s ever y element o f Pi < ever y elemen t o f P2. Equivalen t t o partial order s with underlyin g .

Sibling: Vertice s i n a rooted tre e whic h hav e a common parent .

Sign pattern: A sig n patter n fo r a sequenc e pi,,..,^ o f polynomia l function s i s a sequenc e si , ..,Sk o f I s an d -I s suc h tha t ther e i s som e assignmen t t o variable s which make s ever y pi positiv e i f and onl y i f s ^ = 1 .

Simple matrix: A matrix suc h that n o pair o f columns i s identical .

Simple vertex: A vertex v suc h tha t neighbor s o f v induc e a clique , an d fo r eac h pair o f neighbors w,x o f v eithe r N(i> ) C N[iu ] o r N(u> ) C N[f] .

Simplicial vertex: A vertex v suc h that N[v ] induces a clique.

Sink: A vertex i n a directed grap h o r partial orde r whic h ha s n o outedges.

Skew partition: A skew partition o f a graph i s a partition o f the vertex set into fou r nonempty subse t A,B,C,D suc h tha t ther e i s a n edg e fro m ever y verte x o f A t o every vertex o f B, an d there is no edge from an y vertex of C to any vertex o f D. Re - cursive decompositio n usin g ske w partition finds a ske w partition A,B,C,D, an d recursively decompose s the subgraphs induce d b y A , B, C, b y A , £?, D1 b y A, C, D, Glossary 297 and b y B, G , D.

Source: A verte x i n a directe d grap h o r partia l orde r whic h ha s n o inedges .

Space optimal: A representation o f a graph clas s which has f(n) graph s o n n vertice s is space optima l i f i t use s 0(log(f(n) ) bit s t o stor e eac h grap h i n the class .

Sparse graph: A grap h wit h a smalle r numbe r o f edges . Th e ter m i s informal ; i n some case s sparse may mean o(n 2), i n other case s i t coul d be a s restrictive a s 0(n).

Sphericity: Th e sphericit y o f G i s the smalles t dimensio n suc h tha t G ca n b e rep - resented a s th e intersectio n grap h o f d-dimensiona l spheres . Ever y grap h i s th e intersection grap h o f sphere s i n som e dimensio n [360] ; thi s contrast s wit h th e fac t that ther e ar e partia l order s whic h ar e no t containmen t graph s o f sphere s i n an y dimension. [187 ]

Spider graph: Alternat e nam e fo r polygon-circl e graph .

Split: A partition o f vertices o f a graph int o Si , 5* 2 is a split i f it meets the followin g conditions. 1 ) Si an d S2 hav e a t leas t tw o vertices . 2 ) Le t Su n o f vertice s i n Si with a t leas t on e neighbo r i n S2, an d le t S2i n b e th e se t o f vertice s i n S 2 wit h a t least on e neighbo r i n Si. Ever y verte x o f Su n mus t b e adjacen t t o ever y verte x o f S2in- Not e that thi s i s a specia l cas e o f the origina l definitio n o f spli t i n [138 , 139] , which wa s define d fo r directe d graph s a s wel l a s undirecte d graphs .

Split decomposition: Alternat e nam e fo r joi n decomposition .

Split graph: G i s a spli t grap h i f th e vertice s o f G ca n b e partitione d int o S, K, where S induce s a n independen t se t i n G an d K induce s a cliqu e i n G ; i.e. , G ca n be obtained fro m a bipartite grap h b y making on e colo r clas s a clique . Spli t graph s are exactl y thos e graph s whic h ar e bot h chorda l an d co-chordal .

Stable set: Alternat e nam e fo r independen t set .

Stack: A data structur e whic h allow s th e operation s insert , an d remov e th e objec t which ha s bee n i n the se t fo r th e shortes t perio d o f time .

Star. Ki^ fo r an y valu e o f i > 1 .

Steiner tree: Th e Steine r tre e proble m take s a grap h G an d a subse t S o f vertice s as input , an d ask s fo r th e minimu m subtre e T o f G whic h connect s al l vertice s i n S. Th e decisio n versio n o f th e Steine r tre e proble m i s NP-complete , eve n i n th e unweighted case .

Star cutset: A sta r cutse t o f a grap h i s a se t C suc h tha t G - C i s disconnected , and som e verte x c in G i s adjacen t t o ever y othe r verte x o f G .

String graph: Intersectio n grap h o f curve s i n the plane . 298 Glossary

Strong perfect graph conjecture: Famou s problem i n , stating that G is perfect i f and onl y i f G i s a Berg e graph . A proof o f the conjectur e ha s just bee n announced. [102 ]

Strongly chordal graph: Although properly speaking this is a characterization rathe r than th e origina l definitio n o f the class , w e will say a graph i s strongly chorda l i f it has a n eliminatio n schem e define d b y successiv e remova l o f simple vertices .

Strongly connected graph: A directe d grap h i n whic h ther e i s a pat h fro m ever y vertex to ever y othe r vertex .

Substitution decomposition: A for m o f grap h decompositio n whic h recursivel y de - composes a graph int o connected component s i f G i s disconnected, connecte d com - ponents o f G i f G i s disconnected, an d maxima l prope r submodule s o f G i f both G and G are connected .

Threshold graph: A grap h i n whic h eac h verte x v va n b e assigne d a weigh t w(v) and tw o vertices x , y ar e adjacen t i f w(x) + w(y) > t fo r som e fixed threshold t.

Tolerance graph: A graph i n whic h ever y verte x ca n b e assigne d bot h a n interva l and a tolerance, such that x an d y are adjacent i f and onl y i f the intersection o f the intervals exceeds the minimum o f the two tolerances. Interva l graphs correspond t o tolerance graphs with tolerance 0. N o implicit representation i s known for this class.

Topological sort: A n orderin g o f vertices o f a directe d acycli c graph, suc h that fo r every directed edg e (x,y) , x precede s y i n the ordering .

Total interval number. Th e tota l interva l numbe r o f a grap h G i s th e smalles t number o f intervals suc h that eac h interval i s associated wit h exactly on e vertex ( a single verte x ca n b e associate d wit h multipl e intervals) , an d x i s adjacen t t o y i f and onl y i f som e interva l associate d wit h x ha s a n intersectio n wit h som e interva l associated wit h y.

Totally balanced: A hypergraph i s totally balance d i f every cycl e o f length greate r than 2 has a n edg e containin g a t leas t 3 vertices o f the cycle . A well-known theo - rem i s that a hypergraph i s totally balance d i f and onl y i f every subhypergrap h i s a hypertree .

Transitive closure: Give n a directed grap h G , the transitive closur e o f G is a graph on th e sam e verte x set , wit h a n edg e fro m x t o y i n th e transitiv e closur e i f an d only i f there i s a path fro m x t o y i n G .

Transitive graph: A directed graph G such that wheneve r there are edges (x , y) an d (y, z\ (x , z) i s also an edge .

Transitive orientation: A n assignmen t o f direction s t o edge s o f a comparabilit y graph, suc h that th e resultin g directio n o f edges i s transitive. Glossary 299

Transitive reduction: Give n a directed acycli c graph G, the transitiv e reductio n o f G i s a graph o n the sam e verte x set , wit h a n edg e fro m x t o y i f x ha s a n edg e t o t/inG, an d ther e i s no path o f length greate r tha n 1 from x t o y i n G.

Trapezoid graph: Intersectio n grap h o f trapezoids , wher e eac h trapezoi d ha s tw o endpoints o n a lin e L\ an d tw o endpoints o n a parallel lin e L2 . Not e that L\ an d L2 are the sam e fo r al l trapezoidal objects .

Tree: A connected acycli c graph .

Treewidth: Th e origina l definitio n o f deal s with a for m o f tree decompo - sition. Fo r this book, i t i s easier to understand a characterization; G has treewidt h k i f and onl y i f G i s a partial k-tree. Th e fac t tha t mino r close d classe s whic h d o not contai n al l planar graphs must hav e bounded treewidth ha s deep consequences; see [412] . Determinin g th e treewidt h o f a grap h i s NP-complete , althoug h deter - mining whethe r a graph ha s treewidth k i s polynomial fo r fixed k. Th e treewidt h problem can also be viewed as minimizing the maximum cliqu e size over all chordal completions o f a graph .

Triangle-extendible: A graph i s triangle-extendible i f the vertices can be ordered s o that fo r ever y triangle u < v < w, ever y vertex which comes after w and i s adjacen t to both v an d w i s also adjacent t o u; in other words , fo r ever y K4 - a single edge , the nonadjacen t vertice s ar e not bot h firs t an d las t i n the ordering .

Twins: A pair o f vertices x,y suc h that N(x ) = N(y ) i f x an d y ar e nonadjacent , and N[x ] = N[y ] i f x an d y ar e adjacent .

Two-pair: A pair o f vertices x, y such that ever y chordless path between x and y has length 2 . Equivalentl y fo r a connected graph , removin g N(x) D N(y) disconnect s x and y.

Underlying graph: The underlyin g grap h o f a directed grap h o r pose t i s the grap h formed b y removing direction s fro m edges .

Uniform cost assumption: Th e assumptio n tha t arithmeti c operation s involvin g numbers o f polynomia l siz e take s constan t time . Thi s i s a standar d simplifyin g assumption mad e i n analysi s o f algorithms .

Unit circular-arc graph: Intersectio n graph s o f arc s wit h identica l length s i n th e circle. Unit disk graph: Intersection grap h o f disks with equa l diameters i n the plane .

Unit interval graph: Intersectio n graph s o f interval s o f identica l siz e i n th e line . These ar e equivalen t t o proper interva l graphs .

Universal graph: A graph G i s (vertex-induced ) universa l fo r a class C o f graphs i f every graph i n C i s an induced subgraph o f G. Th e concep t o f a universal graph i n the non-induced sens e also exists in the literature, but doe s not appl y to this book . 300 Glossary

Universal vertex: A vertex whic h i s adjacent t o ever y other verte x i n the graph .

Vertex cover. A se t S o f vertice s suc h tha t ever y edg e o f th e grap h ha s a t leas t one endpoin t i n S. Decidin g whethe r G ha s a verte x cove r o f inpu t siz e k i s NP- complete. I n the optimization version , the problem ask s fo r the siz e o f the smalles t vertex cover .

Vertex expansion: Th e operatio n o f replacing vertex v b y a clique C, eac h membe r of which ha s the sam e adjacenc y t o other vertice s o f the grap h a s v.

Vertex multiplication: Th e operatio n o f replacin g verte x v b y a n independen t se t J, eac h member o f which has the same adjacency t o other vertices of the graph as v.

Visibility graph: A graph i n which vertices can be mapped t o corners o f a polygon , such that vertice s ar e adjacen t i f they ar e eithe r neighbor s o n the polygon , o r th e line segment connectin g the tw o vertices i s entirely insid e the polygon . von Emde Boas trees: A data structure whic h allow s insertion, deletion , an d searc h for predecesso r i n the curren t se t ove r a se t wit h element s i n the rang e l..n . Th e trees use O(loglogn) tim e per operation rather than the O(logn) time per operatio n of such structures a s 2-3-tree s designe d t o handl e thes e operations o n sets with n o upper boun d o n range .

Warren's theorem: Thi s important theorem , discussed i n chapter 4 , was designed to give an upper bound o n the number o f sign patterns o f a set o f polynomials. I n this book, it is used to give an upper bound on number o f graphs in a class of graphs. Fo r various classes o f graphs, vertices can be made to correspond wit h sets o f variables, and adjacenc y betwee n vertice s x an d y i s determined b y the sig n o f a polynomia l equation on the variables corresponding to x, y, and possibly other vertex variables.

Weak order: A partia l orde r i n whic h ever y elemen t v ca n b e assigne d a numbe r w(w), an d x < y i f w(x) < w(y). I n othe r words , thes e ar e order s whic h ca n b e derived fro m tota l order s b y substituting independen t set s fo r elements .

Weakly chordal graph: A grap h G with n o induce d cycle s o f length greate r tha n 4 in either G o r G.

Weakly triangulated graph: Alternate nam e fo r weakl y chorda l graph .

Well-covered graph: A grap h i n which al l maximal independen t set s have the sam e cardinality.

Width: Th e widt h o f a partial orde r i s the maximu m independen t se t (als o know n as antichain i n this context ) i n the underlyin g graph .

0/1 matrix multiplication: Th e resul t o f performin g matri x multiplicatio n A x B for matrice s A an d B wit h al l entrie s equa l t o 0 o r 1 , an d replacin g al l nonzer o entries o f the resul t b y Is . Glossary 301 a: I f A an d B ar e n b y n matrices , th e tim e o f the fastes t matri x multiplicatio n algorithm fo r computin g Ax B know n i s written a s 0(n a). Whe n thi s boo k wa s written, a wa s approximately 2.376 .

T: A pai r o f row s r\ < T2 and column s c\ < C2 i n a 0/ 1 matrix , suc h tha t th e submatrix induce d b y these column s ha s I s i n every entry excep t positio n r2,C2 -

Q: Intuitively, f(n ) i s fi(g(n)) mean s that f(n ) grow s at leas t a s quickl y a s g(n), i f constants ar e ignored. Ther e ar e several differin g precis e definitions , whic h ar e no t equivalent i n general but ar e equivalent fo r al l functions i n this book. M y preferre d definition i s that f(n ) i s fi(g(n)) i f there i s a constan t c such that f(n ) > g(n ) fo r infinitely man y value s o f n , bu t fo r thi s boo k i t i s sufficien t t o sa y tha t f(n ) i s Q(g(n)) wheneve r g(n ) i s 0(f(n)) .

©: f(n ) i s G(g(n) ) i f f(n ) i s 0(g(n) ) an d g(n ) i s 0(f(n)) . Thi s i s ou r notio n o f equality i n order notation , i.e . i f constants ar e ignored .

2-join: Fundamentally , a partitio n o f the verte x se t suc h tha t edge s betwee n th e set ca n b e divide d int o tw o complet e bipartit e graphs . Ther e ar e severa l variants , depending on whether these complete bipartite graphs are allowed to share vertices, and on conditions fo r ruling out trivial partitions. Thus , there are definitions whic h require only that eac h set contains at leas t 3 vertices, while others d o not allo w one side o f the partitio n t o b e a n induce d path . Som e definition s als o requir e a pat h within each side o f the partition connecting the different complet e bipartite graphs . This page intentionally left blank Survey o f Results o n Grap h Classe s

This chapte r wa s suggeste d b y on e o f th e referees , wh o note d tha t man y al - gorithms fo r dealin g wit h specifi c classe s o f graphs ar e discusse d i n the book , bu t that thes e are difficul t fo r a reader intereste d i n a single class o f graphs to discover . The numbe r o f graph classe s an d result s o n thes e classe s ar e trul y overwhelming , so rather tha n tr y t o organiz e thes e i n the for m o f a tabl e wit h grap h classe s o n one side and al l possible optimization problem s o n the other, I have chosen to giv e a ver y brie f sketc h o f what I believe to b e som e o f the mos t importan t result s an d open problem s i n algorithms an d representatio n fo r a number o f classes o f graphs. An algorithmi c surve y o n variations o f the dominatin g se t proble m i s given i n [329]; I will restrict m y treatment her e to the basi c dominatin g se t proble m unles s there i s a particular reaso n to cove r othe r dominatio n problems . Le t m e note tha t proving NP-completenes s o f minimum fil l wa s a longstanding ope n proble m befor e being show n i n [491] . Ther e i s fa r les s wor k showin g tha t minimu m fil l i s NP - complete fo r a clas s tha n i s th e cas e fo r othe r problems , give n th e difficult y o f showing NP-completenes s a t all ; i f ther e i s n o commen t o n th e fil l problem , thi s generally mean s that ther e i s n o polynomia l tim e algorith m t o fin d th e minimu m fill o n thi s clas s o f graphs , an d th e clas s doe s no t see m t o b e nea r th e borde r o f what w e know to b e poly normally solvable . There i s a n extensiv e bod y o f literatur e dealin g wit h paralle l algorithm s o n these grap h classes ; sinc e my are a o f research i s sequential algorithms , I wil l leav e a surve y o n paralle l algorithm s t o som e othe r author . A s oppose d t o algorithm s discussed i n the rest o f the text, I did not try to verify that al l the algorithms liste d here ar e correct . There ar e man y importan t resource s availabl e fo r findin g algorithm s o n grap h classes. Th e boo k [74 ] has a tabl e dealin g wit h bes t tim e complexitie s fo r recog - nizing a muc h large r se t o f graph classe s than i s discussed here ; corrections to thi s table ar e currently kep t a t www.informatik.uni-rostock.de/~ab/survey/errata.html. At the sam e site, a very nic e program fo r question s o f inclusions between classe s o f graphs ca n b e foun d a t www.informatik.uni-rostock.de/~gdb/isgci/isgci.html. A table o f graph clas s inclusions an d counterexample s specializin g i n subclasses o f perfect graph s i s available on-lin e a t www.informatik.hu-berlin.de/~hougardy/paper/classes.html. A surve y dealin g wit h polynomia l algorithm s fo r som e fundamenta l NP-complet e optimization problem s o n variou s classe s o f graph s appeare d i n [282] , an d som e updates appeare d i n [283] . A n ambitiou s attemp t t o maintain a n on-lin e referenc e

303 304 Survey o f Results o n Graph Classe s list o f best know n algorithm s fo r problem s o n graph classe s wa s attempted an d some partial result s can be seen at http://web.cs.ualberta.ca/~Stewart/GRAPH/index.html. This projec t becam e muc h to o large fo r a singl e perso n t o maintain; th e current plan i s to distribute th e work to individuals wit h goo d knowledg e o f a particula r class o f graphs. I f you are interested i n helping wit h thi s project , i t woul d b e a great hel p to all of us!

AT-FREE GRAPHS : There are 2e(n ) graphs without asteroida l triples, so represen- tation i s not an issue. A straightforward algorith m ca n recognize AT-fre e graph s in 0(n 3) time. Usin g fas t matri x multiplicatio n a s a subroutine, thi s ca n be re- duced t o 0(n 2,79) tim e [332] . I t wil l b e difficul t t o reduc e th e cost t o les s tha n the cos t o f a singl e matri x multiplication , sinc e th e proble m i s a s har d a s rec - ognizing triangle-fre e graphs , a s discussed i n the text. Polynomia l algorithm s on asteroidal triple-fre e graph s includ e a n 0(n3) algorithm fo r weighted independen t set [316] , base d o n the algorithm o f [81] , an 0(n3) Steine r tre e algorith m [26], and a n 0(n6) unweighte d dominatin g se t algorith m [330] ; weighte d dominatin g set i s NP-complete o n the subclass o f co-comparability graphs . Cliqu e and clique cover ar e NP-complete o n this clas s [81] ; these problem s separat e AT-fre e graph s in complexit y fro m co-comparabilit y graphs . Treewidt h an d minimum fill are also NP-complete o n AT-free graphs , as a consequence o f the original NP-completenes s reduction for these problems [24 , 491], but are polynomially solvable for the subclass of AT-fre e co-AT-fre e graph s [316] . Bandwidt h i s NP-complete fo r the subclass of co-bipartite graphs ; a n approximatio n algorith m fo r AT-fre e graph s graph s wit h performance rati o 2 is given in [308] . Ma x cut is also NP-complete fo r co-bipartite graphs [47] , and co-bipartite graphs are isomorphism-complete. Chromati c numbe r and Hamilton cycl e are open for AT-free graph s at this time. Feedbac k vertex set, which is polynomial fo r co-comparability graphs , doe s not seem to have been stud - ied for AT-free graphs. A very simple linear time algorithm for finding a dominating pair in an AT-free grap h is given in [125] ; finding a robust linea r time algorithm for this proble m i s open. Findin g a simpl e intersectio n representatio n whic h exactl y characterizes the class is an open problem .

BOUNDED TOLERANC E GRAPHS : Th e proble m o f recognizin g bounde d toleranc e graphs i n polynomial tim e i s open. A n implicit representatio n ca n be constructed in polynomia l time , thank s t o the fac t tha t ever y bounde d toleranc e grap h i s a trapezoid graph . Althoug h mos t algorithm s o n these graph s ar e based upo n thei r containment i n larger graph classes , several papers hav e been written solvin g prob- lems on bounded toleranc e graphs i f the model is given as input. Ther e are papers for solvin g the dominating se t and Hamilton cycl e problems on bounded toleranc e graphs mor e efficientl y (0(n 2) fo r dominating se t and O(nlogn) fo r Hamilton cy- cle) tha n o n the larger clas s o f co-comparability graph s i f a model i s given [3 , 4] , and a paper givin g an 0(n3log2n) algorith m fo r dominating set in the complement of bounde d toleranc e graph s [296] . Th e last pape r mentione d i s an example o f a problem whic h can be solved efficientl y i f a model i s given a s input, but is open if the input i s given in adjacency matri x form . I know o f no NP-completeness result s specifically fo r bounded toleranc e graphs ; thus, we know onl y result s implie d fro m Survey o f Results o n Graph Classe s 305 containment o f suc h classe s a s interval graph s an d permutation graphs . Isomor - phism i s open fo r bounded toleranc e graphs , bot h wit h the model give n and when it i s not. : Recognitio n o f boxicit y k graph s fo r k > 1 is NP-complete . Boxic - ity k graph s hav e a n implicit representatio n b y definition, bu t finding a n implici t representation i n polynomia l tim e i s open . Cliqu e ca n be solve d i n polynomia l time (O(nlogn ) tim e give n the model fo r boxicity 2 [276] ) on this clas s eve n i f the model i s not given, sinc e the number o f maximal clique s i s polynomially bounded . Clique cove r [200] , 3-colorin g [337 ] and independent se t [408 ] have bee n show n to be NP-complete on boxicity 2 graphs. Containmen t o f grid graphs and trees show s that Hamilto n cycle , dominating set, Steiner tree, and bandwidth ar e NP-complete for boxicit y 2 graphs. A n O(logn) approximatio n algorith m fo r independent se t on boxicity graphs is given in [6]; [174] notes that this achieves the same approximatio n ratio fo r weighted independen t set . Feedbac k verte x set is NP-complete o n graphs with bounde d boxicity , sinc e ever y plana r grap h ha s boxicity a t mos t 3 [458] ; thi s may be open fo r boxicity 2 graphs. A s far as I could determine , the complexity of such problem s a s max cut, isomorphism, an d treewidth i s unknown fo r graphs o f bounded boxicity . However , i t i s possible tha t som e classe s fo r whic h thes e prob - lems are known to be difficult hav e bounde d boxicity ; fo r example, I am not sur e whether suc h classe s as degree 3 graphs an d line graphs ca n have arbitraril y larg e boxicity. CHORDAL GRAPHS : Chorda l graph s ca n be recognized i n linear time , a s discussed in the text. A n intersection representatio n a s subtrees o f a tree ca n also be foun d in linea r time . Man y problem s ar e solvabl e efficientl y i n polynomia l tim e fro m the perfec t eliminatio n schem e o r cliqu e tre e model . Weighte d clique , weighte d independent set , coloring, an d clique cove r ca n all be solved i n linear tim e i n this fashion. Man y problem s whic h ar e NP-complete o n chordal graphs , suc h as domi- nating set, Steiner tree, bandwidth [306 ] max cut [47 ] and Hamilton cycl e [115 ] ar e shown to be NP-complete o n the smaller clas s o f split graphs ; grap h isomorphis m is also isomorphism-complete o n both classe s [54] . Treewidth an d minimum fill are trivial o n chordal graphs . Treewidt h ca n be solved i n polynomial tim e i f there are no chordles s cycle s o f length large r tha n k fo r any fixed k [52] ; maximum weigh t s ca n also be found i n polynomial tim e o n this superclas s o f chordal graphs [214] . Th e weighted feedbac k verte x problem i s solvable in polynomial tim e for chorda l graphs ; thi s come s fro m th e fact tha t feedbac k verte x se t on a chorda l graph correspond s to finding a minimum se t of vertices containing at least on e ver- tex fro m eac h triangle , an d this i s a special cas e o f a coverin g proble m solve d fo r chordal graph s i n [121] . CHORDAL BIPARTIT E GRAPHS : A S discussed i n th e text , chorda l bipartit e graph s can b e recognized i n 0(min{n 2, mlogn}) time . Existenc e an d construction o f an implicit representatio n ar e open fo r this class . NP-complet e problem s o n chorda l bipartite graphs include dominating set, Hamilton cycl e (these two problems can be solved in polynomial time on the subclass o f convex graphs [150 , 378]) Steiner tre e [379, 378] , and bandwidth; chorda l bipartite graphs are also isomorphism-complet e [380]. Th e feedback verte x problem , whic h i s polynomial fo r conve x graph s [347] , does not seem to have been studied fo r chordal bipartite graphs . Treewidt h can be solved in 0(ma) time , where a i s the exponent fo r matrix multiplicatio n [305] ; the related proble m o f pathwidth (correspondin g t o minimizin g th e maximum cliqu e 306 Survey o f Result s o n Grap h Classe s size in an interval completion, rather than a chordal completion, o f the input graph ) is NP-complete fo r chorda l bipartit e graph s [303] . Minimu m fill ca n b e solve d i n 0(n4) tim e [94] . Man y problems , suc h a s matching, computin g neighborhoo d con - tainments, independent set , shortest paths can be solved more simply and efficientl y on chordal bipartite graphs than on general bipartite graphs using the T-free matri x characterization, a s discusse d i n the text . CIRCLE GRAPHS : Circl e graph s ca n b e recognize d i n 0(n2) tim e [442] . Thi s algo - rithm als o constructs th e model , whic h i s an implici t representation . Sinc e neigh - bors o f a vertex for m a permutation graph , cliqu e i s clearly solvabl e i n polynomia l time; the best know n complexity i s O(nlogn+min{ra,no;}) fo r the unweighted cas e [364], an d 0(nlogn+min{n 2,mloglogn}) fo r th e weighte d cas e [20] , assumin g th e model is given as part o f the input. I t i s also not difficul t t o devise polynomial tim e independent se t algorithm s fo r thi s class , with 0(n 2) th e bes t know n tim e bound . For the unweighte d cas e this i s attributed t o Buckingha m i n a 198 1 manuscript a t Stewart's website listed i n the introduction, bu t I could not find a published versio n achieving the sam e time bound earlie r than [20] , which achieve s this bound fo r th e weighted case as well. Dominatin g set i s NP-complete fo r this class [295] ; a 2-he ap- proximation algorith m i s given in [277] . Th e /c-colorin g problem i s NP-complete fo r k > 3 [208 , 471]; an O(nlogn) algorith m fo r the 3-colorin g proble m on circle graph s is give n i n [472] . Not e tha t ther e i s som e disagreemen t i n th e literatur e o n rela - tionship between cliqu e size and chromatic number i n circle graphs; the paper [471 ] claims that chromati c numbe r i s at mos t twic e the cliqu e size fo r circl e graphs, bu t more recen t paper s b y experts i n the field giv e 2 U a s the bes t know n uppe r boun d on chromati c numbe r i n terms o f clique siz e [319] . Th e Hamilto n cycl e problem i s NP-complete on circle graphs [147] ; note that thi s is given as solvable in polynomial time in [282] , but this is a case of a misplaced column entry in the table. Bandwidt h is NP-complete, sinc e every tree i s a circle graph. Schaffe r gav e Johnson a n outlin e of a Steiner tree algorithm fo r circl e and circular-ar c graphs (an d thus the proble m is listed a s polynomiall y solvabl e i n [282]) ; [40 ] will be the first generall y availabl e polynomial algorithm fo r Steine r tree on circle graphs. Othe r polynomial time solv- able problem s o n circl e graphs includ e minimu m fill and treewidth , whic h ca n b e solved i n 0(n 3) tim e [302 , 311] , and isomorphism , whic h ca n b e solve d i n O(nra ) time [265] . I wa s unabl e t o find an y wor k o n cliqu e cove r fo r circl e graphs ; sinc e both cliqu e cove r an d circl e graphs ar e heavil y studied , thi s ma y b e a n interestin g open problem . CIRCULAR-ARC GRAPHS : Thi s i s a well-studie d class , an d man y mor e algorithm s have been designed specifically fo r circular-arc graphs than I will list here. Circular - arc graph s ca n b e recognize d b y a n algorith m whic h als o construct s th e mode l i n linear tim e [365] . Maximu m cardinalit y independen t se t ca n b e solve d i n O(n ) time, i f th e inpu t i s give n a s a circularl y ordere d lis t o f endpoint s [225 , 363] , a s can minimu m cardinalit y dominatin g se t [271] . Th e bes t know n tim e boun d fo r the weighte d dominatin g se t proble m i s 0(n+ra) [92] . I kno w o f n o pape r whic h specifically solve s th e weighte d independen t se t proble m fo r circular-ar c graph s ([188] solves the problem in 0(n2) tim e for the superclass of circle trapezoid graphs), though it is obviously solvable from the model in 0(ln) tim e where I is the minimu m load o n the circle , i.e . th e numbe r o f arc s passin g throug h th e poin t o n the circl e which i s covered by the fewes t arcs . Maximu m cliqu e i s solvable given the model i n O(n) tim e [14] . Weighte d cliqu e ca n b e solve d i n 0(nlogn+raloglogn ) tim e [433] . Survey o f Result s o n Grap h Classe s 307

Hamilton cycl e can b e solve d i n 0(n 2logn) tim e o n circular-ar c graph s [432 ] (not e that th e linea r an d 0(n 2) tim e Hamilto n circui t algorithm s cite d a s forthcomin g in [346 ] wer e flawed ) an d cliqu e cove r i n O(rc ) tim e [271] . Isomorphis m ca n b e solved i n O(nra) tim e [265] ; at on e point, I was part o f a paper claimin g a n 0(n 2) bound fo r this , bu t ou r algorith m relie d o n a resul t fro m anothe r pape r whic h may b e i n error . Colorin g i s NP-complet e o n circular-ar c graphs , a s discusse d in th e text . I t i s possibl e t o find a 3/ 2 optima l colorin g [292] , an d t o optimall y solve th e /c-colorin g proble m fo r constan t k i n O(n ) tim e [208] ; ther e i s als o a randomized polynomia l algorith m wit h a n approximatio n rati o o f 1+1/ e i f th e number o f color s i s not O(logn ) [335] . Bandwidt h i s NP-complete fo r circular-ar c graphs; an approximation algorith m with (optimal ) performanc e rati o 2 is given i n [334]. Othe r problem s solved fo r circular-arc graphs include an O(nlogn) algorith m for matchin g whe n th e mode l i s give n [348] , an d 0(n 3) algorithm s fo r minimu m fill [311 ] and treewidt h [451] . Althoug h I have generally limite d mysel f to coverag e of sequentia l algorithms , not e tha t unweighte d independen t set , cliqu e cover , an d dominating se t ca n b e solve d optimall y give n the mode l i n parallel, usin g O(logn ) time o n 0(n/logn ) processor s [404] . Maximu m cu t seem s to b e ope n fo r circular - arc graphs , a s wel l a s th e subclas s o f interva l graphs . Th e statu s o f Steine r tre e is slightly unclear ; Schaffe r sketche d a proof that thi s i s polynomially solvabl e (fo r both circle and circular-arc graphs), and thus it appeared a s polynomial in the table of [282] , though n o algorithm solvin g the problem appears i n the general literature . I foun d n o papers dealin g wit h feedbac k verte x se t i n circular-ar c graphs , bu t th e problem ca n b e solve d i n polynomia l tim e b y reductio n t o feedbac k verte x se t o n interval graphs. Pathwidt h i s open fo r circular-ar c graphs . CLIQUE-WIDTH K GRAPHS: Th e recognitio n proble m ca n b e solve d i n polynomia l time fo r clique-widt h 1 (trivial), 2 (equal s cograp h recognition) , an d 3 [122] , an d is ope n i n genera l an d fo r othe r fixed value s of k. A polynomia l tim e algorith m which construct s a n O(logn ) clique-widt h decompositio n tre e fo r an y grap h wit h clique-width a t mos t k fo r fixed k i s give n i n [281] . Fo r an y fixed /c , an implici t representation ca n b e foun d i n polynomia l tim e usin g balance d £>homogeneou s sets, a s discusse d i n th e text . Th e ke y resul t o n thi s clas s i s tha t an y problem s posed i n monadi c secon d orde r logi c wit h quantificatio n ove r verte x sets , bu t n o quantification ove r edg e sets, can be solve d i n linear tim e o n clique-width k graph s if th e decompositio n tre e i s give n a s par t o f th e inpu t [135] . Problem s solvabl e in thi s wa y includ e independen t set , dominatin g set , z-colorabilit y fo r fixed z , an d various other NP-complet e an d polynomiall y solvabl e problems fo r genera l graphs . Certain problems which are not expressible in this form o f logic can also be solved on clique-width k graphs; such problems include Hamilton cycle and max cut [478] , and chromatic numbe r whe n the number o f colors may be arbitrarily larg e [313] . I f the graph i s given in adjacency matri x form, independen t se t and i-colorability ca n still be solve d i n polynomial tim e [57] , but th e questio n o f whether al l problems pose d in th e restricte d secon d orde r monadi c logi c b y robus t algorithm s remain s open . Most othe r problem s hav e no t bee n investigate d fo r graph s wit h bounde d clique - width. Thus , fo r example , th e complexit y o f isomorphis m o n graph s o f bounde d clique-width woul d see m to be an open problem, both wit h the decompositio n tre e given an d fo r robus t algorithms . COGRAPHS: Cograph s ar e a particularl y tractabl e clas s o f graphs . The y ca n b e recognized i n linear time , and a cotree can be constructed i n the sam e time boun d 308 Survey o f Results o n Graph Classe s

[128]. Sinc e this cotree is unique, cograph isomorphis m i s reduced in 0(n+ra) tim e to rooted tree isomorphism, whic h can be solved in 0(n) time. I t is also possible to find a n implicit representatio n i n linear time. Man y result s on cographs are a con- sequence o f containments i n larger classe s o f graphs, suc h as permutation graphs , distance hereditar y graphs , an d clique-width k graphs, fo r which man y problem s are known to be linear time solvable. Nevertheless , many papers hav e been writte n about complexit y o f problems o n cographs, sinc e so many problem s whic h are dif- ficult o n larger classe s of graphs can be solved efficientl y o n cographs. Example s of tractable problem s o n cographs includ e an 0(n2) max cut algorithm [47] , and lin- ear time algorithms fo r minimum fil l [129] , bandwidth [490] , and pathwidt h (whic h equals treewidt h fo r cographs) [51] . The sandwich proble m fo r cographs i s poly- nomially solvabl e [228] , contrasting wit h the NP-completion o f the completion and deletion problem s fo r cograph s [168] . Othe r NP-complet e problem s o n cograph s include lis t colorin g [279 ] and subgraph isomorphis m [148] .

COMPARABILITY AN D CO-COMPARABILITY GRAPHS : Althoug h a transitiv e orien - tation ca n be found i n linear time , recognizin g comparabilit y graph s i s as hard as recognizing triangle-fre e graphs , currentl y requirin g tim e proportiona l t o matri x multiplication. Th e maximum weighte d cliqu e an d vertex colorin g problem s can be solve d b y a robust algorith m i n linear tim e [367] , and independent se t can be transformed i n linear tim e to bipartite matchin g onc e the transitive orientatio n i s given. Man y problem s o n comparability graph s ar e NP-complete sinc e thes e con - tain the bipartite graphs; for example, Hamilton cycle , dominating set, bandwidth, feedback vertex , treewidt h [24] , minimum fil l [301 ] an d Steiner tre e ar e alread y NP-complete o n bipartite graphs , and bipartite graph s are isomorphism-complete. As far as I can determine, the max cut problem, which is trivial on bipartite graphs, is open fo r comparability graphs . Since [367 ] produces a transitive orientatio n o f the complement i n linear time , maximum independent set and clique cover can be solved robustly on co-comparabil- ity graph s i n linea r time . Hamilto n cycl e ca n be solve d i n 0(n3) time fo r co- comparability graph s [154] . Mor e precisely, the algorithm takes 0(m2) time, wher e i i s the size o f a maximum independen t se t in G; this i s based o n O(z) calls to a Hamilton pat h algorith m fo r co-comparability graph s fro m [149] . Th e authors of [154] als o explai n wh y the algorithm fo r Hamilto n cycl e ca n probably b e imple - mented t o run in 0(n2) time, thoug h th e ful l detail s ar e not worke d ou t in the paper. Minimu m weigh t Steine r tree s i n co-comparabilit y graph s ca n be foun d in 0(nlogn+ra ) tim e [78] . Th e cardinality Steine r tre e ca n be solved i n O(n-f-ra ) time, a s noted independentl y b y Colbourn an d Lubiw; th e algorithm i s described in [333] . Althoug h weighte d dominatin g se t is NP-complete o n co-comparabilit y graphs [93] , the cardinality dominatin g se t problem can be solved i n 0(nm2) tim e [78], an d the problem remain s solvabl e i n polynomial tim e fo r integer weight s up to any fixed k [93] . Note that ther e was a report claimin g a running time fo r domi- nating set proportional to matrix multiplication , but the algorithm wa s apparentl y not correct . Ther e i s an 0(n2ra) algorith m fo r the feedback verte x set problem on co-comparability graph s [347] . Bandwidth , minimu m fill , ma x cut and treewidt h [308, 491 , 47, 24] are NP-complete o n co-bipartite graphs , and co-bipartite graph s are isomorphism-complete . DISK INTERSECTIO N GRAPHS : Recognitio n o f disk intersectio n graph s i s NP-hard [258]. Existenc e an d construction o f an implici t representatio n ar e natural ope n Survey o f Results o n Graph Classe s 309 problems fo r this clas s o f graphs. Anothe r natura l questio n i s whether th e clique problem, whic h i s polynomially solvabl e fo r unit dis k graphs , can be solved fo r the more general class. Dis k graphs contain both unit dis k graphs and planar graphs as subclasses, implyin g NP-completeness o f such problems as 3-coloring, independen t set, clique cover, Steiner tree, feedback vertex, dominating set, Hamilton cycle, an d bandwidth. I f the model is given as input, polynomia l time approximation scheme s for weighted independent set and weighted vertex cover are given in [174]; these also apply to intersection graph s o f regular polygons , in any fixed dimension. I know of no exact algorithmi c result s designe d specificall y fo r disk intersectio n graphs ; thu s problems whic h are solvable on planar graphs , suc h as max cut, minimum fill, and isomorphism, see m t o be open fo r dis k intersectio n graphs . Treewidt h als o doe s not see m to have been studie d fo r disk graphs , and is singled out as an interesting open proble m fo r the subclass o f s i n [42] .

DISTANCE HEREDITAR Y GRAPHS : Distanc e hereditary graph s ca n be recognized i n linear time , an d an implici t representatio n ca n be constructed i n the same tim e bound. However , a s note d i n [399] , n o natural intersectio n mode l i s know n fo r the class , despite the fact tha t thi s i s an intersection clas s as discussed i n the text. Many problems are solvable efficiently thank s to the pruning sequence, and the fact that thes e hav e clique-widt h a t mos t 3 . Fo r example, maximu m weighte d clique , maximum weight independent set , coloring , and clique cover can be solved in O(n) time i f the pruning sequenc e i s given as input, an d thus i n linear time i f the graph is given in adjacency lis t for m [246] . Linea r time algorithms fo r the dominating set problem ar e given i n [386 , 97]. Weighted Steine r tre e i s solvable i n linear tim e for nonnegative edg e weight s [493] , a s are the treewidth an d minimum fill problem s [82], an d feedback verte x se t [288] . Hamilto n cycl e can be solved i n 0(n2) time on distance hereditary graphs [385] . Isomorphis m ca n be tested in polynomial tim e for distanc e hereditar y graphs , sinc e ever y distanc e hereditar y grap h i s a circl e graph. I n fact, I believe that isomorphis m can be tested in linear time on this class, by reductio n to tree isomorphism , bu t the algorithm onl y appeare d i n a technica l report, and the report doe s not give an explicit time bound [29] , see also [28] . Sinc e every tree is distance hereditary , bandwidt h i s NP-complete fo r the class. Ma x cut is polynomial o n the class sinc e ever y distanc e hereditar y grap h ha s clique-width at mos t 3 , but I know o f no specific algorith m fo r distance hereditar y graphs .

DOMINATION GRAPHS : Th e mos t interestin g proble m fo r dominatio n graph s i s recognition, whic h remains open. Algorithm s on domination graph s generally com e either fro m the definition o f the class, or from the fact that ever y domination grap h is weakly chordal, while NP-completeness results follo w fro m containmen t o f classes such as chordal graphs , trapezoid graph s and tolerance graphs .

DOT PRODUC T k GRAPHS : Th e recognition proble m i s open fo r ever y k > 1 , as is th e proble m o f existenc e an d constructio n o f a n implici t representation . N o algorithmic wor k has been don e fo r k > 1, i.e. threshold graphs .

DOUBLY CHORDA L GRAPHS : Doubl y chorda l graph s ca n be recognize d i n linea r time, sinc e they are exactly equa l to chordal and dually chorda l graphs . Althoug h several algorithm s hav e bee n designe d specificall y fo r doubl y chorda l graphs , the best curren t bound s fo r problems discusse d i n this survey com e fro m result s on the superclasses o f chordal graph s o r dually chorda l graphs . 310 Survey o f Results o n Graph Classe s

DUALLY CHORDA L GRAPHS : Duall y chorda l graph s ca n b e recognize d i n linea r time [67] . Man y problem s ar e NP-complete o n dually chorda l graphs, sinc e addin g a universa l verte x make s an y grap h duall y chordal . Thus , fo r example , clique , independent set , coloring, cliqu e cover , Hamilton cycle , treewidth, an d many othe r problems ca n easily be seen to be NP-complete o n this class . Fo r some problems , adding a universal vertex would make the problem trivial; the paper [67 ] shows that a variet y o f domination an d location problems , includin g unweighte d dominatin g set and Steiner tre e (th e weighted problem s are obviously NP-complete , by adding a universa l verte x wit h appropriat e weight ) ca n be solved i n linear tim e on dually chordal graphs . Th e all pairs shortes t pat h proble m ca n be solved i n 0(n2) tim e on duall y chorda l graph s [68].

EPT GRAPHS : Recognitio n i s NP-complete fo r EPT graphs [227] . Althoug h EPT graphs hav e a n implicit representation , constructin g a n implicit representatio n i n polynomial tim e fro m th e adjacency matri x o f an EPT graph i s an open problem . Every lin e grap h i s an EPT graph, whic h implie s that suc h problem s a s coloring, clique cover , Hamilto n cycle , dominatin g set , an d Steine r tre e ar e NP-complete , and that EPT graph isomorphis m i s isomorphism-complete. Th e coloring proble m on EPT graphs i s equivalent to path colorin g on undirected tre e networks, and has received som e attention; Tarja n [454 ] gave a 3/2 optimal colorin g algorithm, an d a 4/3 optimal algorithm with asymptotic approximatio n rati o 11/1 0 is given in [173]. Weighted cliqu e an d weighted independen t se t are solvable b y robust algorithms , as discusse d i n the text. Othe r problem s no t know n t o be NP-complet e fo r lin e graphs (thes e include max cut, which is polynomially solvabl e fo r line graphs [239] , and bandwidth, whic h is open for line graphs [280]) , seem to be open by way of not having bee n studied . A s noted i n [454] , ever y EPT graph i s decomposable usin g clique separator s int o lin e graphs ; thus , i f a proble m solutio n ca n be constructe d from the solutions on clique-separated components , the complexity on EPT graphs will be the same as the complexity on line graphs. Fo r example, this implies that the complexity o f minimum fill or treewidth o n EPT graphs i s equal to the complexity of these problem s on line graphs.

INTERVAL FILAMEN T GRAPHS : Recognizin g interva l filament graphs , an d creatin g an interva l filament model , ar e open problems . I f the model i s given, cliqu e and independent se t are solvable o n interval filament graph s i n polynomial tim e [211] ; these problem s ar e open fo r robust algorithms .

INTERVAL GRAPHS : Th e first linear tim e algorith m fo r recognizing interva l graph s appeared i n [56] ; many other s hav e appeared , an d on e is describe d i n the text . The origina l recognition algorith m ca n also be used to test isomorphis m o f interval graphs i n linea r tim e [355] . Weighte d independen t set , weighted clique , coloring , and cliqu e cove r ca n be solve d i n O(n ) tim e i f the interval s ar e give n i n sorte d order. Hamilto n cycl e ca n als o b e solve d i n O(n) time give n th e interval model , though thi s i s mor e difficul t [96] . A n O(n ) weighte d dominatin g se t algorith m given i n [92] . Bandwidt h ca n be solve d o n interval graph s i n O(nlogn ) tim e (fo r the decisio n problem ; finding th e optimal bandwidt h take s 0(nlog 2n) tim e usin g this algorithm ) [449] , and weighted feedbac k verte x set in 0(n+ra) tim e [353] . A s far a s I can determine, max cut is open fo r interval graphs, though i t can be solved in linea r tim e fo r unit interva l graph s [50]. Survey o f Result s o n Grap h Classe s 311

INTERVAL NUMBER : Recognizin g graphs with interval number k is NP-complete fo r any fixed k > 1 [481] . N o algorith m i s know n whic h construct s a n implici t repre - sentation o f a graph with interval number 2 in polynomial time. Ever y circular-ar c graph ha s interva l number a t mos t 2 , so bandwidth an d colorin g ar e NP-complet e on th e class . Ever y degre e 3 graph ha s interva l numbe r a t mos t 2 , implyin g NP - completeness fo r suc h problem s a s independen t se t an d Hamilto n cycle , an d con - tainment o f lin e graph s implie s NP-completenes s fo r cliqu e cover , dominatin g set , and Steine r tree , a s wel l a s isomorphism-completeness . Ma x cu t [47 ] is als o NP - complete fo r interval number 2 . Ever y plana r graph has interval number a t mos t 3 [426], implying result s suc h a s NP-completeness o f feedback verte x se t whe n inter - val number i s bounded. Th e real challenge fo r this class is to use the representatio n to solv e problem s effectively ; onl y a fe w papers , suc h a s [494] , whic h give s a 2k times optimal weighte d independen t se t algorith m fo r graph s with interva l numbe r k, attemp t t o do so. Th e cliqu e problem seem s to be open fo r graph s wit h interva l number 2 , and perhap s fo r graph s wit h bounde d interva l numbe r a s well. INVERSION-FREE GRAPHS : Althoug h thes e ar e no t a wel l known clas s o f graphs, I include the m i n this surve y du e t o th e interestin g ope n problems , a s describe d i n the text sectio n o n robust algorithms . Recognitio n o f the clas s i s open. Th e cliqu e problem ca n be solve d i f a model i s given a s input, bu t i s open i f one i s given onl y a promise that th e input i s inversion-free. Solvin g the clique problem with a robust algorithm woul d als o giv e a robus t algorith m fo r findin g a maximu m cliqu e i n a visibility graph . K-POLYGON GRAPHS : I t i s possibl e t o tes t whethe r a grap h i s a /c-polygo n grap h in 0(4 fcn2) time , makin g thi s polynomia l whe n k i s fixed, bu t recognitio n i s NP - complete i f k i s allowed to vary [170] . Sinc e /c-polygo n graphs ar e a subset o f circl e graphs, i t i s possibl e t o construc t a n implici t representatio n i n polynomia l time . In contras t wit h circl e graphs, dominatin g se t (an d a variet y o f other dominatio n problems) ar e polynomial fo r an y fixed k [169] . Natura l problem s t o study includ e those whic h ar e polynomia l fo r permutatio n graphs , bu t ope n o r NP-complet e fo r circle graphs; these include the Hamilton cycle, coloring, and clique cover problems. An approximation algorithm fo r bandwidth with performance ratio 2k2 (th e authors note that a n improvement t o 4/3k2 ha s been communicated t o them) fo r /c-polygo n graphs i s given i n [334] ; I believe i t i s open whether bandwidt h i s NP-complete fo r every fixed k.

PATH GRAPHS : Path graph s ca n be recognized i n 0{n-\-m) tim e [144] ; the natura l intersection mode l i s also produced. Thi s resul t i s not wel l known, sinc e the pape r was published i n a proceedings whic h i s relatively difficul t t o find; the pape r [422 ] gives an O(nra ) tim e algorith m i n a more widel y distributed journal . Ever y pat h graph i s chordal, s o problems suc h a s clique , coloring , independen t set , an d cliqu e cover can be solved in linear time. Dominatin g set [55] , max cut [47] , Hamilton cycle [38], an d bandwidt h ar e NP-complete o n path graphs . Hamilto n cycl e i s also NP- complete on the subclass o f directed path graphs [381 ] and open fo r rooted directe d path graphs ; dominatin g se t i s polynomia l o n roote d directe d pat h graph s [55] . Note that th e math revie w article o f the paper [163 ] is a bit ambiguous , an d migh t lead the reade r (i.e. , I read i t this way ) to believ e dominating se t i s polynomial o n path graphs ; the clas s o f graphs i n the paper i s actually the dually chorda l graphs . Path graph s ar e isomorphism-complet e [54] ; the subclas s o f directe d pat h graph s is als o isomorphism-complete , whil e isomorphis m o f roote d directe d pat h graph s 312 Survey o f Results o n Graph Classe s can b e tested i n polynomial tim e [25] . Path graph s ar e separated fro m spli t and chordal graph s b y the minimum dominatin g cliqu e problem , whic h ca n be solved in polynomial time on path graph s but is NP-complete on s [331] . I was unable to find any work on the Steiner tre e problem restricte d to path graphs , but I a m told tha t thi s shoul d b e NP-complete a s a simpl e xtensio n o f a proo f tha t connected dominatin g se t is NP-complete fo r the class [328] . PERFECT GRAPHS : Recognitio n o f perfect graph s i s a famous ope n problem . Th e difficult, bu t polynomial, algorithm s fo r the clique, coloring, cliqu e cover, and inde- pendent se t [237 ] are robust algorithm s fo r perfect graphs . Perfec t graph s includ e many subclasses , includin g classe s fo r whic h suc h problem s a s Hamilton cycle , dominating set , Steiner tree , feedbac k vertex , bandwidth , treewidth , an d mini- mum fill are NP-complete. Wit h the exception o f the important pape r cite d above, there ar e few results solvin g NP-complet e problem s o n perfect graph s i n general; an 0(n3) combinatorial algorith m fo r 3-coloring on perfect graph s is given in [470]. One area o f algorithmic research i s recognition o f perfect graph s when restricted to various subclasses . Example s includ e recognition o f perfect graph s without certai n induced subgraphs, such as perfect claw-fre e graph s [111] , perfect K± — e-free graph s [197], perfect bull-fre e graph s [405] , paw-free perfec t graph s [389] , and dart-free per - fect graph s [108] . Othe r classe s fo r which perfec t grap h recognitio n i s polynomial include planar graphs [266 ] and 2-split graphs , i.e. graphs which can be partitioned into two split graph s [262] . Ope n problem s i n this are a are collected at www. cs. rutgers. edu/~ch.vatal/perf ect /problems. html.

PERFECTLY ORDERABL E GRAPHS : Recognizin g perfectl y orderabl e graph s i s NP- complete [369] . Ther e are linear time (O(nra) in the weighted case) [259 ] algorithms for solvin g chromati c numbe r an d maximum cliqu e i f a perfec t orderin g i s given as par t o f the input; i f the order i s not given, i t i s open t o solv e thes e problem s without resortin g to more difficult an d general algorithms for perfect graphs . Man y NP-completeness result s follo w fro m th e fact tha t suc h classe s a s chordal graphs , comparability graphs , and other classe s are perfectly orderable . Se e [261] for more information o n perfectly orderabl e graphs . PERMUTATION GRAPHS : Permutatio n graphs can be recognized in linear time [367] , by an algorithm which constructs the natural implicit representation. Independen t set and clique can be solved in O(nloglogn) time if the model is given as input; thes e are equivalent to finding the longest increasin g subsequenc e o f a permutation. Th e well know n algorith m O(nlogn ) fo r finding a longes t increasin g subsequenc e can be modifie d t o run in O(nloglogn ) tim e i f inpu t number s ar e in the range l.. n by usin g vo n Emde Boa s trees , an d ca n als o b e easil y modifie d t o handl e th e weighted case . Sinc e permutatio n graph s ar e perfect, colorin g an d clique cove r can be solved in the same time bound; a maximum cardinalit y matchin g algorith m with th e same runnin g tim e i s given i n [406] . A n 0(n) algorith m fo r finding the minimum cardinalit y dominatin g set problem when given the permutation diagra m is contained in [98]; an 0(n+ra) algorith m for the weighted problem is given in [407]. Isomorphism o f permutation graph s can be tested in 0(n2) time [447] . Steine r tre e can b e solved i n O(n) time, sinc e ever y permutatio n grap h i s a trapezoid graph , and i n O(nlogn ) tim e i n the weighted cas e [275] , i f the permutation diagra m i s given. A linear time algorithm fo r finding a Hamilton cycl e in a permutation grap h is given in [153] . Ther e is an 0(nt) algorith m to determine whethe r a permutation Survey o f Results o n Graph Classe s 313

graph ha s treewidth (whic h equal s pathwidt h fo r permutation graphs ) a t most t [48]. Th e weighted feedbac k verte x se t problem ca n be solved i n O(ran) tim e for permutation graph s [343] . Th e complexity o f bandwidth o n permutation graph s is an ope n problem ; i t is also ope n fo r the subclass o f bipartite permutatio n graphs , but ca n be solved i n polynomial tim e fo r chain graph s [309] . Ma x cut also seem s to be open fo r this clas s of graphs; the the reduction give n in [16] intended to show that the problem i s NP-complete fo r permutation graph s i s not polynomial.

PI GRAPHS : Recognitio n o f PI graphs i n polynomial tim e i s open. Nevertherless , an implici t representatio n ca n be constructed i n polynomial time , sinc e ever y PI graph i s a trapezoid graph . Althoug h ther e hav e bee n paper s writte n solvin g algo - rithmic problem s on PI graphs, I know o f no problem fo r which the best algorith m on PI graphs i s faster tha n the time o f the best curren t know n algorith m fo r trape- zoid graphs . I also kno w o f no results whic h explicitl y separat e the complexity on triangle graph s fro m trapezoi d graphs , and NP-completeness result s com e only as a consequence o f the fact tha t thes e contai n suc h classe s as permutation graph s and interval graphs .

PROBE INTERVA L GRAPHS : Prob e interva l graph s can be recognized i n linear tim e if the divisio n o f the vertices int o probe s and nonprobes i s given [286 , 287], but is open i f the partition i s not given. N o algorithms hav e been specificall y designe d for probe interva l graphs , so any known algorithm s and NP-completeness result s com e only fro m containment s betwee n grap h classes .

SPLIT GRAPHS : Spli t graph s can be recognized i n linear time , and in O(n) time if the degre e sequenc e i s give as input [223] . Spli t graph s hav e the same complexitie s as chorda l graph s o n all problems describe d unde r chorda l graphs , and often see m to b e at the core o f algorithms an d proofs o f difficulty fo r chordal graphs . Th e two classe s are separated i n complexity fo r a number o f problems suc h a s triangle packing, i.e . the problem o f finding the maximum numbe r o f vertex disjoin t trian - gles. Th e triangle packing problem i s polynomial fo r split graphs , but NP-complete for chorda l graph s [239] ; pathwidt h i s also NP-complet e o n chordal graphs , and polynomially solvabl e on split graph s [240] . Th e sandwich proble m (give n a set o f required and optional edges , i s there a set of optional edge s whic h can be included to giv e a graph in the class) is polynomial fo r split graphs , in contrast to most o f the other classe s discusse d here ; specifically , the sandwich proble m i s NP-complete for comparability graphs , permutatio n graphs , co-comparabilit y graphs , circl e graphs , interval graphs , circular-ar c graphs , pat h graphs , chorda l graphs , and co-chordal graphs, an d was left a s an open proble m fo r chordal bipartit e graph s and s i n [228] . However , th e split grap h completio n proble m an d split graph deletio n problem s ar e NP-complete [383] , whil e the number o f edges whic h need to be added o r deleted to a given grap h to obtain a split grap h ca n be com- puted i n polynomial tim e [249] . Althoug h bandwidt h i s NP-complete, ther e i s a 2-optimal approximatio n algorith m fo r split graph s [306] .

STRONGLY CHORDA L GRAPHS : Strongl y chorda l graph s ca n b e recognized i n 0(n 2) or O(mlogn ) time . N o implicit representatio n i s known fo r this class . Strongl y chordal graph s ar e both chorda l an d dually chordal , s o such problem s a s inde - pendent set , clique, coloring , dominatin g set , and Steiner tre e ca n be solve d i n linear time . Unlik e bot h o f these classes , weighte d dominatin g se t is polynomia l 314 Survey o f Results o n Grap h Classe s on strongl y chorda l graphs ; th e tim e boun d i s linea r i f the stron g eliminatio n or - dering i s give n a s part o f the inpu t [182] , an d thu s i s 0(n2) o r O(mlogn ) i f give n in adjacenc y lis t form . Th e sam e tim e bound s (wit h eliminatio n orde r give n o r not) appl y t o th e feedbac k verte x se t problem , a s a consequenc e o f [95 ] an d th e correspondence o f feedback verte x se t an d a coverin g problem a s mentioned unde r chordal graphs . Hamilto n cycl e i s NP-complet e o n strongl y chorda l graph s [378] . I believ e that strongl y chorda l graph s ar e isomorphism-complet e b y a simpl e re - duction fro m th e isomorphis m completenes s o f chorda l bipartit e graph s show n i n [380]; note that thi s does not follo w directl y fro m the result o f [25 ] showing that di - rected path grap h isomorphis m i s isomorphism-complete. Thi s paper distinguishe s between roote d directe d pat h graphs , i n whic h al l edg e direction s emanat e fro m the root , an d directe d pat h graphs , i n whic h edge s ca n b e directe d bot h toward s the roo t an d awa y fro m th e root . Th e firs t clas s i s a subclas s o f strongl y chorda l graphs, whil e th e secon d clas s i s no t (i t contain s th e 4-sun) . Unfortunately , bot h classes are sometimes referred t o as directed path graphs, and the paper [282 ] gives directed pat h graph s i n th e firs t sens e a s a subclas s o f strongl y chorda l graphs , leading to potentia l confusion . [25 ] shows that isomorphis m i s polynomial fo r th e rooted case . Bandwidt h i s NP-complete fo r thi s class , sinc e ever y tre e i s strongl y chordal. A s far a s I could determine, max cut i s open fo r strongly chorda l graphs . TOLERANCE GRAPHS : Recognitio n o f toleranc e graph s i s a n ope n problem , a s i s existence o f a n implici t representation . Althoug h i t i s not obvious , recognitio n o f tolerance graph s i s in NP [255] . Mos t algorithm s o n tolerance graph s ar e a conse - quence o f containmen t i n weakl y chorda l graphs , bu t a fe w algorithm s hav e bee n designed t o wor k o n tolerance graph s whe n a representation i s given a s part o f the input. Fo r example , the cliqu e an d colorin g problem s ca n b e solve d i n 0(n2) tim e on tolerance graphs, i f the toleranc e representatio n i s given [232] . Independen t se t and cliqu e cover can be solved in linear time given a tolerance representation, usin g the fac t tha t a co-perfect orderin g comes directly fro m the tolerance representatio n [229], and that independen t se t an d cliqu e cove r ca n be solve d i n linear tim e give n a co-perfec t orderin g [109] . A n 0(n 5) algorith m fo r minimu m fill o n th e clas s o f multitolerance graphs, which includes both tolerance and trapezoid graphs, i s given in [393] . Bandwidt h i s NP-complet e fo r toleranc e graph s [272] ; thi s i s the onl y example I know o f a problem prove d to be NP-complete o n tolerance graphs whic h is not know n t o b e NP-complet e o n a subclass . Man y algorithmi c problem s see m to be open fo r toleranc e graphs, whether th e mode l i s given o r not. I might choose dominating se t an d Hamilto n cycl e a s interestin g examples , bot h wit h th e mode l given and fo r robus t algorithms ; these problems are solvable i n polynomial time o n bounded toleranc e graph s an d NP-complet e o n weakly chorda l graphs . TRAPEZOID GRAPHS : Trapezoi d graph s ca n b e recognize d i n 0(n2) tim e [357] , b y an algorith m whic h construct s th e natura l implici t intersectio n model . Trapezoi d graphs are co-comparability graphs, but a number o f algorithms have been designed to solv e problem s mor e efficientl y tha n o n th e large r class . Give n th e model , th e chromatic number , cliqu e cover , weighte d independen t set , an d weighte d cliqu e problems ca n b e solve d i n O(nloglogn ) tim e [188] ; /c-colorin g ca n als o b e solve d in 0(kn) tim e [140] . I t i s als o possibl e t o solv e the Steine r tre e proble m i n O(n ) time [344 ] give n the trapezoida l representation . Minimu m weigh t dominatin g set s can b e foun d i n O(nra ) tim e [345] , an d th e treewidt h an d minimu m fil l problem s can b e solve d i n 0(n 2) tim e [49] . I n general , algorithm s fo r trapezoi d graph s Survey o f Result s o n Grap h Classe s 315 received les s attentio n tha n algorithm s fo r man y o f th e othe r grap h classes . I found n o specifi c paper s dealin g wit h Hamilto n cycle , unweighte d domination , o r isomorphism whe n restricte d t o trapezoi d graphs ; i n al l thes e cases , I fee l tha t behavior o f trapezoid graphs should be closer to the subclass o f permutation graph s than the superclass o f co-comparability graphs . I n particular, havin g worked on the related recognitio n proble m fo r trapezoi d graphs , I fee l that ther e i s a polynomia l time isomorphis m algorithm , thoug h non e ha s ye t bee n developed . Alon g thes e lines, [190 ] remark s tha t th e O(nra ) algorith m fo r solvin g th e weighte d feedbac k vertex set problem on permutation graph s [343 ] can easily be extended to trapezoi d graphs. Althoug h [308 ] give s a 2-approximatio n algorith m fo r trapezoi d graph s which i s simpler an d faste r tha n th e algorith m fo r AT-fre e graphs , the complexit y of bandwidt h o n trapezoi d graph s seem s t o b e a n ope n problem ; ma x cu t i s als o apparently open . TREEWIDTH k: Althoug h computing the treewidth i s NP-complete, i t i s possible to determine whethe r a graph ha s treewidth a t mos t k fo r fixed k i n linear tim e [43] , and t o find th e correspondin g tre e decomposition . Ever y proble m whic h ca n b e posed i n second order monadic logi c can be solved fo r graphs o f bounded treewidt h [132]; the clas s o f problem s solvabl e i s extended i n [59] , and algorithm s hav e als o been designed fo r many problems which do not fit in a general framework o f solvable problems. Ther e are too many problem s which hav e been solve d o n graphs o f fixed treewidth t o dea l wit h here ; [44 ] is a surve y devote d t o thi s issue . Problem s suc h as clique, independent set , traveling salesman, an d dominating se t ca n be solved i n O(n) tim e on graphs o f bounded treewidth. Ma x cut i s O(n) o n graphs o f bounded treewidth [47] ; note tha t eve n th e weighte d cas e i s solvabl e i n linea r time , whil e weighted ma x cu t i s NP-complet e o n an y clas s whic h contain s arbitraril y larg e cliques. Isomorpis m ca n be tested i n polynomial time fo r graph s o f fixed treewidth /c, thoug h k appear s i n th e exponen t o f th e runnin g tim e [45] . Bandwidt h i s on e of the bette r know n problem s whic h i s NP-complete o n the class , sinc e i t remain s NP-complete fo r trees . UNIT DIS K GRAPHS : Uni t dis k grap h recognitio n i s NP-hard [77] ; membership i n NP i s open . Existenc e an d constructio n o f a n implici t representatio n i s a n ope n problem, /c-colorin g fo r ever y k > 2 i s NP-complet e fo r uni t dis k graph s [234] , as i s independen t se t [112] . Dominatin g set , Hamilto n cycle , bandwidth , an d Steiner tre e ar e NP-complet e fo r th e subclas s o f gri d graph s [112 , 278 , 157 , 207]. Clique i s solvabl e b y a robus t algorith m i n polynomia l time , a s discusse d i n th e text. Polynomia l time approximatio n scheme s (thes e achiev e approximation ratio s of 1-f- e fo r an y e , with running time polynomial i n the siz e o f the input an d 1/e ) fo r independent set , vertex cover and dominating se t o n unit dis k graphs are presente d in [273] ; extension s fo r independen t se t an d verte x cove r ar e discusse d unde r dis k graphs. Goo d approximatio n algorithm s fo r bandwidt h an d variou s othe r verte x ordering problem s o n intersectio n graph s o f randoml y generate d uni t disk s ar e presented i n [156] . [362 ] give s a colorin g algorith m wit h approximatio n rati o 3 for uni t dis k graphs ; thi s ca n b e improve d t o a ratio o f 2 i f the cliqu e siz e i s fixed and a mode l i s give n a s par t o f the inpu t [233] . Ther e i s a considerabl e bod y o f work dealin g wit h unit-dis k graph s a s a n idealize d mode l fo r radi o transmission , solving broadcasting problem s o f various types ; there i s als o a body o f work usin g unit dis k graph s fo r ma p labeling . Sinc e I a m no t exper t i n these areas , I will no t try t o pic k ou t th e importan t result s o n these subjects . Althoug h ther e i s a grea t 316 Survey o f Results o n Graph Classe s deal o f work dealin g with algorithm s fo r specialized problem s o n unit dis k graphs , the complexit y o f many o f the classical graph problem s o n unit dis k graph s seem s to be open. Thus , I was not able to determine the complexity o f such problem s as clique cover, isomorphism, treewidth, minimum fill, feedback verte x set, or max cut when restricte d t o unit dis k graphs , whethe r th e model wa s given a s part o f the input o r not. Interested readers should note that uni t dis k graphs are studied unde r many differen t name s (on e common nam e i s geometric graphs ) i n the literature. VISIBILITY GRAPHS : Visibilit y grap h recognitio n i s a wel l know n ope n problem , both i n th e cas e whe n a n orderin g o f vertice s o n the outsid e o f the polygo n i s specified, an d when any ordering is permissible. N o implicit representation i s known for thi s clas s o f graphs. I f the model i s given, the clique problem ca n be solved in polynomial tim e fo r visibilit y graphs ; thi s i s ope n fo r robus t algorithms , an d is discussed i n the text. Independen t se t an d dominatin g se t ar e NP-complet e fo r visibility graphs , an d isomorphis m i s as hard a s fo r genera l graph s [349] . Cliqu e cover i s also NP-complet e fo r visibility graph s [137] ; a logarithmic approximatio n algorithm i s given i n [167] . Th e complexity o f coloring visibilit y graph s i s an open problem. Althoug h ever y visibility grap h ha s a Hamilton cycle , it i s open whethe r you ca n find a Hamilto n cycl e i n a visibilit y grap h whe n th e inpu t i s give n i n adjacency matri x form . WEAKLY CHORDA L GRAPHS : Weakl y chorda l graph s ca n b e recognize d i n 0(ra 2) time usin g tw o fundamentall y differen t algorithm s [36 , 256], both o f whic h ar e discussed i n the text. Th e best know n algorithms fo r independent set , clique cover , coloring, an d cliqu e ru n in O(nra ) tim e fo r the unweighted cas e [256 ] and 0(n4) time fo r the weighted cas e [446] . NP-complet e problem s includ e dominatin g set , max cut, Steiner tree , bandwidth, an d Hamilton cycle , whic h are NP-complete on chordal graphs . Treewidt h an d minimu m fill-in ca n be solve d i n 0(n6) tim e o n weakly chorda l graph s [64] . Feedbac k verte x doe s no t see m to hav e bee n studie d for this class. Weakl y chordal graphs seem much more general than chordal graphs, but ther e are relatively fe w problems know n to be tractable o n chordal graph s but NP-hard o n weakly chorda l graphs ; th e most natura l proble m I could find o f this form i s testing whether a n input grap h i s perfectly orderabl e [260] , which i s trivial on chordal graphs . WELL COVERE D GRAPHS : Well-covere d graph s ar e co-NP-complete t o recognize . As i s show n i n the text , th e independen t se t problem , whic h i s trivia l o n well - covered graph s give n a promis e tha t th e inpu t i s i n the class , i s intractabl e fo r robust algorithms . Man y problems, such as clique, coloring, Steine r tree, minimu m fill, ma x cut , Hamilto n cycle , cliqu e cover , an d dominating se t ar e NP-complet e on thi s class , an d well-covered graph s ar e isomorphism-complete, al l of which are shown in [419]. I t is easy to show that other problems are NP-complete, since adding pendant vertice s adjacen t t o eac h verte x o f G make s an y graph well-covered ; fo r example, it is easy to see that treewidt h and minimum fill are NP-complete i n this way. Althoug h I would not classify i t as a significant ope n problem, it is interesting to not e tha t thi s transformatio n canno t b e used t o sho w tha t bandwidt h i s NP- complete. Therefore , despit e the fac t tha t bandwidt h i s NP-complete o n most o f the classes above and most optimizatio n problem s are hard fo r well-covered graphs , bandwidth ha s not been studie d fo r this clas s and cannot b e trivially show n to be NP-complete. Distinction s betwee n complexit y o f problems on well-covered graph s and problem s on subclasses suc h as very well-covered graph s (i n which all maximal Survey o f Result s o n Grap h Classe s 317 independent set s have size n/2, and fo r whic h recognition, cliqu e cover, dominatin g set, an d Hamilto n cycl e are polynomial) ar e studied i n [418] . This page intentionally left blank Bibliography

N. ABBAS , L.K . STEWART , Biconve x Graphs : Orderin g an d Algorithms, Discret e Applie d Mathematics 103 , 1-19 , 2000 J. ABELLO , H . LIN , S. PlSUPATl , O n Visibilit y Graph s o f Simpl e Polygons , Congressu s Numerantium 90 , 119-128, 1992 G.S. ADHAR , Dominatio n i n Bounded Interval-Toleranc e Graphs , 7th International Confer - ence on Parallel and Distributed Systems , 29-34 , 200 0 G.S. ADHAR , Optima l Paralle l Algorithm s fo r Cut-Ver t ices, Bridge s an d Hamilto n Pat h in Bounde d Interval-Toleranc e Graphs , 8t h International Conferenc e o n Parallel an d Dis- tributed Systems , 91-98 , 2001 P.K. AGARWAL , N . ALON , B . ARONOV , S . SURI , Ca n Visibilit y Graph s b e Represente d Compactly?, Discret e Computationa l Geometr y 12 , 347-365, 1994 P.K. AGARWAL , M . VAN KREVELD, S . SURI, Labe l Placemen t b y Maximum Independen t Set in Rectangles , Computationa l Geometry : Theor y an d Applications 11 , 209-218, 1998 P. AGARWAL , M . SHARIR , S . TOLEDO , Application s o f Parametric Searchin g i n Geometri c Optimization, Journa l o f Algorithms 17 , 292-318, 1994 A. AGARWAL , S . SURI , Th e Biggest Diagona l i n a Simpl e Polygon , Informatio n Processin g Letters 35 , 13-18, 1990 P.K. AGARWAL , M . SHARIR , P . SHOR , Shar p Uppe r an d Lower Bound s fo r the Length o f General Davenport-Schinze l Sequences , Journa l o f Combinatorial Theor y Serie s A 52, 198 9 228-274 A. A. AGEEV , V.L . BERESNEV, Polynomiall y Solvabl e Special Cases of Simple Plant Locatio n Problem, Proceeding s o f the First IPC O Conference , Waterlo o Universit y Press , 1-6 , 1990 A. V . AHO, J. E . HOPCROFT , J. D. ULLMAN , The Design and Analysis o f Computer Algo - rithms Addison-Wesle y Reading , M A 197 4 V.E. ALEKSEEV , O n the Entropy Value s o f Hereditary Classe s o f Graphs, Discret e Mathe - matical Application s 3 , 191-199, 1993 V.E. ALEKSEEV , D.V . KOROBITSYN, Complexit y o f Some Problem s o n Hereditary Classe s of Graphs , Diskret . Mat . 4, 34-40, 1992 S.G. AKL , B.K. BHATTACHARYA, Computing Maximu m Clique s o f Circular Arc s in Parallel, Parallel Algorithm s an d Applications 12 , 305-320, 1997 O. ALEVIZOS , J.-D. BoiSSONNANT, F.P. PREPARATA, A n Optimal Algorith m fo r the Bound- ary o f a Cel l in a Union o f Rays, Algorithmic a 5 , 573-590, 1990 H.H. ALI , N.A. SHERWANI , A . BOALS , On the Max Cut Problem i n Permutation Graphs , University o f Nebraska Omah a Repor t UNO-CS-TR-90-6 , 1990 N. ALON , E.R . SCHEINERMAN , Degree s o f Freedom Versu s Dimensio n fo r Containment Or - ders, Orde r 5 , 1988 11-1 6 R.P. ANSTEE , M . FARBER , Characterization s o f Totally Balance d Matrices , Journa l o f Al- gorithms 5 , 215-230, 1984 R.P. ANSTEE , Z . FUREDI, Forbidde n Submatrices , Discret e Mathematic s 62 , 225-243, 1986 A. APOSTOLICO , M.J. ATALLAH , S . E. HAMBRUSCH , New Clique and Independent Se t Algo- rithms fo r Circle Graphs , Discret e Applie d Mathematic s 36 , 1-24, 1992 Erratum: Discret e Applied Mathematic s 41 , 179-180, 1993 [21] J.C . ARDITTI, Partiall y Ordere d Set s and their Comparabilit y Graphs , thei r Dimensio n and their Adjacency , Problemes Combinatoires et Theorie des Graphes, 1976 , Proc. Coll. Int. CNRS, Orsay , Franc e

319 320 Bibliograph y

[22] S.R . ARIKATI, C . PANDU RANGAN , An Efficient Algorith m fo r Finding a Two-Pair, an d its Applications, Discret e Applie d Mathematic s 31 , 71-74, 1991 [23] E.M . ARKIN , D . HALPERIN , K . KEDEM , J.S.B . MITCHELL , N . NAOR , Arrangemen t o f Seg - ments tha t Shar e Endpoints : Singl e Fac e Results , Discret e Computationa l Geometr y 13, 257-270, 1995 [24] S . ARNBORG , D.G . CORNEIL, A . PROSKUROWSKI , Complexit y o f Finding Embedding s i n a /c-tree, SIA M Journa l on Algebraic Discret e Method s 8 , 277-284, 1987 [25] L . BABEL, I.N . PONOMARENKO, G . TINHOFER, Th e Isomorphism Proble m fo r Directed Pat h Graphs an d for Rooted Directe d Pat h Graphs , Journa l o f Algorithms 21 , 542-564, 1996 [26] H . BALAKRISHNAN, R . RAJARAMAN , C . PAND U RANGAN , Connecte d Dominatio n an d Steine r Set on Asteroidal Triple-Fre e Graphs , Lectur e Note s in Computer Scienc e 709 , WADS 93, 131-141, 1993 [27] H . BANDELT, H.M . MULDER, Distance-Hereditar y Graphs , Journa l of Combinatorial Theor y Series B 41, 182-208, 1986 [28] H.J . BANDELT , A . D'ATRI , M . MOSCARINI , H.M . MULDER , A . SCHULTZE , Operation s o n Distance-Hereditary Graphs , Instituto di Analisi di Sistimi ed Informatica, Researc h Repor t 209, 198 8 [29] A . D'ATRI , M . MOSCARINI , H.M . MULDER , O n the Isomorphis m Proble m fo r Distance - Hereditary Graphs , Econometri c Institut e Technica l Repor t EI9241/A , Rotterda m Schoo l of Economics , 1992 [30] G . DI BATISTA, P. EADES, R . TAMASSIA, I.G . TOLLIS, Grap h Drawing , Prentic e Hall , Uppe r Saddle River , Ne w Jersey, 1998 [31] C . BENZAKEN, P.L . HAMMER , D . DE WERRA, Threshol d Characterizatio n o f Graphs wit h Dilworth Numbe r Two , Journal o f Graph Theor y 9 , 245-267, 1985 [32] S . BENZER, O n the Topology o f the Genetic Fin e Structure , Proc . Nat. Acad. Sci . USA 45, 1607-1620, 1959 [33] V.L . BERESNEV, A.I. DAVYDOV, On Matrices with Connectednes s Properties , Upravlyaemy e Sistemy 19 , 3-13, 197 9 [34] C . BERGE, Farbung vo n Graphen, dere n Samtlich e bzw . deren Ungerad e Kreis e Star r sind , Wiss. Zeitschrif t Martin-Luther-Univ . Halle-Wittenburg , 1961 , 114 [35] C . BERGE, , Nort h Holland , Amsterdam , 1989 [36] A . BERRY , J.-P . BORDAT , P . HEGGERNES , Recognizin g Weakl y Triangulate d Graph s by Edge Separability , Nordi c Journa l o f Computing 7 , 164-177, 200 0 [37] A . BERRY , A . SIGAYRET , C . SINOQUET , Improvin g Phylogeneti c Dat a b y Correcting the 2-Pair Edge-Additio n Ordering , manuscript , 2001 [38] A.A . BERTOSSI, M.A. BONUCCELLI, Hamiltonia n Circuit s in Interval Graph Generalizations , Information Processin g Letter s 23 , 195-200, 1986 [39] B.K . BHATTACHARYA, D . KALLER , A n 0(ra+nlogn) Algorith m fo r the Maximum Cliqu e Problem i n Circular-Arc Graphs , Journa l o f Algorithms 25 , 336-358, 1997 [40] B . BHORE, S . PEMMARAJU , Minimu m Cardinalit y Steine r Forest s in Circle Graphs , manu - script, 200 2 [41] A . BLUM , Ne w Approximation Algorithm s fo r Graph Coloring , Journa l o f the ACM 41 , 470-516, 1994 [42] H.L . BODLAENDER, Treewidth : Algorithmi c Result s and Techniques, Technica l Repor t UU- CS-1997-31, Universitei t Utrecht , 1997 [43] H.L . BODLAENDER, A Linear-Time Algorith m fo r Finding Tree-Decomposition s o f Smal l Treewidth, SIA M Journa l on Computing 25 , 1305-1317, 1996 [44] H.L . BODLAENDER , Treewidth : Algorithmi c Technique s an d Results, MFOC S 97 , Lecture Notes in Computer Scienc e 1295 , 19-36 , 1997 [45] H . BODLAENDER, Polynomia l Algorithm s fo r Graph Isomorphis m an d Chromatic Inde x on Partial /c-Trees , Journal o f Algorithms 11 , 631-643, 1990 [46] H.L . BODLAENDER , M.R . FELLOWS , T . WARNOW, Tw o Strikes Agains t Perfec t Phylogeny , ICALP 92 , Lecture Note s in Computer Scienc e 62 3 273-283, 1992 [47] H.L . BODLAENDER, K . JANSEN, O n the Complexity o f the Maximum Cu t Problem, Nordi c Journal o f Computing 7 , 14-31, 2001 [48] H.L . BODLAENDER , T . KLOKS , D . KRATSCH , Treewidt h an d Pathwidt h o f Permutatio n Graphs, SIA M Journa l on Discrete Mathematic s 8 , 606-616, 1995 Bibliography 32 1

[49; H.L. BODLAENDER , T . KLOKS , D . KRATSCH , H . MULLER , Treewidt h an d Minimum Fill-i n on d- Trapezoid Graphs , Journa l o f Graph Algorithm s an d Applications 2 , 1-23, 199 8 [50 H.L. BODLAENDER , T . KLOKS , R . NIEDERMEIER , Simpl e Max-Cu t fo r Unit Interva l Graph s and Graph s wit h fe w P4S, manuscript, 200 2 [51 H.L. BODLAENDER , R.H . MOHRING , Th e Pathwidt h an d Treewidt h o f Cographs , SIA M Journal o n Discrete Mathematic s 6 , 181-188 , 1993 [52; H.L. BODLAENDER , D.M . THILIKOS, Treewidt h fo r Graphs wit h Smal l Chordality , Discret e Applied Mathematic s 79 , 45-61, 1997 [53; J.A. BONDY , V. CHVATAL , A Method i n Graph Theory , Discret e Mathematic s 15 , 111-135, 1976 [54 K.S. BOOTH , C.J . COLBOURN , Problem s Polynomiall y Equivalen t t o Grap h Isomorphism , Report CS-77-04 , Compute r Scienc e Department , Universit y o f Waterloo, 1980 [55; K.S. BOOTH , J.H . JOHNSON , Dominatin g Set s i n Chordal Graphs , SIA M Journa l o n Com - puting 11 , 191-199, 1982 [56; K.S. BOOTH , G.S . LUEKER Testin g fo r the Consecutive One s Property, Interva l Graphs, and Planarity Usin g PQ-Tree Algorithms , Journal o f Computer and System Scienc e 13, 335-379, 1976 [57; R. BORIE , J . JOHNSON , V . RAGHAVAN , J . SPINRAD , Robus t Algorithm s fo r Optimizatio n Problems o n Graphs o f Bounded Clique-Width , i n preparation, 200 2 [58; R. BORIE , R.G . PARKER, C.A . TOVEY, A Deterministic Decompositio n o f Recursive Grap h Families, SIA M Journa l o n Discrete Mathematic s 4 , 481-501, 1991 [59; R.B. BORIE , R.G . PARKER, C.A . TOVEY, Automati c Generatio n o f Linear-Time Algorithm s from Predicat e Calculu s Descriptions on Recursively Constructe d Grap h Families , Algorith - mica 7 , 555-582, 1992 [60; R.B. BORIE , J.P . SPINRAD , Constructio n o f a Simpl e Eliminatio n Schem e fo r a Chorda l Comparability Grap h i n Linear Time , Discret e Applie d Mathematic s 91 , 287-292, 1999 [61 P. BOSE , H . EVERETT , S . FEKETE , M.E . HOULE , A . LUBIW , H . MEIJER , K . ROMANIK , G . ROTE, T . SHERMER , S . WHITESIDES , C . ZELLE , A Visibilit y Representatio n fo r Graph s i n Three Dimensions , Journa l o f Graph Algorithm s an d Applications 2 , 1-16, 1998 [62; A. BOUCHET , Circl e Grap h Obstructions , Journa l o f Combinatoria l Theor y Serie s B 60, 107-144, 1994 [63; A. BOUCHET , Reducin g Prim e Graph s an d Recognizin g Circl e Graphs , Combinatoric a 7 , 243-254, 1987 [64; V. BOUCHITTE , I. TODINCA , Treewidth an d Minimum Fill-in : Groupin g the Minimal Sepa - rators, SIA M Journa l o n Computing 31 , 212-232, 2001 [65; V. BOUCHITTE , I TODINCA , Listin g all Potential Maxima l Clique s o f a Graph, STAC S 2000 , Lecture Note s i n Computer Scienc e 1770 , 503-515 , 200 0 [66; A. BRANDSTADT , Classe s o f Bipartite Graph s Relate d to Chordal Graphs , Discret e Applie d Mathematics 32 , 51-60, 1991 [67; A. BRANDSTADT , V.D . CHEPOI , F.F . DRAGAN , Th e Algorithmi c Us e o f Hypertree Structur e and Maximu m Neighborhoo d Orderings , Discret e Applie d Mathematic s 82 , 43-77, 1998 [68; A. BRANDSTADT , V.D . CHEPOI, F.F . DRAGAN, Cliqu e r-Dominatio n an d Clique r-Packin g Problems o n Dually Chorda l Graphs , SIA M Journa l o n Discrete Mathematic s 10 , 109-127, 1997 [69; A. BRANDSTADT , V.D. CHEPOI , F.F . DRAGAN , V . VOLOSHIN , Duall y Chordal Graphs, SIA M Journal o n Discrete Mathematic s 11 , 437-455, 1998 [70; A. BRANDSTADT , F.F . DRAGAN , O n the Linea r an d Circula r Structur e o f (claw,net)-fre e Graphs, manuscript , 1999 [71 A. BRANDSTADT , F.F . DRAGAN, E . KOHLER, Linea r Time Algorithms for Hamiltonian Prob - lems on (claw,net)-free Graphs , SIA M Journa l o n Computing 30 , 1662-1677, 200 0 [72 A. BRANDSTADT , T . KLEMBT , V.B . LE , S . MAHFUD , T . SZYMCZAK , O n th e Structur e an d Clique Width o f Graphs Define d b y Two Forbidden 4-Verte x Graphs , manuscrip t i n prepa- ration, 200 2 [73; A. BRANDSTADT , V.V . LOZIN, O n the Linear Structur e an d Clique-Width o f Bipartite Per - mutation Graphs , Rutger s Researc h Repor t RR R 29-2001, 2001 [74 A. BRANDSTADT , V.B . LE, J. SPINRA D Grap h Classes : A Survey, SIAM , Philadelphia , 1999 322 Bibliography

A. BRANDSTADT , S . MAHFUD , Maximu m Weigh t Stabl e Se t on Graphs withou t Cla w and Co-Claw (and Similar Graphs Classes ) can be Solved in Linear Time, Information Processin g Letters, i n press, 200 2 A. BRANDSTADT , J . SPINRAD , L . STEWART , Bipartit e Permutatio n Graph s ar e Bipartit e Tolerance Graphs , Congressu s Numerantiu m 58 , 165-174, 1987 H. BREU , D.G . KlRKPATRlCK , Uni t Dis k Grap h Recognitio n i s NP-hard , Computationa l Geometry 9 , 3-24, 199 8 H. BREU , Algorithmi c Aspect s o f Unit Dis k Graphs , Ph D Thesis, Compute r science , Uni - versity o f British Columbia , 1996 , Technical Repor t UB C CS TR-96-15 G. BRIGHTWELL , On the Complexity o f Diagram Testing , Orde r 10 , 297-303, 1993 G. BRIGHTWELL , D.A. GRABLE, H.J . PROMEL , Forbidden Induce d Partia l Orders , Discret e Mathematics 201 , 53-80, 1999 H. BROERSMA , T. KLOKS , D. KRATSCH , H. MiJLLER , Independent Set s in Asteroidal Triple - Free Graphs , SIA M Journa l o n Discrete Mathematic s 12 , 276-287, 1999 H. BROERSMA , E . DAHLHAUS , T . KLOKS , A Linea r Tim e Algorith m fo r Minimu m Fill-i n and Treewidt h fo r Distance Hereditar y Graphs , Discret e Applie d Mathematic s 99 , 367-400, 2000 H. BUER , R.H . MOHRING , A Fast Algorith m fo r the Decomposition o f Graphs an d Posets, Journal o f Mathematics an d Operations Researc h 8 , 170-184, 1983 P. BUNEMAN , A Characterization o f Rigid Circuit Graphs , Discret e Mathematics 9 , 205-212, 1974 R.E. BURKARD , On the Role o f Bottleneck Mong e Matrice s i n Combinatorial Optimization , Operations Researc h Letter s 17 , 53-56, 1995 L. CAI , The Complexit y o f Colourin g Parameterize d Graphs , Universit y o f Hon g Kon g Technical Repor t CS-TR-1999-07 , 1999 K.B. CAMERON , Polyhedra l and Algorithmic Ramification s o f Antichains, PhD Thesis, Uni - versity o f Waterloo, 1982 K. CAMERON , J . EDMONDS , Existentiall y Polytim e Theorems , Polyhedra l Combinatorics , DIMACS Serie s o n Discret e Mathematic s an d Theoretica l Compute r Scienc e 1 , 83-100 , 1990 K. CAMERON , J . EDMONDS , Som e Graphi c Use s o f an Even Numbe r o f Odd Holes, Annal s Inst. Fourie r (Grenoble ) 49 , 815-827, 1999 M.C. CARLISLE , E.L . LLOYD, O n the k-coloring o f Intervals, Discret e Applie d Mathematic s 59, 225-235 , 1995 E. CENEK , L . STEWART , Overla p Graph s o f Trees, in preparatio n M.S. CHANG , Efficien t Algorithm s fo r the Domination Problem s o n Interval an d Circular - Arc Graphs , SIA M Journa l o n Computing 27 , 1671-1694, 1998 M.S. CHANG , Weighte d Dominatio n o n Cocomparability Graphs , Discret e Applie d Mathe - matics 80 , 135-148, 1997 M.S, CHANG , Algorithm s for Maximum Matching and Minimum Fill-in on Chordal Bipartit e Graphs, Lecture Notes in Computer Scienc e 1178 , Algorithms and Computation 96 , 146-155, 1996 M.S. CHANG , Y.H . CHEN , G.J . CHANG , J.H . YAN , Algorithmic Aspect s o f the Generalize d Clique-Transversal Proble m on Chordal Graphs , Discret e Applied Mathematic s 66 , 189-203, 1996 M.S. CHANG , S.L . PENG , J.L . LIAW , Deferred-Query : A n Efficien t Approac h fo r Som e Problems on Interval Graphs , Network s 34 , 1-10, 199 9 M.S. CHANG , S.C . Wu , G.J . CHANG , H.G . YEH , Domination i n Distance-Hereditar y Graphs, Discret e Applie d Mathematic s 116 , 103-113, 200 2 H.S. CHAO , F.R . HSU, R.C.T. LEE , An Optimal Algorithm fo r Finding the Minimum Cardi - nality Dominating Se t on Permutation Graphs , Discret e Applied Mathematic s 102 , 159-173, 2002 B. CHAZELLE , A Polygon Cuttin g Theorem , Proceeding s o f the 23d Symposium o n Founda- tions o f Computer Scienc e 339-349 , 1982 L. CHEN , Y . YESHA , Efficien t Paralle l Algorithm s fo r Bipartite Permutatio n Graphs . Net - works 22, 29-39, 1993 N. CHIBA , T . NISHIZEKI , Arboricit y an d Subgrap h Listin g Algorithms , SIA M Journa l o n Computing 14 , 210-223, 1985 Bibliography 32 3

[102 M. CHUDNOVSKY , N . ROBERTSON , P . SEYMOUR , R . THOMAS , Th e Stron g Perfec t Grap h Theorem, manuscript . 200 2 [103; V. CHVATAL , A Combinatorial Theore m in Plane Geometry , Journa l o f Combinatorial The - ory Serie s B, 39-41, 1975 [104 V. CHVATAL , Perfectly Ordere d Graphs , Annal s o f Discrete Mathematic s 21 , 63-65, 1984 [105; V. CHVATAL , Recognizing Decomposabl e Graphs , Journa l o f Graph Theor y 8 , 51-53, 1984 [106 V. CHVATAL , Star-Cutset s an d Perfect Graphs , Journa l o f Combinatorial Theor y Serie s B 39, 189-199 , 1985 [107 V. CHVATAL , Which Claw-Fre e Graph s ar e Perfectly Orderable? , Discret e Applie d Mathe - matics 44, 39-63, 1993 [108; V. CHVATAL , J . FONLUPT , L . SUN, A. ZEMIRLINE, Recognizin g Dart-Fre e Perfec t Graphs , SIAM Journa l on Computing 31 , 1315-1338, 200 2 [109 V. CHVATAL , C.T . HOANG , N.V.R . MAHADEV , D . D E WERRA , Fou r Classe s o f Perfectl y Orderable Graphs , Journa l o f Graph Theor y 11 , 481-485, 1987 [110 V. CHVATAL , N. SBIHI, Bull-fre e Berg e Graph s ar e Perfect, Graph s an d Combinatorics 3, 127-139, 1987 [111 V. CHVATAL , N . SBIHI, Recognizin g Claw-Fre e Perfec t Graphs , Journa l o f Combinatoria l Theory Serie s B 44, 154-176, 1988 [112; B.N. CLARK , C.J . COLBOURN , D.S . JOHNSON, Uni t Dis k Graphs , Discret e Mathematic s 86, 165-177, 1990 [113 O. COGIS , A Characterization o f Digraphs with Ferrer s Dimensio n 2 , Res. Report 19 , CNRS Paris, 1979 [114 O. COGIS , On the Ferrers Dimensio n o f a Digraph, Discret e Mathematic s 38 , 47-52, 1982 [115 C.J. COLBOURN , L.K . STEWART, Dominatin g Cycle s in Series Paralle l Graphs , Ar s Combi- natorica 19A , 107-112 , 1985 [116 P. COLLEY , A . LUBIW, J . SPINRAD , Visibilit y Graph s o f Towers, Computationa l Geometr y 7, 161-172 , 1997 [117] M. CONFORTI , G . CORNUEJOLS , A . KAPOOR , K . VUSKOVIC , Even-Hole-Fre e Graphs , Par t II: Recognitio n Algorithm , Journa l o f Graph Theor y 40 , 238-266, 200 2 [us; D. COPPERSMITH , S . WINOGRAD, Matri x Multiplication via Arithmetic Progressions, Journa l of Symboli c Computatio n 9 , 1-6, 199 0 [119; T. CORMEN , C . LEISERSON, R . RIVEST, Introductio n to Algorithms, MIT Press, Cambridg e MA, 1989 [120; D.G. CORNEIL , persona l communication , 1999 [121 D.G. CORNEIL , J . FONLUPT , Th e Complexity o f Generalized Cliqu e Covering , Discret e Ap- plied Mathematic s 22 , 109-118, 1988/8 9 [122; D.G. CORNEIL , M . HABIB , J.M . LANLIGNEL , B . REED , U . ROTICS , Polynomia l Tim e Algo - rithm fo r the 3-Clique-Width Problem , Lectur e Note s i n Computer Scienc e 1776 , LATIN 2000, 126-134 , 200 0 [123; D. G . CORNEIL, P. K. KAMULA, Extensions o f Permutation and Interval Graphs, Congressu s Numerantium 58 , 267-276, 1987 [124 D.G. CORNEIL , H . KIM , S . NATARAJAN , S . OLARIU , A.P . SPRAGUE , Simpl e Linea r Tim e Recognition o f Unit Interva l Graphs , Informatio n Processin g Letter s 55 , 99-104, 1995 [125; D. CORNEIL , S . OLARIU , L . STEWART , Linea r Tim e Algorithm s fo r Dominating Pair s in Asteroidal Triple-Fre e Graphs , SIA M Journa l on Computing 28 , 1284-1297, 1999 [126; D. CORNEIL , S . OLARIU , L . STEWART , Asteroida l Triple-Fre e Graphs , SIA M Journa l on Discrete Mathematic s 10 , 399-430, 1997 [127; D. CORNEIL , S . OLARIU, L. STEWART, The Ultimate Interval Graph Recognition Algorithm? , SODA, 1998 , corrected manuscrip t 200 0 [128; D.G. CORNEIL , Y . PERL, L.K . STEWART, A Linear Recognitio n Algorith m fo r Cographs, SIAM Journa l on Computing 14 , 926-934, 1985 [129 D.G. CORNEIL , Y . PERL, L.K . STEWART , Cographs : Recognition , Applications , an d Algo- rithms, Congressu s Numerantiu m 43 , 249-258, 1984 [130 G. CORNUEJOLS , X . Liu, K. VUSKOVIC, Recognizin g Thre e Classe s o f Perfect Graphs , in preparation, 200 2 [131 C. COULLARD , A . LUBIW, Distanc e Visibilit y Graphs , Internationa l Journa l o f Computa - tional Geometr y Application s 2 , 349-362, 1992 324 Bibliograph y

[132] B . COURCELLE , The Monadic Second-Orde r Logi c o f Graphs I : Recognizable Set s o f Finite Graphs, Informatio n an d Computation 85 , 12-75, 1990 [133] B . COURCELLE, Th e Monadic Second-Orde r Logi c of Graphs XIV : Uniformly Spars e Graph s and Edge-Se t Quantifications , Theoretica l Compute r Science , to appea r [134] B . COURCELLE, J . ENGELFRIET , G . ROZENBERG , Handl e Rewritin g Grap h Grammars , Jour - nal o f Computer an d System Scienc e 46 , 218-270, 1993 [135] B . COURCELLE , J.A . MAKOWSKY, U . ROTICS, Linea r Tim e Solvabl e Optimizatio n Problem s on Graph s o f Bounded Clique-Width , Theor y o f Computing System s 33 , 125-150, 200 0 [136] A . COURNIER , M . HABIB , A Ne w Linear Algorith m fo r Modula r Decomposition , Lectur e Notes i n Computer Scienc e 787 , 68-84, 1994 [137] J.C . CULBERSON , R.A . RECKHOW , Coverin g Polygon s i s Hard, Journa l o f Algorithms 17 , 2-44, 1991 [138] W.H . CUNNINGHAM , Decompositio n o f Directed Graphs , SIA M Journa l o n Algebraic Dis - crete Method s 3 , 214-228, 1982 [139] W.H . CUNNINGHAM, J . EDMONDS , A Combinatorial Decompositio n Theory , Canadia n Jour - nal o f Mathematics 22 , 734-765, 1980 [140] I . DAGAN , M.C . GOLUMBI C R.Y . PINTER , Trapezoi d Graph s an d their Coloring , Discret e Applied Mathematic s 21 , 35-46, 1988 [141] E . DAHLHAUS , Chordal e Graphe n i m besonderen Hinblic k au f parallele Algorithmen , Habil - itation Thesis , Universita t Bonn , 1991 [142] E . DAHLHAUS , Sequentia l an d Parallel Algorithm s o n Compactly Represente d Chorda l and Strongly Chorda l Graphs , Lectur e Note s i n Computer Scienc e 1200 , 487-498, 1997 [143] E . DAHLHAUS , Paralle l Algorithm s fo r Hierarchica l Clusterin g an d Application s t o Spli t Decomposition an d Parity Grap h Recognition , Journa l o f Algorithms 36 , 205-240, 200 0 [144] E . DAHLHAUS , G . BAILEY , Recognitio n o f Path Graph s i n Linear Time , Theoretica l Com - puter Scienc e (Ravell o 1995) , 201-210 , World Sci . Publishing, Rive r Edge , NJ, 1996 [145] E . DAHLHAUS , J. GUSTEDT , R.M . MCCONNELL, Efficien t an d Practical Algorithm s fo r Se- quential Modula r Decomposition , Journa l o f Algorithms 41 , 360-387, 2001 [146] E . DAHLHAUS , J . GUSTEDT , R.M . MCCONNELL , Partiall y Complemente d Representation s o f Digraphs, Discret e Mathematic s an d Theoretical Compute r Science , to appea r [147] P . DAMASCHKE , The Hamilton Circui t Proble m fo r Circle Graph s i s NP-complete, Informa - tion Processin g Letter s 32 , 1-2, 1989 [148] P . DAMASCHKE, Induce d Subgraph Isomorphism fo r Cographs is NP-complete, Lecture Notes in Compute r Scienc e 484, WG 90, 72-78, 1991 [149] P . DAMASCHKE , J . DEOGUN , D . KRATSCH , G . STEINER , Findin g Hamiltonia n Path s i n Co - comparability Graph s usin g the Bump Number , Orde r 8 , 383-391, 1991/9 2 [150] P . DAMASCHKE , H . MULLER , D . KRATSCH , Dominatio n i n Conve x an d Chordal Bipartit e Graphs, Informatio n Processin g Letter s 36 , 231-236, 1990 [151] X . DENG, P . HELL , J . HUANG , Linear-Tim e Representatio n Algorithm s fo r Proper Circular - Arc Graph s an d Proper Interva l Graphs , SIA M Journa l o n Computing 25 , 390-403, 1996 [152] J.S . DEOGUN , T . KLOKS , D . KRATSCH , H . MULLER , O n th e Verte x Rankin g Proble m fo r Trapezoid, Circular-Ar c an d Other Graphs , Discret e Applie d Mathematic s 98 , 39-63, 1999 [153] J.S . DEOGUN, C . RIEDESEL , Hamiltonia n Cycle s in Permutation Graphs , Journa l o f Combi- natorial Mathematic s an d Combinatorial Computin g 27 , 161-200, 1998 [154] J.S . DEOGUN , G . STEINER , Polynomia l Algorithm s fo r Hamilton Cycl e i n Cocomparabilit y Graphs, SIA M Journa l o n Computing 23 , 520-552, 1994 [155] U . DERIGS , O . GOECKE , R . SCHRADER , Bisimplicia l Edges , Gaussia n Elimination , an d Matchings i n Bipartite Graphs , Repor t 84332-OR , Institu t fu r Operation s Research , Uni - versitat Bon n [156] J . DIAZ , M.D . PENROSE, Approximatin g Layou t Problem s o n Random Geometri c Graphs , Journal o f Algorithms 39 , 78-116, 2001 [157] J . DIAZ , M.D . PENROSE , J . PETIT , M.J . SERNA , Linea r Ordering s o f Rando m Geometri c Graphs, Lectur e Note s i n Computer Scienc e 1665 , WG 99, 291-302, 1999 [158] P.F . DIETZ, Intersectio n Grap h Algorithms , Ph.D . Thesis, Comp . Sci . Dept., Cornel l Uni - versity, 1984 [159] R.P . DlLWORTH , A Decompositio n Theore m fo r Partially Ordere d Sets , Annal s o f Mathe - matics Serie s 2 , 161-166, 1950 [160] G.A . DiRAC, On Rigid Circui t Graphs , Abh. Math. Sem . Univ. Hambur g 25 , 71-76, 1961 . Bibliography 32 5

[161 D. DOBKIN , H . EDELSBRUNNER , Searchin g fo r Empt y Conve x Polygons , Algorithmic a 5 , 561-571, 1990 [162 J.P. DOIGNON , A . DUCAMP , J . C . FALMAGNE , O n Realizabl e Biorder s an d the Biorde r Dimension o f a Relation, Journa l o f Mathematical Psycholog y 28 , 77-109, 1984 [163 F.F. DRAGAN , K.F . PRISAKAR , V.D . CHEPOI , Th e Locatio n Proble m o n Graph s an d th e Helly Problem , Diskret . Mat . 4, 67-73, 1992 [164 F.F. DRAGAN , V.I . VOLOSHIN, Incidenc e Graphs o f Biacyclic Hypergraphs, Discret e Applie d Mathematics 68 , 259-266, 1996 [165; G. DURAN , A . GRAVANO , J . SPINRAD , A.C . TUCKER , Polynomia l Tim e Recognitio n o f Uni t Circular-Arc Graphs , manuscript , 200 2 [166 B. DUSHNICK , E . W. MILLER , Partiall y Ordere d Sets , American Journa l o f Mathematics 63, 1941, 600-61 0 [167] S. ElDENBENZ , C . STAMM , Maximu m Cliqu e an d Minimu m Cliqu e Partitio n i n Visibilit y Graphs, Lectur e Note s i n Computer Scienc e 1872 , IFIP TC S 00, 200-21, 200 0 [168 E.S. ELMALLAH , C.J . COLBOURN , Th e Complexity o f Some Edge Deletio n Problems , IEE E Transactions o n Circuits an d Systems 35 , 354-362, 1988 [169 E.S. ELMALLAH , L.K . STEWART, Independenc e and Domination in Polygon Graphs, Discret e Applied Mathematic s 44 , 65-77, 1993 [170 E.S. ELMALLAH , L.K . STEWART , Polygo n Grap h Recognition , Journa l o f Algorithm s 26 , 101-140, 1998 [171 P. VA N EMDE BOAS , Preservin g Orde r i n a Forest i n Less than Logarithmi c Time and Linear Space, Informatio n Processin g Letter s 6 , 80-82, 1977 [172; P. ERDOS , D.B. WEST, A Note o n the Interval Numbe r o f a Graph, Discret e Mathematic s 55, 129-133 , 1985 [173; T. ERLEBACH , K . JANSEN , The Complexity o f Path Colorin g and Call Scheduling , Theoret - ical Computer Scienc e 255 , 33-50, 2001 [174 T. ERLEBACH , K . JANSEN, E . SEIDEL, Polynomial-Tim e Approximatio n Scheme s for General Graphs, Proceedings o f 12th ACM-SIAM Symposiu m on Discrete Algorithms, 671-679 , 2001 [175; E. ESCHEN , Circular-Arc Grap h Recognitio n and Related Problems , Ph.D . Thesis , Dept . of Computer Science , Vanderbil t University , 1996 [176 E. ESCHEN , R . HAYWARD , J . SPINRAD , R . SRITHARAN , Weakl y Triangulate d Comparabilit y Graphs, SIA M Journa l o n Computing 29 , 378-386, 1999 [177] E. ESCHEN , J . SPINRAD , A n 0(n2) Algorithm fo r Circular-Arc Grap h Recognitio n Proceed - ings o f the 4th Annual ACM-SIA M Symposiu m o n Discrete Algorithm s 128-137 , 1993 [178; E. ESCHEN , J . SPINRAD , Findin g Triangle s i n Restricted Classe s o f Graphs, i n preparation , 2002 [179 S. EVEN , Grap h Algorithms , Compute r Scienc e Press , 1979 [180; H. EVERETT , D . CORNEIL, Negativ e Result s on Visibility Graphs , Computational Geometr y Theory an d Applications 5 , 51-63, 1995 [181 H. EVERETT , S . KLEIN , B . REED , A n Algorithm fo r Finding Homogeneou s Pairs , Discret e Applied Mathematic s 72 , 209-218, 1997 [182; M. FARBER , Domination , Independen t Domination , an d Dualit y i n Strongl y Chorda l Graphs, Discret e Applie d Mathematic s 7 , 115-130, 1984 [183; M. FARBER , Characterizations o f Strongly Chorda l Graphs , Discret e Mathematic s 43 , 173 - 189, 198 3 [184; M. FARBER , Application s o f Linear Programmin g Dualit y t o Problems Involvin g Indepen - dence and Domination, Ph.D . Thesis, Simo n Frase r University , 1981 [185; T. FEDER , P . HELL , S . KLEIN , R . MOTWANI , Complexit y o f Grap h Partitio n Problems , Proceedings o f the 31st Symposium o n the Theory o f Computing 464-472 , 1999 [186 S. FELSNER , Toleranc e Graph s an d Orders, Journa l o f Graph Theor y 28 , 129-140, 1998 [isr S. FELSNER , P.C . FISHBURN , W.T . TROTTER , Finit e Three-Dimensiona l Partia l Order s which ar e not Sphere Orders , Discret e Mathematic s 201 , 101-132, 1999 [188' S. FELSNER , R . MULLER , L . WERNISCH , Trapezoi d Graph s an d Generalizations, Geometr y and Algorithms , Discret e Applie d Mathematics , 13-32 , 1997 [189; S. FELSNER , V . RAGHAVAN , J . SPINRAD , Recognitio n Algorithm s fo r Orders o f Small Widt h and Graph s o f Small Dilwort h Number , manuscript , 200 0 [190; P. FESTA , P.M . PARDALOS, M.G.C . RESENDE , Feedbac k Se t Problems, Handboo k o f Com - binatorial Optimization , Supplemen t Volum e A , 209-258, Kluwer, 1999 326 Bibliograph y

[191] CM . FIDUCCIA , E.R . SCHEINERMAN , A . TRENK , J.S . ZITO , Do t Produc t Representation s of Graphs , Discret e Mathematic s 181 , 113-138, 1998 [192] C.M.H . D E FIGUEIREDO, S . KLEIN , Y . KOHAYAKAWA , B.A . REED, Findin g Ske w Partition s Efficiently, Journa l o f Algorithms 37 , 505-521, 200 0 [193] C.M.H . D E FIGUEIREDO, K . VUSKOVIC, Recognitio n o f Quasi-Meyniel Graphs , Discret e Ap- plied Mathematic s 13 , 255-260, 2001 [194] P . C. FISHBURN, Interva l Order s an d Interval Graphs , Wiley , Ne w York, 1985 [195] P.C . FISHBURN, W.T . TROTTER, Angl e Orders , Orde r 1 , 333-343, 1985 [196] S . FOLDES, P.L . HAMMER, Spli t Graphs , Congressu s Numerantiu m 19 , 311-315, 1977 [197] J . FONLUPT , A . ZEMIRLINE , A Polynomial Recognitio n Algorith m fo r Perfect K4 - e-Fre e Graphs, Rev . Maghrebine Mat h 2 , 1-26, 1993 [198] L . FORD , D . FULKERSON , Flow s i n Networks, Princeto n Universit y Press , Princeto n NJ, 1962 [199] J.L . FOUQUET , J.L . JOLIVET , M . RIVIERE , A n 0(n3) Algorith m t o Recogniz e Bipartit e Pe-free Graphs , liste d as to appear Journa l o f Algorithms 1994! ! [200] R.J . FOWLER, M.S . PATERSON, S.L . TANIMOTO, Optima l Packin g and Covering in the Plane are NP-complete , Informatio n Processin g Letter s 12 , 133-137, 1981 [201] R . FREIVALDS , Fas t Probabilisti c Algorithms , Lectur e Note s i n Compute r Scienc e 74, MFOCS 79 , 57-69, 1979 [202] A . FRANK , T . NISHIZEKI , N . SAITO , H . SUZUKI , E . TARDOS , Algorithms fo r Routing Aroun d a Rectangle , Discret e Applie d Mathematic s 40 , 363-378, 1992 [203] D.R . FULKERSON , O.A . GROSS , Incidence Matrice s and Interval Graphs , Pacifi c Journa l of Mathematics 15 , 835-855, 1965 [204] C.P . GABOR, W.L . HSU, K.J. SUPOWIT, Recognizin g Circl e Graph s i n Polynomial Time , Journal o f the ACM 36, 435-473, 1989 [205] T . GALLAI , Transiti v Orientbar e Graphen , Act a Math . Acad . Sci . Hung. Tom . 18, 25-66, 1967 [206] M.R . GAREY, D.S . JOHNSON , Computer s an d Intractability: A Guide t o the Theory of NP-Completeness, Freeman , Sa n Francisco, CA, 197 8 [207] M.R . GAREY, D.S . JOHNSON, Th e Rectilinear Steine r Tre e Proble m i s NP-complete, SIA M Journal on Applied Mathematic s 32 , 826-834, 1977 [208] M.R . GAREY , D.S . JOHNSON , G.L . MILLER , C.H . PAPADIMITRIOU , Th e Complexit y o f Col - oring Circula r Arc s and Chords, SIA M Journa l o n Algebraic Discret e Method s 1 , 216-227, 1980 [209] A . GARG, R . TAMASSIA, Upwar d Planarit y Testing , Orde r 12 , 109-133, 1995 [210] C . GAVOILLE , D . PELEG , S . PERENNES , R . RAZ , Distance Labelin g i n Graphs, 12t h ACM- SIAM Symposiu m on Discrete Algorithms , 210-219 , 2001 [211] F . GAVRIL, Algorithm s fo r a Maximum Cliqu e and a Maximum Independen t Se t of a Circle Graph, Network s 3, 261-273, 1973 [212] F . GAVRIL, Algorithm s on Circular-Arc Graphs , Network s 4, 357-369, 1974 [213] F . GAVRIL, Maximu m Weigh t Independen t Set s and Cliques in Intersection Graph s o f Fila- ments, Informatio n Processin g Letter s 73 , 181-188, 200 0 [214] F . GAVRIL, Algorithm s fo r Maximum Weigh t Induce d Paths, Information Processin g Letter s 81, 203-208 , 200 2 [215] F . GAVRIL, A Recognition Algorith m fo r the Intersection Graph s o f Directed Path s i n Di- rected Trees , Discret e Mathematic s 13 , 237-249, 1975 [216] F . GAVRIL, Th e Intersection Graph s o f Subtrees o f Trees are Exactly the Chordal Graphs , Journal o f Combinatorial Theor y Serie s B 16, 47-56, 1974 [217] F . GAVRIL , Algorithm s fo r Maximum fc-colorings an d fc-coverings o f Transitive Graphs , Networks 17 , 465-470, 1987 [218] S . GHOSH, On Recognizing and Characterizing Visibility Graphs of Simple Polygons, Lectur e Notes in Computer Scienc e 318 , SWAT 88 , 96-104, 198 8 [219] V . GIAKOUMAKIS , I . Rusu , Weighte d Parameter s i n P5,P5-free Graphs , Discret e Applie d Mathematics 80 , 255-261, 1997 [220] P.C . GILMORE, A.J . HOFFMAN , A Characterization o f Comparability Graph s an d Interva l Graphs, Canadia n Journa l o f Mathematics 16 , 539-548, 1964 [221] F . GLOVER , Maximu m Matchin g i n a Conve x Bipartit e Graph , Nava l Researc h Logistic s Quarterly 14 , 313-316, 1967 Bibliography 327

L. GOH , D. ROTEM , Recognition o f Perfect Eliminatio n Bipartit e Graphs , Informatio n Pro - cessing Letter s 15 , 179-182, 1982 M.C. GOLUMBIC , Algorithmi c Grap h Theor y an d Perfec t Graphs , Academi c Press , Ne w York, 1980 M.C. GOLUMBIC , C.F. GOSS, Perfect Eliminatio n and Chordal Bipartit e Graphs , Journa l of Graph Theor y 2 , 155-163, 1978 M.C. GOLUMBIC , P.L . HAMMER, Stabilit y i n Circular-Arc Graphs , Journa l o f Algorithms 9, 314-320, 1988 M.C. GOLUMBIC , R . E. JAMISON , Th e Edge Intersectio n Graph s o f Paths i n Trees, Journa l of Combinatorial Theor y Serie s B 38, 8-22, 198 5 M.C. GOLUMBIC , R.E . JAMISON , Edg e and Vertex Intersectio n o f Paths i n a Tree, Discret e Mathematics 55 , 151-159, 1985 M.C. GOLUMBIC , H . KAPLAN, R . SHAMIR , Grap h Sandwic h Problems, Journal o f Algorithms 19, 449-473 , 1995 M.C. GOLUMBIC , C.L . MONMA, W.T. TROTTER, Toleranc e Graphs , Discret e Applied Math - ematics 9 , 157-170, 1984 M.C. GOLUMBIC , U . ROTICS , O n the Clique-Width o f Some Perfec t Grap h Classes , Inter - national Journa l o n Foundations o f Computer Scienc e 11 , 423-443, 200 0 M.C. GOLUMBIC , E.R . SCHEINERMAN , Containmen t Graphs , Posets , and Related Classe s of Graphs, Annal s Ne w York Academ y o f Sciences 555 , 192-204 , 1989 M.C. GOLUMBIC , A . SIANI , Colorin g Algorithm s fo r Toleranc e Graphs : Reasonin g an d Scheduling wit h Interva l Constraints , proceeding s o f AISC 2002 , to appea r A. GRAF , Colorin g an d Recognizing Specia l Grap h Classes , PhD Thesis, Johanne s Guten - berg Universitat , Mainz , 1994 , and report 20/9 5 i n Musikinformatik un d MedienTechni k A. GRAF , M . STUMPF , G . WEISSENFELS , O n Coloring Uni t Dis k Graphs , Algorithmic a 20, 1998 R.L. GRAHAM , B.L . ROTHSCHILD, J.H . SPENCER , Ramse y Theory , Wiley , Ne w York, 1990 J.R. GRIGGS , Extremal Value s of the Interval Number o f a Graph, II, Discrete Mathematic s 28, 37-47 , 1989 M. GROTSCHEL , L . LOVASZ , A . SCHRIJVER , Th e Ellipsoi d Metho d an d it s Consequence s i n Combinatorial Optimization , Combinatoric a 1 , 169-197, 1981 V. GURUSWAMI , Maximu m Cu t on Line an d Total Graphs , Discret e Applie d Mathematic s 92, 217-221 , 1999

V. GURUSWAMI , C.PAND U RANGAN , M.S . CHANG , G.J . CHANG , C.K . WONG , Th e K r- Packing Problem , Computin g 66 , 79-89, 2001 J. GUSTEDT , O n the Pathwidth o f Chordal Graphs , Discret e Applie d Mathematic s 45 , 233 - 248, 199 3 W. GUTJAHR , E . WELZL , G . WOEGINGER , Polynomia l Grap h Colorings , Discret e Applie d Mathematics 35 , 29-45, 1992 M. HABIB , R . JEGOU , N-fre e Poset s a s Generalization s o f Series-Paralle l Posets , Discret e Applied Mathematic s 3 , 279-291, 1985 M. HABIB , D . KELLY , R.H . MOHRING , Interva l Dimensio n i s a Comparabilit y Invariant , Discrete Mathematic s 88 , 211-229, 1991 M. HABIB , M.C . MAURER, O n the X-join Decompositio n fo r Undirected Graphs , Discret e Applied Mathematic s 3 , 198-207, 1979 H. HADWIGER , H . DEBRUNNER , V . KLEE, Combinatoria l Geometr y i n the Plane, Hol t Rine - hardt an d Winston, Ne w York, 1964 , p. 54 P.L. HAMMER , F . MAFFRAY , Completel y Separabl e Graphs , Discret e Applie d Mathematic s 27, 85-100 , 1990 P.L. HAMMER , N.V.R . MAHADEV , D . DE WERRA, Stabilit y i n CAN-free Graphs , Journa l of Combinatorial Theor y Serie s B 38, 23-30, 1985 P.L. HAMMER , N.V.R . MAHADEV , D . D E WERRA, Th e Struction o f a Graph : Applicatio n to CN-fre e Graphs , Combinatoric a 5 , 141-147, 1985 P.L. HAMMER , B . SIMEONE , Th e Splittance o f a Graph, Combinatoric a 1 , 275-284, 1981 K. HAN , C.N. SEKHARAN , R . SRIDHAR , Unifie d All-Pair s Shortes t Pat h Algorithm s i n the Chordal Hierarchy , Discret e Applie d Mathematic s 77 , 59-71, 1997 [251] D . HAREL , R.E . TARJAN, Fas t Algorithm s fo r Finding Neares t Commo n Ancestors , SIA M Journal o n Computing 13 , 338-355, 1984 328 Bibliograph y

[252] LB.-A . HARTMAN , I . NEWMAN , R. ZIV , On Grid Intersectio n Graphs , Discret e Mathematic s 87, 41-52 , 1991 [253] R . HAYWARD , Weakl y Triangulate d Graphs , Journa l o f Combinatorial Theor y Serie s B 39, 200-209, 1985 [254] R . HAYWARD , C . HOANG , F . MAFFRAY , Optimizin g Weakl y Triangulate d Graphs , Graph s and Combinatoric s 5 , 339-349, 1989 [255] R . HAYWARD , R . SHAMIR , Toleranc e Graph s ar e in NP, in preparatio n [256] R . HAYWARD , J . SPINRAD , R . SRITHARAN , Weakl y Chorda l Grap h Algorithm s vi a Handles, Proceeding o f the 11th Symposium o n Discrete Algorithms , 42-49 , 200 0 [257] P . HLINENY , Th e Maxima l Cliqu e an d Colourabilit y o f Curv e Contac t Graphs , Discret e Applied Mathematic s 81 , 59-68, 1998 [258] P . HLINENY , J . KRATOCHVIL , Representin g Graph s b y Disk s an d Ball s ( A Surve y o f Recognition-Complexity Results) , Discret e Mathematic s 229 , 101-124, 2001 [259] C.T . HOANG , Efficien t Algorithm s fo r Minimu m Weighte d Colourin g o f Som e Classe s o f Perfect Graphs , Discret e Applie d Mathematic s 55 , 133-143, 1994 [260] C.T . HOANG , O n the Complexit y o f Recognizin g a Clas s o f Perfectl y Orderabl e Graphs , Discrete Applie d Mathematic s 66 , 219-226, 1996 [261] C.T . HOANG , Perfectl y Orderabl e Graphs : A Survey, i n Perfect Graphs , Ed . J.L. Ramirez and B.A . Reed, Wiley , Chichester , 139-166 , 2001 [262] C.T . HOANG , V.B. ' LE, Recognizing Perfec t 2-Spli t Graphs , SIA M Journa l o n Discret e Mathematics 13 , 48-55, 200 0 [263] C.T . HOANG, N.V.R . MAHADEV , A Note on Perfect Orders , Discrete Mathematics 74 , 77-84, 1989 [264] A.J . HOFFMAN , A.W.J . KOLEN , M . SAKAROVITCH , To t ally-Balanced an d Greedy Matrices , SIAM Journa l o n Algebraic Discret e Method s 6 , 721-730, 1985 [265] W.L . Hsu, O(mn) Algorithms fo r the Recognition an d Isomorphism Problem s o n Circular - Arc Graphs , SIA M Journa l o n Computing 24 , 411-439, 1995 [266] W.L . Hsu, Recognizing Plana r Perfec t Graphs , Journa l o f the ACM 34, 255-288, 1987 [267] W.L . Hsu, Decomposition o f Perfect Graphs , Journa l o f Combinatorial Theory , Serie s B 43, 70-94,1987 [268] W.L . Hsu, T.H. MA, Fast an d Simple Algorithm s fo r Recognizing Chorda l Comparabilit y Graphs an d Interval Graphs , SIA M Journa l o n Computing 28 , 1004-1020, 1999 [269] W.L . Hsu, W.K. SHIH , A n Approximation Algorith m fo r Colorin g Circular-Ar c Graphs , manuscript, 1996 [270] W.L . HSU , J. SPINRAD , Independen t Set s i n Circular-Ar c Graphs , Journa l o f Algorithm s 19, 145-160 , 1995 [271] W.L . HSU, K.H. TSAI, Linea r Tim e Algorithm s o n Circular-Arc Graphs , Informatio n Pro - cessing Letter s 40 , 123-129, 1991 [272] L.T.Q . HUNG , M.M . SYSLO,M.L . WEAVER,D.B . WEST , Bandwidt h an d Densit y fo r Bloc k Graphs, Discret e Mathematic s 189 , 163-176, 1998 [273] H.B . HUNT , M.V . MARATHE , V . RADHAKRISHNAN , S.S . RAVI , D.J . ROSENKRANTZ , NC - Approximation Scheme s fo r NP- and PSPACE-Hard Problem s o n Geometric Graphs , Jour - nal o f Algorithms 26 , 238-274, 1998 [274] T . IBARAKI , U. N. PELED, Sufficien t Condition s fo r Graphs to have Threshold Dimensio n 2, Studies on Graphs and Discrete Programming, Annal s o f Discrete Mathematics 11 , 241-268, 1981 [275] O.H . IBARRA , Q . ZHENG , Som e Efficien t Algorithm s fo r Permutatio n Graphs , Journa l o f Algorithms 16 , 453-469, 1994 [276] H . IMAI , T . ASANO , Findin g the Connected Component s an d Maximum Cliqu e o f an Inter- section Grap h o f Rectangles i n the Plane, Journa l o f Algorithms 4 , 310-323, 1983 [277] M.D . IORDACHE, A 2+e-Approximation Schem e for Minimum Dominatio n on Circle Graphs , Journal o f Algorithms 42 , 255-276, 200 2 [278] A . ITAI , C.H . PAPADIMITRIOU , J.L . SZWARCFITER , Hamilto n Path s i n Grid Graphs , SIA M Journal o n Computing 11 , 676-686 , 1982 [279] K . JANSEN , P . SCHEFFLER , Generalize d Colorin g fo r Tree-lik e Graphs , Discret e Applie d Mathematics 75 , 135-155, 1997 [280] T , JIANG , D . MUBAYI , A . SASTRI , D.B . WEST , Edge-Bandwidt h o f Graphs , SIA M Journa l on Discret e Mathematic s 12 , 307-316, 1999 Bibliography 32 9

[281 O. JOHANSSON , logn-Approximativ e NLCk -Decomposition i n 0(n 2k+1) Time , Lectur e Notes i n Computer Scienc e 2204 , WG 01, 229-240, 2001 [282; D.S. JOHNSON , The NP-Completeness Column : A n Ongoing Guide , Journa l o f Algorithm s 6, 434-451 , 1985 [283; D.S. JOHNSON , The NP-Completeness Column : A n Ongoing Guide : Announcements , Up- dates, and Greatest Hits , Journa l o f Algorithms 8 , 438-448, 1987 [284] D.S. JOHNSON , Wors t Cas e Behavio r o f Grap h Colorin g Algorithms , Proceeding s o f the 5th Southeaster n Conferenc e o n Combinatorics, Grap h Theor y and Computing, Congressu s Numerantium 10 , 513-528, 1974 [285; D.S. JOHNSON , M . YANNAKAKIS , C.H . PAPADIMITRIOU , O n Generatin g Al l Maxima l Inde - pendent Sets , Informatio n Processin g Letter s 27 , 119-123, 1988 [286; J. JOHNSON , R . MCCONNELL , J . SPINRAD , Linea r Tim e Recognitio n o f Prob e Interva l Graphs, i n preparation, 200 2 [287] J. JOHNSON , J . SPINRAD , A Polynomia l Tim e Recognitio n Algorith m fo r Prob e Interva l Graphs, Proceeding s o f the 12th ACM-SIAM Symposiu m o n Discrete Algorithms , 477-486 , 2001 [288 C.M.L. JONES , The Weighted Feedbac k Verte x Set Problem on Distance Hereditary Graphs , MS Thesis , Cun g Chen g University , 200 0 [289 D. JOSEPH , J . MEIDANIS , P. TIWARI, Determinin g DNA Sequence Similarity Using Maximu m Independent Se t Algorithms fo r Interval Graphs , Lectur e Note s i n Computer Scienc e 621, SWAT 92 , 326-337, 1992 [290; S. KANNAN , M . NAOR , S . RUDICH , Implici t Representatio n o f Graphs , SIA M Journa l o n Discrete Mathematic s 5 , 596-603, 1992 [291 S. KANNAN , T. PROEBSTING , Registe r Allocatio n i n Structured Programs , Journa l o f Algo- rithms 29 , 223-237, 1998 [292 LA. KARAPETJAN , Colorin g o f Arc Graphs, Akad . Nau k Armya n SS R Dokl 70 , 306-311 , 1980 [293 T. KASHIWABARA , S . MASUDA , K . NAKAJIMA , T . FUJISAWA , Polynomia l Tim e Algorithm s on Circular-Ar c Overla p Graphs , Network s 21 , 195-203, 1991 [294 M. KATZ , N. KATZ, D. PELEG, Distanc e Labeling Schemes for Well-Separated Grap h Classes , Lecture Note s i n Computer Scienc e 1770 , STACS 00 , 516-528, 200 0 [295 J.M. KEIL , Th e Complexity o f Domination Problem s i n Circl e Graphs , Discret e Applie d Mathematics 42 , 51-63, 1993 [296; M. KEIL , P . BELLEVILLE , Dominatin g the Complements o f Bounded Toleranc e Graph s and Trapezoid Graphs , manuscript , 200 0 [297; H.A. KIERSTEAD , W.T . TROTTER, J . QIN , The Dimension o f Cycle-Free Orders , Orde r 9 , 103-110, 1992 [298; D.J. KLEITMAN , K.J . WINSTON , Th e Asymptotic Numbe r o f Lattices, Annal s o f Discret e Mathematics 6 , 243-249, 1980 [299; B. KLINZ , R . RUDOLF, G . WOEGINGER, Permutin g Matrices to Avoid Forbidden Submatrice s Discrete Applie d Mathematic s 60 , 223-248, 1995 [300 B. KLINZ , R . RUDOLF, G.J . WOEGINGER, O n the Recognition o f Permuted Bottlenec k Mong e Matrices, Discret e Applie d Mathematic s 63 , 43-74, 1995 [301 T. KLOKS , Treewidth - Computation s an d Approximations, Springe r Verlag , Lectur e Note s in Compute r Scienc e 842 , 199 4 [302; T. KLOKS , Treewidth o f Circle Graphs, Lectur e Note s in Computer Scienc e 762 , Algorithm s and Computatio n 93 , 108-117 , 1993 [303; T. KLOKS , H. BODLAENDER, H . MiJLLER, D. KRATSCH, Computing Treewidth and Minimum Fill-in: al l you Need ar e the Minimal Separators , Lectur e Note s i n Computer Scienc e 726, ESA 93 , 260-271, 1993 [304 T. KLOKS , D . KRATSCH , Listin g al l Minima l Separator s o f a Graph , SIA M Journa l o n Computing 27 , 605-613, 1998 [305; T. KLOKS , D. KRATSCH , Treewidth o f Chordal Bipartit e Graphs , Journa l o f Algorithms 19, 266-281, 1995 [306; T. KLOKS , D . KRATSCH , Y . LEBORGNE , H . MULLER , Bandwidt h o f Spli t an d Circula r Permutation Graphs , Lectur e Note s i n Computer Scienc e 1928 , WG 00, 243-254, 200 0 [307 T. KLOKS , D . KRATSCH , H . MULLER , Findin g and Counting Smal l Induce d Subgraph s Effi - ciently, Lectur e Note s i n Computer Scienc e 1017 , WG 95, 14-23, 1995 330 Bibliograph y

[308] T . KLOKS , D . KRATSCH , H . MULLER , Approximatin g th e Bandwidth fo r Asteroidal Triple - Free Graphs, Journa l o f Algorithms 32 , 41-57, 1999 [309] T . KLOKS , D. KRATSCH, H . MULLER , Bandwidt h o f Chain Graphs , Informatio n Processin g Letters 68 , 313-315, 1998 [310] T . KLOKS , D . KRATSCH , J . SPINRAD , O n Treewidt h an d Minimu m Fill-i n o f Asteroida l Triple-free Graphs , Theoretica l Compute r Scienc e 175 , 309-335, 1997 [311] T . KLOKS , D. KRATSCH, C. K WONG, Minimu m Fill-i n on Circular and Circular-Arc Graphs , Journal o f Algorithms 28 , 272-289, 1998 [312] T . KLOKS , H . MULLER , C.K . WONG , Verte x Rankin g o f Asteroida l Triple-fre e Graphs , Information Processin g Letter s 68 , 201-206, 1998 [313] D . KOBLER , U. ROTICS, Edge Dominating Set s and Colorings on Graphs with Fixe d Clique - Width, Discret e Applie d Mathematics , i n press, 200 2 [314] M . KOEBE, Colouring of Spider Graphs, Topic s in Combinatorics and Graph Theory, Physic a Verlag, Heidelberg , 1990 , 435-44 1 [315] M . KOEBE, On a New Class of Intersection Graphs , unpublished manuscript , include s result s published unde r th e same titl e i n Fourth Czechoslovakia n Symposiu m o n Combinatorics , Graphs, and Complexity, Elsevier , 141-143 , 1992, as well as a proposed recognition algorith m [316] E . KOHLER , Graphs withou t Asteroida l Triples , Ph.D. Thesis , TU-Berlin , 1999 [317] E . KOHLER , D.G . CORNEIL , S . OLARIU , L . STEWART , O n Subfamilie s o f AT-fre e Graphs , Lecture Note s i n Computer Scienc e 2204 , WG 01, 241-253, 2001 [318] N . KORTE, R.H. MOHRING, Transitive Orientatio n o f Graphs with Sid e Constraints, Lectur e Notes on Computer Scienc e 246 , WG 85, 1-16, 198 7 [319] A . KOSTOCHKA , J . KRATOCHVIL , Coverin g an d Coloring Polygon-Circl e Graphs , Discret e Mathematics 163 , 299-305, 1997 [320] J . KRATOCHVIL , A Specia l Plana r Satisfiabilit y Proble m an d a Consequenc e o f it s NP- completeness, Discret e Applie d Mathematic s 52 , 233-252, 1994 [321] J . KRATOCHVIL , fc-Ramsey Classe s and Dimension o f Graphs, Commen t at iones Mathemat - icae Universitati s Carolina e 36 , 263-269, 1995 [322] J . KRATOCHVIL , Intersectio n Graph s o f Noncrossing Arc-Connecte d Set s i n the Plane, Lec - ture Note s i n Computer Scienc e 1190 , Graph Drawin g 96 , 257-270, 1996 [323] J . KRATOCHVIL , A . KUBENA, On Intersection Representations o f Co-Planar Graphs , Discret e Mathematics 178 , 251-255, 1998 [324] J . KRATOCHVIL , J . MATOUSEK , NP-hardnes s Result s fo r Intersection Graphs , Commenta - tiones Mathematica e Universitati s Carolina e 30 , 761-773, 1989 [325] J . KRATOCHVIL , J . MATOUSEK , Intersectio n Graph s o f Segments, Journa l o f Combinatoria l Theory Serie s B 62, 289-315, 1994 [326] J . KRATOCHVIL , J . NESETRIL , INDEPENDENT SE T and CLIQUE Problems in Intersection- Defined Classe s o f Graphs, Commentatione s Mathematica e Universitati s Carolina e 31 , 85 - 93, 1990 [327] J . KRATOCHVIL , Z . TUZA, Intersectio n Dimension s o f Graph Classes , Graphs and Combina- torics 10 , 159-168, 1994 [328] D . KRATSCH , persona l communication , 200 2 [329] D . KRATSCH , Algorithms, fro m Dominatio n i n Graphs, Monograp h Textbook s i n Pure and Applied Mathematic s 209 , 191-231 , 1998 [330] D . KRATSCH, Dominatio n and Total Domination on Asteroidal Triple-Fre e Graphs , Discret e Applied Mathematic s 99 , 111-123, 200 0 [331] D . KRATSCH, Finding Dominating Clique s Efficientl y i n Strongly Chorda l Graph s and Undi- rected Pat h Graphs , Discret e Mathematic s 86 , 225-238, 1990 [332] D . KRATSCH , J . SPINRAD , Betwee n O(nra ) an d 0(na), to appear, SOD A 200 3 [333] D . KRATSCH , L . STEWART , Dominatio n o f Cocomparability Graphs , SIA M Journa l o n Dis- crete Mathematic s 6 , 400-417, 1993 [334] D . KRATSCH, L. STEWART, Approximating Bandwidth by Mixing Layouts of Interval Graphs , SIAM Journa l o n Discrete Mathematic s 15 , 435-449, 200 2 [335] V . KUMAR , An Approximation Algorith m fo r Circular-Arc Colouring , Algorithmic a 30 , 406- 417, 2001 [336] L.J . LANGLEY , A Note o n Bipartite Interva l Toleranc e Graphs , Congressu s Numerantiu m 102, 191-192 , 1994 Bibliliograph y 331

D.T. LEE , J.Y.-T . LEUNG , On the 2-Dimensional Channe l Assignmen t Problem , IEE Trans- actions on Computing, C-33 , 2-6, 198 4 J. VA N LEEUWEN , Grap h Algorithms , i n Handbook o f Theoretical Compute r Scienc e Vol - ume A, ed. J. van Leeuwen, 525-631 , Elsevie r Scienc e Publishers , Amsterdam , MI T Press, Cambridge, MA, 199 0 J. LEHEL , A Characterization o f Totally Balance d Hypergraphs , Discret e Mathematic s 57, 59-65, 1985 P.G.H. LEHOT , An Optimal Algorith m to Detect a Line Graph and Output it s Root Graph , Journal o f the ACM 21, 569-575, 1974 C.G. LEKKERKERKER , J . BO-LAND , Representatio n o f a Finite Grap h b y a Set of Intervals on the Line, Fun d Math . 51 , 45-64, 1962 H. Lerchs , On Cliques and Kernels, Technica l Report , Dept . o f Compueter Science , Univer - sity o f Toronto, 1971 Y.D. LIANG , O n the Feedback Verte x Se t Problem i n Permutation Graphs , Informatio n Processing Letter s 52 , 123-129, 1994 Y.D. LIANG , Steine r Se t and Connected Dominatio n i n Trapezoid Graphs , Informatio n Processing Letter s 56 , 101-108, 1995 Y.D. LlANG , Dominations in Trapezoid Graphs , Information Processin g Letter s 52 , 309-315, 1994 Y.D. LlANG , N . BLUM , Circula r Conve x Graphs : Maximu m Matchin g an d Hamiltonian Circuits, Informatio n Processin g Letter s 56 , 215-219, 1995 Y.D. LlANG , M.S. CHANG, Minimu m Feedbac k Verte x Set s in Cocomparability Graph s and Convex Bipartit e Graphs , Act a Informatic a 34 , 337-346, 1997 Y.D. LIANG , C . RHEE, Findin g a Maximum Matchin g in a Circular-Arc Graph , Informatio n Processing Letter s 45 , 185-190, 1993 Y-L LIN , S. SKIENA , Complexit y Aspect s o f Visibility Graphs , Internationa l Journa l of Computational Geometr y 5 , 289-312, 1995 X. LlU . K. VUSKOVIC, Perfection-Preserving Decompositions , in preparation, 200 2 R.-D. Lou , M. SARRAFZADEH, Circula r Permutatio n Grap h Famil y wit h Applications , Dis - crete Applie d Mathematic s 40 , 433-457, 1992 L. LOVASZ , Norma l Hypergraph s an d the Perfect Grap h Conjecture , Discret e Mathematic s 2, 253-267 , 1972 C.L. Lu , C.Y. TANG, A Linear-Time Algorith m fo r the Weighted Feedbac k Verte x Proble m on Interva l Graphs , Informatio n Processin g Letter s 61 , 107-111, 1997 A. LUBIW , Doubl y Lexica l Ordering s of Matrices, SIA M Journal on Computing 16 , 854-879, 1987 G.S. LUEKER , K.S . BOOTH, A Linear Tim e Algorith m fo r Deciding Interva l Grap h Isomor - phism, Journa l o f the ACM 26, 183-195, 1979 T.-H. MA , J . SPINRAD, Cycle-fre e Partia l Order s and Chordal Comparability Graphs , Orde r 8, 49-61 , 1991 T.-H. MA , J. SPINRAD , O n the 2-Chain Subgrap h Cove r and Related Problems , Journa l of Algorithms 1994 , 251-26 8 T.-H. MA , J. SPINRAD , Transitiv e Closur e fo r Restricted Classe s o f Partial Orders , Orde r 8, 175-183 , 1991 T.-H. MA , J. SPINRAD, An 0(n2) Algorith m for the Undirected Spli t Decomposition, Journa l of Algorithms 16 , 264-282, 1994 H. MAEHARA , Spac e Graph s an d Sphericity, Discret e Applie d Mathematic s 7 , 55-64, 1984 N.V.R. MAHADEV , U.N . PELED, Threshol d Graph s an d Related Topics , Annals o f Discrete Mathematics 56 , North Holland , 1995 M.V. MARATHE , H . BREU , H.B . HUNT , S.S . RAVI , D.J . ROSENKRANTZ , Simpl e Heuristic s for Uni t Dis k Graphs , Network s 25, 59-68, 1995 S. MASUDA , K . NAKAJIMA, A n Optimal Algorith m fo r Finding a Maximum Independen t Set of a Circular-Arc Graph , SIA M Journa l on Computing 17 , 41-52, 1988 S. MASUDA , K . NAKAJIMA, T. KASHIWABARA , T. FUJISAWA , Efficien t Algorithm s fo r Finding Maximum Clique s of an Overlap Graph , Network s 20 , 157-171, 1990 R.M. MCCONNELL , Linear-Tim e Recognitio n o f Circular-Arc Graphs , Proceeding s o f the 42d IEE E Symposiu m o n Foundations o f Computer Science , 386-394 , 2001 332 Bibliography

R.M. MCCONNELL , J . SPINRAD , Linear-tim e Modula r Decompositio n an d Efficien t Transi - tive Orientatio n o f Comparabilit y Graphs , Proceeding s o f the 5t h ACM-SIA M Symposiu m on Discret e Algorithms , 536-545 , 199 4 R.M. MCCONNELL , J . SPINRAD , Modula r Decompositio n an d Transitiv e Orientation , Dis - crete Mathematic s 201 , 189-241, 199 9 T.A. MCKEE , F.R . McMORRlS , Topic s i n Intersectio n Grap h Theory , SIAM , Philadelphia , 1999 M. MiDDENDORF , F . PFEIFFER , O n th e Complexit y o f Recognizin g Perfectl y Orderabl e Graphs, Discret e Mathematic s 80 , 1990 , 327-33 3 G.J. MiNTY , O n Maxima l Independen t Set s o f Vertice s i n Claw-fre e Graphs , Journa l o f Combinatorial Theor y Serie s B 28 , 284-304 , 198 0 J. MiTAS , Minima l Representatio n o f Semiorder s wit h Interval s o f Sam e Length , Lectur e Notes i n Compute r Scienc e 831 , Ordal 94 , 162-175 , 199 4 R.H. MOHRING , Almos t al l Comparability Graph s are UPO, Discrete Mathematics 50 , 63-70, 1984 R.H. MOHRING , F.J . RADERMACHER , Substitutio n Decompositio n fo r Discret e Structure s and Connection s wit h Combinatoria l Optimization , Annal s o f Discret e Mathematic s 19 , 257-356, 198 4 C.L. MONMA , V.K . WEI , Intersectio n Graph s o f Paths i n a Tree , Journa l o f Combinatoria l Theory Serie s B 41,' 141-181, 198 6 M. MOSCARINI , Doubl y Chorda l Graphs , Steine r Trees , an d Connecte d Domination , Net - works 23 , 59-69, 199 3 J.H. MULLER , Loca l Structure i n Graphs Ph.D. Thesis, School o f Information an d Compute r Science, Georgi a Institut e o f Technolog y Atlanta , GA , 198 8 J.H. MULLER , J . SPINRAD , Incrementa l Modula r Decomposition , Journa l o f the AC M 36 , 1-19, 198 9 H. MULLER , Hamilto n Circuit s i n Chorda l Bipartit e Graphs , Discret e Mathematic s 156 , 291-298, 199 6 H. MULLER , A . BRANDSTADT , The NP-completenes s o f Steiner Tre e and Dominatin g Se t fo r Chordal Bipartit e Graphs , Theoretica l Compute r Scienc e 53 , 257-265, 198 7 T. NAGOYA , R . UEHARA , S . TODA , Completenes s o f Grap h Isomorphis m Proble m fo r Bi - partite Grap h Classes , IEICE Technica l Repor t COMP2001-93 , 200 1 G. NARASIMHAN , A Not e o n the Hamilo n Circui t Proble m o n Directe d Pat h Graphs , Infor - mation Processin g Letter s 32 , 167-170 , 198 9 G. NARASIMHAN , R . MANBER , Stabilit y an d Chromati c Numbe r o f Toleranc e Graphs , Dis - crete Applie d Mathematic s 36 , 47-56, 199 2 A. NATANZON , R . SHAMIR , R . SHARAN , Complexit y Classificatio n o f Some Edge Modificatio n Problems, Discret e Applie d Mathematic s 113 , 109-128 , 200 1 J. NESETRIL , S . POLJAK , O n th e Complexit y o f th e Subgrap h Problem , Commentatione s Mathematicae Universitati s Carolina e 26 , 415-419, 198 5 F. NlCOLAl , Hamiltonia n Problem s o n Distance-Hereditar y Graphs , Technica l Report , Gerhard-Mercator-Universitat Gesamthochschul e Duisbur g SM-DU-255 , 199 4 F. NlCOLAl , T . SZYMCZAK , Homogeneous Set s an d Domination : A Linea r Tim e Algorith m for Distanc e Hereditar y Graphs , Network s 37 , 117-128 , 200 1 C. NOMIKOS , Path Colorin g Problem s i n Graph s ar e Non-Approximable , manuscript , 200 0 T. OHTSUKI , A Fas t Algorith m fo r Findin g a n Optima l Orderin g fo r Verte x Eliminatio n o n a Graph , SIA M Journa l o n Computin g 5 , 133-145 , 197 6 S. OLARIU , Paw-Fre e Graphs , Informatio n Processin g Letter s 28 , 53-54, 199 8 J. O'ROURKE , Ar t Galler y Theorem s an d Algorithms , Oxfor d Universit y Press , 198 7 R. PAIGE , R.E . TARJAN , Thre e Partitio n Refinemen t Algorithms , SIA M Journa l o n Com - puting 16 , 973-989, 198 7 C.H. PAPADIMITRIOU , M . YANNAKAKIS , Schedulin g Interval-Ordere d Tasks , SIA M Journa l on Computin g 8 , 405-409 , 197 9 A. PARRA , Triangulating Multitoleranc e Graphs, Discrete Applied Mathematics 84 , 183-197, 1998 M.C. PAULL , S.H . UNGER , Minimizin g th e Numbe r o f State s i n Incompletel y Specifie d Sequential Switchin g Functions , IR E Trans . Electroni c Computer s EC-8 , 356-367 , 195 9 C. PAYAN , Perfectness an d Dilwort h Number , Discret e Mathematic s 44 , 229-230 , 198 3 Bibliography 33 3

[396; D. PELEG , Proximit y Preservin g Labeling Scheme s and their Applications, Journal o f Graph Theory 33 , 167-176 , 200 0 [3971 U. PFERSCHY , R . RUDOLF , G.J . WOEGINGER , Mong e Matrice s Mak e Maximizatio n Man - ageable, Operation s Researc h Letter s 16 , 245-254, 1994 [398! M.D. PLUMMER , Well-Covere d Graphs : A Survey, Quaestione s Mathematica e 16 , 253-287, 1993 [399; E. PRISNER , A Journe y Throug h Intersectio n Grap h County , http:/ / www.math.uni - hamburg.de /spag/gd/mitarbeite r /prisner / Pris/Rahmen.htm l [400; H.J. PROMEL , A. STEGER , Excludin g Induce d Subgraph s III . A General Asymptotic , Ran - dom Structure s an d Algorithms 3 , 19-31, 1992 [401 I. RABINOVITCH , The Dimension o f Semiorders, Journa l o f Combinatorial Theor y Serie s A 25, 50-61 , 1978 [402 V. RAGHAVAN , J . SPINRAD , Robus t Algorithm s fo r Restricted Domains , Proceeding s o f the 12th ACM-SIA M Symposiu m o n Discrete Algorithms , 460-467 , 2001 [403 J.L. RAMIRE Z ALFONSIN , B.A . REED, Perfec t Graphs , Wiley , Chichester , 2001 A.S. RAO , C . PAND U RAN G AN, Optima l Paralle l Algorithm s on Circular-Arc Graphs , Infor - [404] mation Processin g Letter s 33 , 147-156 , 1989 B. REED , N . SBIHI , Recognizin g Bull-Fre e Perfec t Graphs , Graph s an d Combinatorics 11, [405 171-178, 1995 C. RHEE , Y.D . LlANG, Finding a Maximum Matchin g i n a Permutation Graph , Act a Infor - [406 matica 32 , 779-792 , 1995 C. RHEE , Y.D . LIANG , S.K . DHALL , S . LAKSHIVARAHAN , A n 0(ra+n) Algorith m fo r Findin g [407] Minimum Weigh t Dominatin g Se t in Permutation Graphs , SIA M Journa l on Computing 25 , 404-419, 1996 [408 C.S. RlM , K. NAKAJIMA , O n Rectangl e Intersectio n an d Overla p Graphs , IEE E Trans . Circuits Systems / Fund . Theor y Appl . 42, 549-553, 1995 [409 R.L. RIVEST , J . VUILLEMIN , O n Recognizing Grap h Propertie s fro m Adjacenc y Matrices , Theoretical Compute r Scienc e 3, 371-384, 1976/7 7 [410 F.S. ROBERTS , Indifferenc e Graphs , Proo f Technique s i n Grap h Theory , Ed . F. Harary , Academic Press , Ne w York, 1969 , 139-14 6 [411 F.S. ROBERTS , Grap h Theor y an d Its Application t o Problems o f Society, SIAM , 1978 N. ROBERTSON , P.D . SEYMOUR, Grap h Minor s - A Survey, i n Surveys i n Combinatorics, I . [412 Anderson, ed. , Cambridge Universit y Press , Cambridge , 153-171 , 1985 D.J. ROSE , Triangulate d Graph s an d the Eliminatio n Process , Journa l o f Mathematica l [413; Analysis and Applications 32 , 597-609, 1970 D.J. ROSE , R.E . TARJAN , G.S . LUEKER , Algorithmi c Aspect s o f Verte x Eliminatio n o n [414 Graphs, SIA M Journa l o n Computing 5 , 266-283, 1976 [415 D. ROTEM , J. URRUTIA , Circular Permutatio n Graphs , Network s 12 , 428-437, 1982 [416; N.D. ROUSSOPOLOUS , A 0(max(m,n) ) Algorith m fo r Determinin g th e Graph H fro m it s Line Graph , Informatio n Processin g Letter s 2 , 108-112, 1973 [417] I. Rusu , J . SPINRAD , Forbidde n Subgrap h Decomposition , Discret e Mathematic s 247 , 159- 168, 200 2 [418 R.S. SANKARANARAYANA , Tracking the P-NP Boundary fo r Well-Covered Graphs , Network s 29, 29-37 , 1997 [419 R.S. SANKARANARAYANA , L.K . STEWART , Complexit y Result s fo r Wel l Covere d Graphs , Networks 22 , 247-262, 1992 [420; N. SBIHI , Algorithm e d e Recherche d'u n Stable d e Cardinalite Maximu m dan s u n Graph e sans Etoile , Discret e Mathematic s 29 , 53-76, 1980 [421 M. SCHAEFER , E . SEDGWICK , D . STEFANKOVIC , Recognizin g Strin g Graph s i s in NP, 34th Symposium o n the Theory o f Computing, 1-6 , 2002 [422 A. A. SCHAFFER , A Faster Algorithm to Recognize Undirected Path Graphs, Discrete Applie d Mathematics 43 , 261-295, 1993 [423 E. SCHEINERMAN , Loca l Representation Usin g Very Short Labels , Discrete Mathematics 203, 287-290, 1999 [424 E.R. SCHEINERMAN , Th e Many Face s o f Circle Orders , Orde r 9 , 343-348, 1992 [425^ E.R. SCHEINERMAN , Characterizin g Intersectio n Classe s o f Graphs, Discret e Mathematic s 55, 185-193 , 1985 334 Bibliograph y

[426] E.R . SCHEINERMAN , D.B. WEST, Th e Interval Numbe r o f a Planar Graph : Thre e Interval s Suffice, Journa l o f Combinatorial Theor y Serie s B 35, 224-239, 1983 [427] E . SCHEINERMAN , J. ZlTO , On the Size o f Hereditary Classe s o f Graphs, Journa l o f Combi- natorial Theor y Serie s B 61, 16-39, 1994 [428] W . SCHNYDER , Plana r Graph s an d Poset Dimension , Orde r 5 , 323-343, 1989 [429] A . SEB6 , Intege r Polyhedra : Combinatoria l Propertie s an d Complexity , workin g paper , Leibniz-IMAG, France , 2001 [430] F.B . SHEPHERD , Th e Theta Bod y an d Imperfection , Perfec t Graphs , Wiley , Chichester , 261-291, 2001 [431] T . SHERMER , Recen t Result s i n Art Galleries, Proceeding s o f the IEEE 80 , 199 2 [432] W.K . SHIH , T.C . CHERN , W.L . HSU, An 0(n2logn) Algorith m fo r the Hamiltonian Cycl e Problem o n Circular-Arc Graphs , SIA M Journa l o n Computing 21 , 1026-1046, 1992 [433] W,K . SHIH , W.L . Hsu, An 0(nlogn+raloglogn ) Maximu m Weigh t Cliqu e Algorith m fo r Circular-Arc Graphs , Informatio n Processin g Letter s 31 , 129-134, 1989 [434] D.J . SKRIEN , A Relationship betwee n Triangulate d Graphs , Comparabilit y Graphs , Prope r Interval Graphs, Proper Circular-Ar c Graphs, and Nested Interval Graphs, Journal o f Graph Theory 6 , 309-316, 1982 [435] J . SPINRAD , Nonredundant One s and Chordal Bipartit e Graph s SIA M Journa l o n Discret e Mathematics 8 , 251-257, 1995 [436] J.P . SPINRAD , On Comparability an d Permutation Graphs , SIA M Journa l o n Computin g 14, 658-670 , 1987 [437] J.P . Spinrad, Tw o Dimensional Partia l Orders , Ph.D . Thesis, Dept . o f EECS, Princeto n Univ., 1982 [438] J.P . Spinrad, Doubl y Lexical Ordering of Dense 0-1 Matrices, Information Processin g Letter s 45, 229-235 , 1993 [439] J.P . SPINRAD , Circular-Ar c Graph s wit h Cliqu e Cove r Numbe r Two , Journal o f Combina - torial Theor y Serie s B 44, 300-306, 1988 [440] J.P . SPINRAD , Prim e Testin g fo r the Spli t Decompositio n o f an Undirected Graph , SIA M Journal o n Discrete Mathematic s 2 , 590-599, 1989 [441] J.P . SPINRAD , Findin g Larg e Holes , Information Processin g Letter s 39 , 227-229, 1991 [442] J . SPINRAD , Recognitio n o f Circle Graphs , Journa l o f Algorithms 16 , 264-282, 1994 [443] J . SPINRAD , Dimensio n an d Algorithms, Lectur e Note s i n Computer Scienc e 831 , Ordal 94, 33-52, 1994 [444] J . SPINRAD , Recognizin g Quasi-Triangulate d Graphs , Discret e Applie d Mathematics , t o appear [445] J.P . SPINRAD , A . BRANDSTADT , L . STEWART , Bipartit e Permutatio n Graphs , Discret e Ap- plied Mathematic s 18 , 279-292, 1987 [446] J . SPINRAD , R . SRITHARAN , Algorithm s fo r Weakly Triangulate d Graphs , Discret e Applie d Mathematics 19 , 181-191, 1995 [447] J . SPINRAD , J . VALDES , Recognitio n an d Isomorphism o f Two-Dimensional Partia l Orders , Lecture Note s i n Computer Scienc e 154 , ICALP 1983 , 676-686, 1983 [448] A.P . SPRAGUE , Recognitio n o f Bipartit e Permutatio n Graphs , Congressu s Numerantiu m 112, 151-161 , 1995 [449] A.P . SPRAGUE , A n O(nlogn) Algorith m fo r Bandwidth o f Interval Graphs , SIA M Journa l on Discret e Mathematic s 7 , 213-220, 1994 [450] R . SRITHARAN , A Linear Tim e Algorith m to Recognize Circula r Permutatio n Graphs , Net - works 27, 171-174, 1996 [451] R . SUNDARAM , K.S . SINGH , C . PAND U RANGAN , Treewidt h o f Circular-Ar c Graphs , SIA M Journal o n Discrete Method s 7 , 647-655, 1994 [452] M . TALAMO, P . VOCCA , Representin g Graph s Implicitl y Usin g Almos t Optima l Space , Dis - crete Applie d Mathematic s 108 , 193-210, 2001 [453] R.E . TARJAN , Efficienc y o f a Goo d bu t no t Linea r Se t Unio n Algorithm , Journa l o f the ACM 22 , 215-225, 1975 [454] R.E . TARJAN Decompositio n b y Clique Separators , Discret e Mathematic s 55 , 221-232, 1985 [455] R.E . TARJAN , Complexity o f Combinatorial Algorithms , SIA M Revie w 20 , 457-489, 1978 [456] R.E . TARJAN , M . YANNAKAKIS , Simpl e Linea r Tim e Algorithm s t o Tes t Chordalit y o f Graphs, Test Acyclicit y of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs, SIA M Journal o n Computing 13 , 566-579, 1984 Bibliography 33 5

[457] A. TARSKI , A Decision Metho d fo r Elementary Algebra , RAN D Corporation , 194 8 [458; C. THOMASSEN , Interval Representations o f Planar Graphs, Journal o f Combinatorial Theor y Series B , 9-20 , 198 6 [459 M. THORUP , All Structured Program s have Small Tree Width an d Goo d Registe r Allocation , Information an d Computatio n 142 , 159-181 , 199 8 [460; W.T. TROTTER , Problem s an d Conjectures i n the Combinatorial Theor y o f Ordered Sets , Annals o f Discrete Mathematic s 41 , 401-416, 198 9 [461 W.T. TROTTER , Combinatoric s an d Partiall y Ordere d Sets : Dimensio n Theory , John s Hop - kins Universit y Press , Baltimor e MD , 199 2 [462 W.T. TROTTER , F . HARARY, O n Double and Multiple Interva l Graphs , Journa l o f Graph Theory 3 , 205-211 , 197 9 [463; W. T. TROTTER JR., J . I. MOORE, Characterization Problem s fo r Graphs, Partially Ordere d Sets, Lattices , an d Familie s o f Sets, Discret e Mathematic s 16 , 361-381, 197 6 [464 S. TSUKIYAMA , M . IDE , H. ARIYOSHI , I . SHIRAKAWA , A Ne w Algorith m fo r Generatin g al l the Maxima l Independen t Sets , SIA M Journa l on Computing 6 , 505-517, 197 7 [465 A.C. TUCKER , A n Efficien t Tes t Fo r Circular-Ar c Graphs , SIA M Journa l on Computing 9, 1-24, 198 0 [466 A.C. TUCKER , Matrix Characterization s o f Circular-Arc Graphs , Pacifi c Journa l o f Mathe- matics 19 , 535-545, 197 1 [467; A.C. TUCKER , A Structure Theore m fo r the Consecutiv e l's Property, Journa l o f Combina- torial Theor y Serie s B 12, 153-162 , 197 2 [468; A.C. TUCKE R Structure Theorem s fo r Some Circular-Ar c Graphs , Discret e Mathematic s 7, 167-195, 197 4 [469; A.C. TUCKE R Colorin g a Family o f Circular-Arc Graphs , SIA M Journa l on Applied Math - ematics 29 , 493-502, 197 5 [470; A.C. TUCKER , Colorin g Perfec t (K4 — e)-free Graphs , Journa l o f Combinatorial Theor y Series B 43, 151-172 , 198 7 [471 W. UNGER , O n th e fc-Colouring o f Circle Graphs , Lectur e Note s in Computer Scienc e 294 , STACS 88 , 61-72, 198 8 [472; W. UNGER , Th e Complexity o f Colouring Circl e Graphs , extende d abstrac t availabl e at citeseer.nj.nec.com/195897.html. [473; J. URRUTIA , Partia l Order s and Euclidean Geometry , Algorithm s an d Order, I . Rival ed. , Kluwer, Dordrecht , 387-434 , 198 9 [474 J. URRUTIA , F . GAVRIL , A n Algorithm fo r Fraternal Orientatio n o f Graphs, Informatio n Processing Letter s 41 , 271-274, 199 2 [475; J. VALDES , R.E . TARJAN , E.L . LAWLE R Th e Recognitio n o f Series-Parallel Digraphs , SIA M Journal on Computing 11 , 298-314, 197 8 [476; J.R. WALTER , Representation s o f Chordal Graph s as Subtrees o f a Tree, Journa l o f Graph Theory 2 , 265-267, 197 8 [477 D.W. WANG , Y.S . KUO , A Study on Two Geometri c Locatio n Problems , Informatio n Pro - cessing Letter s 28 , 281-286, 198 8 [478; E. WANKE , /C-NL C Graph s an d Polynomia l Algorithms , Discret e Applie d Mathematic s 54 , 251-266, 199 4 [479; H. WARREN , Lower Bound s fo r Approximation b y Nonlinea r Manifolds , Transaction s o f the AMS 133 , 167-178 , 196 8 [480; G. WEGNER , Eigenschaften de r Nerven Homologisch-Einfacher Familie n i n jR n, Dissertation , University o f Gottingen, 196 7 [481 D.B. WEST, D.B. SHMOYS , Recognizing Graphs with Fixed Interval Number i s NP-complete, Discrete Applie d Mathematic s 8 , 295-305, 198 4 [482; D.B. WEST , Introductio n to Graph Theory , Prentic e Hall , 199 6 [483; S.H. WHITESIDES , An Algorithm fo r Finding Cliqu e Cut-Sets , Informatio n Processin g Let - ters 1 2 , 31-32, 198 1 S.H. WHITESIDES , A Method fo r Solving Certain Graph Recognitio n and Optimization Prob - [484; lems, wit h Application s t o Perfect Graphs , Annal s o f Discrete Mathematic s 21 , 281-297 , 1984 A. WlGDERSON , Improvin g the Performance Guarante e fo r Approximate Grap h Coloring , [485; Journal o f the AC M 30 , 729-735 , 198 3 336 Bibliography

[486] T.V . WlMER , Linea r Algorithm s o n /c-terminal Graphs , Ph D Thesis , Dept . o f Compute r Science, URI-030 , Clemso n University , 198 7 [487] P.M . WINKLER , Proo f o f the Squashe d Cub e Conjecture , Combinatoric a 3 , 135-139 , 198 3 [488] S.K , WiSMATH , Characterizing Ba r Line-of-Sigh t Graphs , Proceedings 1s t ACM Symposiu m on Computationa l Geometry , 147-152 , 198 5 [489] T.-H . Wu , An 0(n3) Isomorphis m Tes t fo r Circular-Arc Graphs , Ph.D . Thesis , Applie d Mathematics an d Statistics , SUNY-Stonybrook , 198 3 [490] J.-H . YAN , Th e Bandwidt h Proble m i n Cographs, Tamsu i Oxfor d Journa l o f Mathematical Sciences 13 , 31-36, 199 7 [491] M . YANNAKAKIS, Computin g th e Minimu m Fill-i n i s NP-complete, SIA M Journa l on Alge- braic Discret e Method s 2 , 77-79, 198 1 [492] M . YANNAKAKIS, Th e Complexit y o f the Partia l Orde r Dimensio n Problem , SIA M Journa l on Algebrai c Discret e Method s 3, 351-358, 198 2 [493] H.G . YEH , G.J . CHANG, Weighte d Connecte d Dominatio n an d Steine r Tree s i n Distance- Hereditary Graphs , Discret e Applie d Mathematic s 87 , 245-253, 199 8 [494] R . BAR-YEHUDA , M.M . HALLDORSSON , J . NAOR , H . SHACHNAI , I . SHAPIRA , Schedulin g Spli t Intervals, 13t h ACM-SIA M Symposiu m on Discrete Algorithms , 200 2 [495] C.W . Yu , G.H. CHEN , Efficien t Paralle l Algorithm s fo r Doubly-Convex Bipartit e Graphs , Theoretical Compute r Scienc e 147 , 249-265, 199 5 Index

M-join, 174 , 17 5 bipartite graph , 88 , 106 , 126 , 170 , 30 8 S-ordering, 12 9 bipartite permutatio n graph , 88 , 96 , 126 , T-free, 96 , 18 3 133 r-free matrix , 111 , 112, 120 , 124 , 132 , 14 5 bisimplicial edge , 130 , 13 3 Q, 6 bitonic path , 11 5 6, 6 blocking vertex , 25 5 /c-clique extendible ordering , 24 3 Boland, 8 6 /c-closure, 66 , 7 0 Bondy, 6 6 fc-module, 16 6 Booth, 145 , 19 3 /c-polygon graph , 130 , 223, 31 1 Borie, 51 , 163, 164 , 25 3 /c-simplicial vertex , 18 5 bottleneck Mong e matrix , 12 6 /c-tree, 5 0 Bouchet, 212 , 21 5 2-join, 171 , 174, 17 5 Bouchitte, 3 4 bounded substitutio n decompositio n diame - Abbas, 12 9 ter, 160 , 17 8 adjacency list , 9 bounded toleranc e graph , 58 , 248, 254, 30 5 adjacency matrix , 8 , 9 boxicity, 36 , 47, 53, 222, 223, 233, 262, 30 5 adjacent, 6 Brandstadt, 20 , 18 5 Agarwal, 7 4 brittle graph , 189 , 25 3 Alekseev, 10 6 Buckingham, 30 6 Alon, 54 , 55 , 7 4 Buneman, 26 7 alternance graph , 21 2 angle order , 58 , 22 4 Cai, 24 8 Anstee, 14 3 Cameron, 25 1 arboricity, 14 6 Cenek, 4 2 Aronov, 7 4 certificate, 8 7 art galler y problem , 8 3 chain cover , 21 0 asteroidal triple , 85 , 129 , 13 4 chain cove r problem , 20 8 asteroidal triple-fre e graph , 85 , 86 , 88 , 90 , 93-95 chain dimension , 20 8 AT-free comparabilit y graph , 9 5 chain graph , 125 , 134 , 20 8 AT-free graph , 85 , 88 , 91 , 93 , 94 , 96 , 102 , characterization problem , 1 4 249, 30 4 Chazelle, 75 , 7 9 autograph, 2 8 Chen, 12 9 Chepoi, 18 5 Bl-orientable, 4 7 chord, 3 1 balanced /c-module , 166 , 17 9 chordal bipartit e graph , 88-90 , 94 , 95 , 111, balanced ske w partition , 17 4 112, 114 , 118-126 , 130 , 132 , 135 , 136 , Bandelt, 20 , 18 7 159, 183 , 203, 211, 255, 306, 31 3 bandwidth, 305-31 6 chordal comparabilit y graph , 33 , 60, 62 , 64, bar-representable graph , 8 0 69, 70 , 9 0 Benzer, 11 , 12, 26 5 chordal graph , 29 , 31, 33, 38, 47, 49, 50, 60, Berge, 13 6 61, 63-65 , 70 , 71 , 85-88 , 90 , 95 , 111 , Berge graph, 50 , 25 1 120-122, 124 , 133 , 187 , 189 , 191 , 196 , biconvex graph , 96 , 128 , 13 4 224, 225 , 246 , 257 , 262 , 267 , 272 , 305 , bipartite complement , 131 , 208 312, 31 3

337 338 Index chromatic number , 8 , 36 , 40, 49 , 8 0 convex graph , 96 , 126 , 128 , 133 , 145 , 254 , Chvatal, 46 , 66 , 83, 24 5 306 circle graph, 20 , 39 , 42, 47, 49-51, 130 , 134 , convex ordering , 12 8 159, 187 , 212 , 228 , 306, 311, 313 Corneil, 39 , 51, 82, 98, 19 3 circle intersectio n graph , 3 6 cotree, 98 , 10 9 circle order , 42 , 54 , 58 , 224, 26 2 Coullard, 8 2 circle trapezoid graph , 30 6 counting problem , 1 3 circular permutation graph , 39 , 42, 217, 218, covering graph , 22 3 228 Cunningham, 213 , 21 4 circular-arc filamen t graph , 4 4 curve contac t graph , 25 4 circular-arc graph , 35 , 38 , 47 , 48 , 123 , 124 , cycle-free partia l order , 6 0 149, 159 , 194 , 197 , 202 , 211 , 225 , 237 , 241, 252 , 260 , 269 , 272 , 273 , 306 , 307 , Dahlhaus, 10 , 11 7 311, 31 3 decision problem , 7 circular-arc overla p graph , 24 8 deterministically decomposable , 16 1 Clark, 239 , 24 0 diameter, 189 , 22 5 claw-free graph , 103 , 104, 109, 110, 191, 237, diametral pair , 22 5 312 Dilworth, 10 7 clique, 8 , 32-34, 36-38, 40-42, 44, 46-49, 80, Dilworth number , 10 7 169, 233 , 235 , 239 , 241 , 242 , 247 , 248 , dimension, 41 , 49, 50 , 61, 94, 107 , 118 , 133, 253, 304-31 7 176, 177 , 222 , 229 , 249, 26 2 clique cover , 8 , 46 , 305-307 , 309-312 , 314 , Dirac, 19 1 316, 31 7 directed pat h graph , 311 , 314 clique cutset , 167 , 23 4 disk graph , 24 9 clique separator, 167 , 169 , 170 , 179 , 23 3 disk intersectio n graph , 36 , 48 , 53 , 55 , 57 , clique separato r decomposition , 22 1 223, 262 , 30 8 clique tree , 31, 64, 25 8 distance hereditary graph , 20 , 161, 165, 181, clique-width, 164-166 , 178 , 247, 307, 30 9 182, 187 , 191 , 308, 30 9 clone, 92 , 10 9 distance labeling , 25 , 2 9 co-AT-free graph , 91 , 93 dominating pair , 249 , 30 4 co-bipartite edg e eliminatio n order , 24 0 dominating set , 36 , 48, 70, 80, 185 , 248, 249, co-bipartite graph , 106 , 17 0 304-317 co-chordal graph , 87 , 90 , 94 , 95 , 196 , 224 , domination graph , 50 , 58 , 133 , 309 313 dot produc t graph , 56 , 58, 30 9 co-comparability graph , 33 , 38 , 39 , 47 , 49 , doubly chorda l graph , 185 , 187 , 188 , 191 , 51, 60 , 86, 88, 90, 95, 305, 308, 313, 314 234, 30 9 co-interval graph , 19 6 doubly conve x graph , 128 , 14 5 co-planar graph , 4 1 doubly lexica l ordering , 112 , 120 , 121 , 132 , Cogis, 124 , 20 9 133, 14 6 cograph, 28 , 97, 109, 160, 165, 178, 188, 191, Dragan, 18 5 307 dually chorda l graph , 124 , 185 , 186 , 188 , Colbourn, 239 , 24 0 191, 234 , 310, 311, 313 coloring, 8 , 32 , 35 , 36 , 38 , 46 , 87 , 169 , 245 , Dushnick, 41 , 87 248, 304-31 7 dynamic programming , 3 4 comparability graph , 28 , 29 , 31 , 33, 38 , 50 , 60, 64 , 70 , 88 , 90 , 91 , 94, 96 , 102 , 107 , edge, 6 110, 123 , 124 , 157 , 159 , 176 , 177 , 179 , Edmonds, 25 1 191, 196 , 209 , 212 , 217 , 235 , 243 , 246 , Edwards, 26 9 251, 253 , 308, 31 3 elimination, 18 1 complement, 6 enclosure property , 13 3 completely decomposable , 16 1 envelope, 7 7 composition sequence , 44 , 5 0 EPT graph , 38 , 59 , 69 , 102 , 167 , 220 , 222 , connected matrix , 138 , 24 9 233, 234 , 252 , 262 , 269 , 31 0 consecutive I s property , 14 5 Erdos, 19 4 construction problem , 1 3 Eschen, 19 7 containment model , 5 1 Euler, 8 5 convex, 13 3 Everett, 8 2 convex fan , 76 , 24 4 external visibilit y graph , 74 , 8 3 Index 339 f-diagram, 5 1 induced subgraph , 6 Foldes, 8 7 induced visibilit y graph , 76 , 79 , 83, 25 3 Fiiredi, 14 3 intersection characterization , 5 0 feedback vertex , 305-31 5 intersection class , 9 6 Fellows, 4 0 intersection graph , 5 Felsner, 5 8 intersection model , 4 4 Ferrers digraph , 20 9 interval dimension , 94 , 124 , 209 , 212 , 222 , Ferrers dimension , 124 , 20 9 227 fill, 167 , 17 9 interval filament graph , 40 , 44, 49, 224 , 24 8 Ford, 8 9 interval graph, 11 , 16, 17 , 27, 33-35, 42, 47- fraternally orientable , 4 7 50, 56 , 60, 85, 86, 88, 90, 129 , 145 , 193, Fulkerson, 89 , 20 5 196, 197 , 204 , 259 , 265 , 269 , 273 , 275 , 307, 310 , 31 3 Gabor, 21 2 interval number , 37 , 48, 223, 249, 262 , 31 1 Gallai, 8 8 interval order , 196 , 209, 22 7 Gamarnik, 26 9 inversion-free, 24 4 Garey, 65 , 167 , 22 2 inversion-free graph , 255 , 31 1 Gavril, 40 , 42, 108 , 22 0 inversion-free ordering , 25 4 generalized implici t representation , 22 , 23 , isomorphism, 80 , 305-312, 314-31 7 79, 117 , 13 2 isomorphism complete , 5 9 generalized join , 17 8 Ghosh, 8 1 Jamison, 23 3 Gilmore, 8 6 Jegou, 2 8 Golumbic, 5 , 20 , 51 , 58, 60 , 65 , 85 , 87 , 90 , Johnson, 65 , 167 , 222, 239 , 24 0 130, 191 , 212, 233, 26 5 join decomposition , 160 , 182 , 188 , 212, 213, Grotschel, 14 , 4 6 228 graph, 6 graph drawing , 5 k-join, 22 8 greedy coloring , 47 , 51, 246, 25 2 k-polygon graph , 4 0 grid, 38 , 4 8 k-sparse graph , 1 9 grid graph , 38 , 305, 31 5 k-tree, 27 , 27 2 gridicity, 12 9 Kamula, 3 9 Gross, 20 5 Kannan, 17 , 19 , 21, 22 Gustedt, 10 , 15 9 Karapetjan, 26 9 Kierstead, 6 3 Habib, 2 8 Klee, 8 3 Halin graph , 163 , 16 4 Kloks, 10 3 Hamilton cycle , 8 , 40 , 87 , 241, 304-317 Kolen, 12 1 Hammer, 8 7 Kratochvil, 40 , 41, 222, 24 7 Hay ward, 5 8 Kratsch, 10 3 Helly circular-ar c graph , 20 7 Kubena, 4 1 Helly property , 33 , 197 , 23 3 hereditary, 19 , 48, 76 , 10 6 labeled graph , 6 Hiraguchi poset , 4 9 LB-simplicial, 21 8 Hoang, 18 0 LBFS, 70 , 168 , 188 , 192 , 225, 26 3 Hoahg, 17 9 Le, 2 0 Hoffman, 86 , 12 1 Lehel, 11 9 hole, 46 , 5 0 Lekkerkerker, 8 6 homogeneous set , 15 0 lexicographic breadt h first search , 94 , 188 , Hsu, 212 , 269 , 27 5 189, 192 , 194 , 24 9 Lin, 74 , 8 0 implicit grap h conjecture , 1 9 line graph, 27 , 170 , 221, 234, 305 , 310, 31 1 implicit grap h question , 8 5 line o f sigh t graph , 8 0 implicit representation , 17 , 19-21 , 25 , 28 , linear extension , 32 , 41, 15 7 33, 37 , 48 , 53 , 73 , 98 , 110 , 134 , 160 , linear matrix , 136 , 14 6 161, 166 , 25 3 local complement , 215 , 22 8 independent set , 8 , 33, 35-37, 40, 43, 44, 46, local structure , 1 8 49, 50 , 80, 110 , 163 , 169 , 233, 237, 238, Lovasz, 14 , 4 6 249, 250 , 252 , 304-31 7 Lubiw, 82 , 120 , 12 1 340 Index

Lueker, 145 , 168 , 19 3 partial order , 9 6 partially complemented , 1 0 Miiller, 10 3 partitionable graph , 4 9 Ma, 169 , 21 2 partitioning, 149-151 , 157 , 159 , 17 7 Maffray, 17 9 path graph , 21 , 28, 38, 59, 68, 220, 269, 311, matching, 70 , 189 , 237 , 253, 306, 307 , 31 2 313 Matousek, 4 0 path ordering , 9 5 matrix multiplication , 86 , 101 , 103, 10 9 pathwidth, 308 , 31 3 max cut , 305 , 307-311, 313-31 7 pendant vertex , 20 , 18 1 maximal, 8 perfect elimination , 6 4 maximal cardinalit y search , 18 8 perfect eliminatio n bipartit e graph , 65 , 130 , McConnell, 10 , 115 , 149 , 155 , 158 , 18 0 133 MCS, 18 8 perfect eliminatio n order , 6 4 Miller, 41 , 87 perfect eliminatio n scheme, 31, 111, 121, 124, minimal fill, 167 , 16 9 191 minimal separator , 34 , 48, 49, 111 , 189, 21 8 perfect graph , 32 , 46 , 49 , 50 , 69 , 87 , 107 , minimal separators , 3 6 170, 173 , 228, 246, 31 2 minimum fill, 91 , 167 , 306 , 308-310 , 312 , perfectly orderable graph, 120 , 245, 253, 255, 314, 316 , 31 7 312, 31 6 Minty, 10 3 Perl, 9 8 modular decomposition , 92 , 160 , 19 4 permutation graph , 38 , 47-49 , 51 , 58 , 60 , modulator, 24 8 87, 88 , 90 , 95 , 96 , 98 , 109 , 126 , 149 , module, 92 , 109 , 150 , 152 , 175 , 17 6 158, 160 , 178 , 191 , 198 , 217 , 306 , 308 , Monge matrix , 142 , 14 6 311-313 Monma, 22 0 PI graph , 39 , 224 , 31 3 monotone property , 9 PI* graph , 39 , 22 4 monotonic path , 11 5 planar graph , 20 , 38, 69, 177 , 309, 311, 312 Moore, 21 1 planar poset , 22 3 Mulder, 20 , 18 7 polygon-circle graph , 41 , 51 Muller, 17 , 18 , 21, 22 PQ-tree, 129 , 145 , 193 , 197 , 199 , 20 6 multitolerance graph , 31 4 PQ-trees, 14 5 prime module , 15 3 N-free poset , 2 7 probe interva l graph , 58 , 266, 31 3 Naji, 21 2 projective plane , 13 6 Nakajima, 4 2 proper circular-ar c graph , 205 , 22 7 Naor, 17 , 19 , 21, 22 proper interva l graph , 20 4 Nastos, 9 5 proximity graph , 3 6 neighbor, 6 pruning sequence , 18 1 neighborhood containment , 123 , 13 3 pseudoline, 8 1 Nesetril, 24 7 NLC-width, 164 , 17 8 Qin, 6 3 nondeterministically decomposable , 16 1 quotient graph , 92 , 15 3 nonredundant edge , 25 4 NP-complete, 7 Raghavan, 66 , 27 4 Ramsey theory , 2 4 O, 6 realizer, 15 8 Olariu, 19 3 recognition problem , 1 3 optimization problem , 1 4 reconstructible vertex , 9 2 order notation , 6 rectangle number , 118 , 13 3 ordered chorda l graph , 82 , 8 3 rectangle overla p graph , 24 8 overlap, 42 , 47, 49, 5 1 recursively decomposabl e graph , 163 , 17 8 overlap graph , 21 2 reduced matrix , 11 3 overlap model , 5 1 redundant 1 , 11 3 representation problem , 1 3 Paige, 12 1 Rim, 4 2 Papoutsakis, 26 3 Roberts, 26 5 parallel module , 15 3 robust algorithm , 231 , 250, 316 , 31 7 Parker, 163 , 16 4 robust NP-complete , 25 4 partial fc-tree, 27 , 16 3 robust-NP-complete, 25 0 Index 341 rooted directe d pat h graph , 59 , 312, 31 4 Todinca, 3 4 Rose, 16 8 tolerance graph , 57 , 58, 134 , 247, 31 4 Rudich, 17 , 19 , 21, 22 topological sort , 3 2 total graph , 2 8 Sakarovich, 12 1 total interva l number , 37 , 48, 22 3 sandwich problem , 308 , 31 3 totally balance d hypergraph , 11 9 Sbihi, 10 3 Tovey, 163 , 16 4 Schaffer, 30 7 trampoline, 18 2 Scheinerman, 23 , 44, 51, 55, 10 5 transitive closure , 6 0 Schnyder, 22 2 transitive graph , 15 8 Schrijver, 14 , 4 6 transitive orientation , 31 , 51, 150 , 156-158 , semiorder, 17 8 176, 19 7 series module , 15 3 transitive reduction , 60 , 17 6 series-parallel graph , 15 , 38, 164 , 27 2 trapezoid graph , 38 , 50 , 58 , 94 , 124 , 130 , Shamir, 5 8 134, 209 , 211 , 227 , 248 , 254 , 305 , 309 , Shepherd, 4 9 312-314 Shih, 269 , 27 5 traveling salesman , 31 5 shortest path , 5 1 tree, 51 , 17 8 sign pattern, 5 4 treewidth, 91 , 272, 305 , 306 , 308-310 , 312 - simple eliminatio n order , 70 , 182 , 185 , 18 9 317 simple matrix , 14 3 Trenk, 5 8 simple vertex , 169 , 18 2 triangle, 15 8 simplicial vertex , 31 , 102, 107 , 109 , 179 , 19 1 triangle-extendible graph , 244 , 25 3 skew partition, 170 , 171 , 173, 17 9 triangle-extendible ordering , 24 2 Skiena, 74 , 8 0 triangle-free graph , 49 , 100 , 101 , 103 , 109 , source, 156 , 17 6 110, 19 1 sphericity, 3 7 triangulation, 27 2 spider graph , 41 , 49 Trotter, 41 , 63, 21 1 Spinrad, 20 , 197 , 21 2 Tucker, 197-199 , 203 , 205, 22 5 split, 21 2 Turan, 10 9 split graph , 21 , 29, 60, 87, 90, 104 , 106 , 189 , twin, 20 , 24 , 18 1 262, 305 , 312, 31 3 two dimensional partial order, 41, 48, 60, 87, Sritharan, 21 8 158, 176 , 191 , 202, 210 , 21 8 stable set , 8 two-pair, 67 , 69, 70 , 17 9 star cutset , 171 , 17 4 Stathopolous, 1 6 uniformly sparse , 1 9 Steiner tree , 305-31 7 unique neighbo r set , 9 2 Steinhaus, 6 6 unit circular-ar c graph , 206 , 226 , 26 0 Steinhaus graph , 65 , 6 9 unit dis k graph , 36 , 239, 309 , 31 5 Sterten, 17 9 unit interva l graph , 178 , 204, 259 , 26 3 Stewart, 42 , 98, 129 , 193 , 306 unit-cost assumption , 8 Stobert, 15 , 6 9 universal graph , 21 , 22 string graph , 40 , 22 3 strong ordering , 12 7 vertex, 6 strong perfec t grap h conjecture , 17 0 vertex cover , 253 , 31 5 strongly chorda l graph , 112 , 118 , 119 , 124 , vertex expansion , 44 , 5 0 169, 182 , 185 , 189 , 191 , 234, 31 3 vertex multiplication , 4 5 subgraph isomorphism , 30 8 visibility graph , 55 , 73 , 74 , 76 , 80 , 81 , 83, substitution decomposition, 98 , 149, 152, 156, 126, 241 , 243-245 , 253 , 255 , 262 , 311 , 176-178, 21 2 316 sun, 18 2 Supowit, 21 2 Warren, 5 4 Suri, 7 4 Warren represen t able, 5 5 Warren's theorem , 54-56 , 73 , 74, 7 7 Tarjan, 121 , 149, 167-169 , 220 , 23 3 weak order , 17 7 Tarski, 5 7 weakly chordal graph, 32 , 67, 69, 71, 83, 87- Thorup, 27 2 91, 93-96 , 110 , 123 , 124 , 179 , 218 , 219 , threshold graph , 56 , 58 , 107 , 30 9 306, 309 , 314, 31 6 threshold signe d graph , 10 7 weakly triangulate d graph , 32 , 19 1 342

Wei, 22 0 well-covered graph , 232 , 250 , 252 , 31 7 Whitesides, 167 , 169 , 17 9 width,107

Yannakakis, 65 , 167 , 22 2 Yu, 12 9

Zito, 23 , 10 5 Titles i n Thi s Serie s

19 Jerem y P . Spinrad , Efficien t grap h representations , 200 3 18 Olav i Nevanlinna , Meromorphi c function s an d linea r algebra , 200 3 17 Vital y I . Voloshin , Colorin g mixed hypergraphs : theory, algorithm s an d applications , 200 2 16 Nea l Madras , Lecture s o n Mont e Carl o Methods , 200 2 15 Brad d Har t an d Matthe w Valeriote , Editors , Lecture s o n algebrai c mode l theory , 2002 14 Fran k de n Hollander , Larg e deviations , 200 0 13 B . V . Rajaram a Bhat , Georg e A . Elliott , an d Pete r A . Fillmore , Editors , Lectures i n operator theory , 200 0 12 Salm a Kuhlmann , Ordere d exponentia l fields, 200 0 11 Tibo r Krisztin , Hans-Ott o Walther , an d Jianhon g Wu , Shape , smoothnes s an d invariant stratificatio n o f an attractin g se t fo r delaye d monoton e positiv e feedback , 199 9 10 Jif l Patera , Editor , Quasicrystal s an d discret e geometry , 199 8 9 Pau l Selick , Introductio n t o homotop y theory , 199 7 8 Terr y A . Loring , Liftin g solution s to perturbin g problem s i n C*-algebras , 199 7 7 S . O . Kochman , Bordism , stabl e homotop y an d Adam s spectra l sequences , 199 6 6 Kennet h R . Davidson , C*-Algebra s b y example, 199 6 5 A . Weiss , Multiplicativ e Galoi s modul e structure , 199 6 4 Gerar d Besson , Joachi m Lohkamp , Pierr e Pansu , an d Pete r Peterse n Miroslav Lovric , Maun g Min-Oo , an d McKenzi e Y.-K . Wang , Editors , Riemannian geometry , 199 6 3 Albrech t Bottcher , Aa d Dijksm a an d Hein z Langer , Michae l A . Dritsche l an d James Rovnyak , an d M . A . Kaashoe k Peter Lancaster , Editor , Lecture s o n operato r theor y an d it s applications , 199 6 2 Victo r P . Snaith , Galoi s modul e structure , 199 4 1 Stephe n Wiggins , Globa l dynamics , phas e spac e transport, orbit s homoclini c t o resonances, an d applications , 199 3