Fim019-Endmatter.Pdf

Fim019-Endmatter.Pdf

Efficient Grap h Representations This page intentionally left blank http://dx.doi.org/10.1090/fim/019 FIELDS INSTITUT E MONOGRAPHS THE FIELD S INSTITUT E FO R RESEARC H I N MATHEMATICA L SCIENCE S Efficient Grap h Representations Jeremy P . Spinra d American Mathematica l Societ y Providence, Rhod e Islan d The Field s Institut e for Researc h i n Mathematical Science s The Field s Institute i s named i n honour o f the Canadia n mathematicia n Joh n Charle s Fields (1863-1932) . Field s wa s a visionar y wh o receive d man y honour s fo r hi s scientifi c work, including election to the Royal Society o f Canada i n 190 9 and to the Royal Society of London i n 1913 . Amon g othe r accomplishment s i n the servic e o f the internationa l math - ematics community , Field s wa s responsibl e fo r establishin g th e world' s mos t prestigiou s prize fo r mathematic s research—th e Field s Medal . The Fields Institute fo r Researc h i n Mathematical Science s i s supported b y grants fro m the Ontario Ministry o f Education an d Trainin g and the Natural Science s and Engineerin g Research Counci l o f Canada . Th e Institut e i s sponsore d b y McMaste r University , th e University o f Toronto, the Universit y o f Waterloo, an d Yor k University , an d ha s affiliate d universities i n Ontari o an d acros s Canada . 2000 Mathematics Subject Classification. Primar y 05C62 , 05C17 , 05C50 , 05C85 , 05-00, 05-02, 68R10 , 68W01 , 68P05 , 68Q30, 68-01 . For additiona l informatio n an d update s o n this book , visi t www.ams.org/bookpages/fim-19 Library o f Congress Cataloging-in-Publicatio n Dat a Spinrad, Jerem y P. Efficient grap h representation s / Jerem y P . Spinrad . p. cm. — (Fields Institut e monograph s ; 19) Includes bibliographica l reference s an d index. ISBN 0-8218-2815- 0 (acid-fre e paper ) 1. Representations o f graphs. I . Title. II . Series. QA166.242.S65 200 3 200304510 6 511/.-dc21 CI P Copying an d reprinting . Individua l reader s o f this publication , an d nonprofi t librarie s acting fo r them, ar e permitted t o make fai r us e of the material, suc h as to copy a chapter fo r use in teachin g o r research . Permissio n i s granted t o quot e brie f passage s fro m thi s publicatio n i n reviews, provide d the customary acknowledgmen t o f the source i s given. Republication, systemati c copying , or multiple reproduction o f any material in this publicatio n is permitte d onl y unde r licens e fro m th e America n Mathematica l Society . Request s fo r suc h permission shoul d be addressed to the Acquisitions Department , America n Mathematica l Society , 201 Charle s Street , Providence , Rhod e Islan d 02904-2294 , USA . Requests ca n also b e made by e-mail to [email protected] . © 200 3 by the American Mathematica l Society . Al l rights reserved . The America n Mathematica l Societ y retain s al l rights except thos e grante d to the United State s Government . Printed i n the United State s o f America. @ Th e paper use d i n this boo k i s acid-free an d falls withi n the guidelines established t o ensure permanenc e an d durability. This publicatio n wa s prepared b y The Fields Institute . Visit the AMS home pag e at http: //www. ams. org/ 10 9 8 7 6 5 4 3 2 1 0 8 07 06 05 04 03 Contents Explanatory Remark s 1 Chapter 1 . Introductio n 5 1.1. Grap h Theor y Backgroun d an d Terminolog y 6 1.2. Algorith m Backgroun d an d Terminolog y 6 1.3. Representatio n Backgroun d 8 1.4. Exampl e o f a Nic e Representation 1 1 1.5. Overvie w o f Problems i n Graph Representatio n 1 2 1.6. Exercise s 1 5 Chapter 2 . Implici t Representatio n 1 7 2.1. Implici t Representatio n an d Universa l Graph s 2 1 2.2. Generalize d Implici t Representatio n 2 2 2.3. Representation s wit h Ver y Shor t Label s 2 3 2.4. Distanc e Labelin g o f Graphs 2 5 2.5. Exercise s 2 7 Chapter 3 . Intersectio n an d Containmen t Representation s 3 1 3.1. Chordalit y an d Transitiv e Orientatio n 3 1 3.2. Technique s fo r Interva l Graph s 3 3 3.3. Generalization s o f Interval Graph s 3 4 3.4. Permutatio n Graph s an d Generalization s 3 8 3.5. Containmen t Representation s 4 1 3.6. Overla p Representation s 4 2 3.7. Generalize d Intersectio n Model s 4 4 3.8. Perfec t Graph s 4 6 3.9. Exercise s 4 7 Chapter 4 . Rea l Numbers i n Graph Representation s 5 3 4.1. Warren' s Theore m 5 4 4.2. Continuou s Nongeometri c Variable s 5 6 4.3. Decidabilit y Result s 5 7 4.4. Exercise s 5 7 Chapter 5 . Classe s Which us e Globa l Informatio n 5 9 5.1. Path s i n Trees 5 9 5.2. Chorda l Comparabilit y Graph s 6 0 5.3. Fill-i n Scheme s 6 5 5.4. Closur e Operation s 6 6 5.5. Weakl y Chorda l Graph s 6 7 vi Content s 5.6. Othe r Fill-i n Scheme s 6 8 5.7. Exercise s 6 8 Chapter 6 . Visibilit y Graph s 7 3 6.1. Countin g Visibilit y Graph s 7 4 6.2. Cliqu e Cove r Representatio n 7 4 6.3. Induce d Visibilit y Graph s 7 6 6.4. Optimizatio n o n Visibility Graph s 8 0 6.5. Lin e o f Sigh t Graph s an d Othe r Variant s 8 0 6.6. Exercise s 8 1 Chapter 7 . Intersectio n o f Graph Classe s 8 5 7.1. Som e Fundamental Propertie s 8 5 7.2. Intersection s o f Fundamental Propertie s 8 7 7.3. Weakl y Chorda l Comparabilit y Graph s 8 8 7.4. Othe r Generalize d Classe s 9 0 7.5. Observation s Regardin g AT-fre e co-AT-fre e Graph s 9 1 7.6. Ope n Problem s o n the Generalize d Classe s 9 4 7.7. Exercise s 9 5 Chapter 8 . Grap h Classe s Define d b y Forbidden Subgraph s 9 7 8.1. Cograph s 9 7 8.2. Classe s Which ar e too Larg e to hav e Efficien t Representation s 10 0 8.3. Relatio n Betwee n Recognitio n Problem s 10 5 8.4. Classe s define d b y Forbidding Set s o f Induced Subgraph s 10 5 8.5. Dilwort h Numbe r an d Pose t Widt h 10 7 8.6. Exercise s 10 9 Chapter 9 . Chorda l Bipartit e Graph s 11 1 9.1. T-fre e Matrice s 11 1 9.2. Countin g an d Representatio n 11 2 9.3. Characterization s 11 8 9.4. Recognitio n 12 0 9.5. Optimizatio n Problem s o n Chorda l Bipartit e Graph s 12 3 9.6. Variant s o f Chordal Bipartit e Graph s 12 5 9.7. Subclasse s o f Chordal Bipartit e Graph s 12 6 9.8. Perfec t Eliminatio n Bipartit e Graph s 13 0 9.9. Bipartit e Graph s wit h Forbidde n Induce d Subgraph s 13 1 9.10. Exercise s 13 2 Chapter 10 . Matrice s 13 5 10.1. Smal l Forbidden Classe s o f Matrices 13 5 10.2. Linea r Matrice s 13 6 10.3. Forbidde n 2 by 2 Identity Matrice s 13 8 10.4. Forbiddin g (™ ) 13 9 10.5. Othe r Classe s o f Interest 14 2 10.6. Th e Problem s o f Counting an d Representatio n 14 2 10.7. Othe r Matri x Propertie s 14 5 10.8. Exercise s 14 5 Chapter 11 . Decompositio n 149 Contents vi i 11.1. Substitutio n Decompositio n an d Verte x Partitioning 14 9 11.2. Joi n Decompositio n 16 0 11.3. Recursivel y Decomposabl e Graph s 16 3 11.4. Clique-widt h an d NLC-widt h 16 4 11.5. Cliqu e Separato r Decompositio n 16 7 11.6. Ske w Partition 17 0 11.7. 2-Joi n 17 4 11.8. Exercise s 17 5 Chapter 12 . Eliminatio n Scheme s 18 1 12.1. Distanc e Hereditar y Graph s 18 1 12.2. Strongl y Chorda l Graph s 18 2 12.3. k-Simplicia l Eliminatio n Scheme s 18 4 12.4.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    78 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us