Reproductive Ecology of Dragonfishes (Family: Stomiidae) in the Gulf of Mexico Alex D

Total Page:16

File Type:pdf, Size:1020Kb

Reproductive Ecology of Dragonfishes (Family: Stomiidae) in the Gulf of Mexico Alex D Nova Southeastern University NSUWorks HCNSO Student Theses and Dissertations HCNSO Student Work 7-25-2016 Reproductive Ecology of Dragonfishes (Family: Stomiidae) in the Gulf of Mexico Alex D. Marks Nova Southeastern University, [email protected] Follow this and additional works at: https://nsuworks.nova.edu/occ_stuetd Part of the Marine Biology Commons, and the Oceanography and Atmospheric Sciences and Meteorology Commons Share Feedback About This Item NSUWorks Citation Alex D. Marks. 2016. Reproductive Ecology of Dragonfishes (Family: Stomiidae) in the Gulf of Mexico. Master's thesis. Nova Southeastern University. Retrieved from NSUWorks, . (422) https://nsuworks.nova.edu/occ_stuetd/422. This Thesis is brought to you by the HCNSO Student Work at NSUWorks. It has been accepted for inclusion in HCNSO Student Theses and Dissertations by an authorized administrator of NSUWorks. For more information, please contact [email protected]. HALMOS COLLEGE OF NATURAL SCIENCES AND OCEANOGRAPHY REPRODUCTIVE ECOLOGY OF DRAGONFISHES (FAMILY: STOMIIDAE) IN THE GULF OF MEXICO By Alex D. Marks Submitted to the Faculty of Halmos College of Natural Sciences and Oceanography in partial fulfillment of the requirements for the degree of Master of Science with a specialty in: Marine Biology Nova Southeastern University July 2016 Thesis of Alex D. Marks Submitted in Partial Fulfillment of the Requirements for the Degree of Masters of Science: Marine Biology Alex D. Marks Nova Southeastern University Halmos College of Natural Sciences and Oceanography Month Year Approved: Thesis Committee Major Professor :______________________________ Tracey Sutton, Ph.D. Committee Member :___________________________ David Kerstetter, Ph.D. Committee Member :___________________________ Patricia Blackwelder, Ph.D. Table of Contents Abstract ........................................................................................................................... ii Keywords ........................................................................................................................ ii Acknowledgements ....................................................................................................... iii List of Tables ................................................................................................................. iv List of Figures .................................................................................................................vi Introduction .................................................................................................................... 1 Systematics .......................................................................................................... 1 Physical Characteristics and Ecological Importance ........................................... 2 Reproductive Ecology .......................................................................................... 3 Histology and Gametogenesis.............................................................................. 4 Objectives ............................................................................................................ 6 Materials and Methods .................................................................................................. 6 Study Location ..................................................................................................... 6 Sample Acquisition .............................................................................................. 9 Specimen Processing ........................................................................................... 9 Histology ............................................................................................................. 11 Histological Analysis .......................................................................................... 14 Statistical Analysis .............................................................................................. 19 Results ............................................................................................................................ 20 Sampling ............................................................................................................. 20 Gonad Development of All Dragonfishes Examined ......................................... 24 Spawning Patterns ............................................................................................... 35 Sex and Biomass Ratios ...................................................................................... 43 Size at Maturity ................................................................................................... 45 Size Distributions of Separated Sexes ................................................................ 49 Size Distributions by Gear Type ......................................................................... 55 Discussion....................................................................................................................... 61 Histology and Life History ................................................................................. 61 Sex Ratio ............................................................................................................. 63 Biomass Ratio ..................................................................................................... 64 Size at Maturity ................................................................................................... 65 Size Distributions ................................................................................................ 66 Future Work ........................................................................................................ 69 Conclusion ..................................................................................................................... 70 Appendix I: List of Acronyms ..................................................................................... 72 References ...................................................................................................................... 73 i Abstract The most speciose group of fishes in the Gulf of Mexico is the dragonfishes (Family: Stomiidae). These fishes are dominant mesopelagic predators occurring throughout the world’s oceans, including the Antarctic seas. Little is known regarding their reproductive ecology, a consequence attributed to insufficient sample sizes of mature adults due to inadequacies of sampling gear; larger, sexually mature stomiid adults are more adept at net avoidance, thereby obfuscating synoptic reproductive biology studies. Between 2010-2011, the Offshore Nekton Sampling and Analysis Program was initiated in the northern Gulf of Mexico over all four seasons using a discrete-depth sampling system (MOCNESS) and a large, commercial-sized midwater trawl (Irish herring trawl). Gonads were dissected from 714 individuals belonging to 47 species of stomiids, of which the most 12 abundant species were subjected to detailed analysis. Female ovaries possessed an asynchronous oocyte development, suggesting that females are iteroparous. Males exhibited a similar pattern. Chauliodus sloani had an overall sex ratio that favored females, and was the only species in which the overall sex ratio significantly differed from the expected 1:1 ratio (male:female) (P < 0.05). Considering just mature specimens, Aristostomias xenostoma, Malacosteus niger, Eustomias fissibarbis, and Eustomias schmidti had sex ratios that favored males, and were the only species in which the sex ratio significantly differed from even (P < 0.05). Eustomias hypopsilus was the only species in which mean biomass significantly differed between sexes. Histological analysis and binomial regression indicated that females of the 12 most abundant species matured at larger lengths than males. Generally, only females were present in the larger size classes, suggesting that females also become larger than males. Size distribution plots by gear type to assess gear selectivity revealed two patterns: the MOCNESS caught fewer specimens per species than the Irish herring trawl, and the MOCNESS caught predominantly smaller specimens. These data are essential for ecosystem-based modeling of global deep-pelagic ecosystems, which contain the overwhelming majority of Earth’s fish biomass. Keywords: Sex ratio, gonadal histology, reproduction, maturity, size distribution ii Acknowledgments First and foremost, I would like to thank my major advisor, Dr. Tracey Sutton, for giving me the opportunity to work under his tutelage. Thank you for your unwavering support, enthusiasm, and providing me with a wealth of knowledge on deep-sea fishes. You have given me a newfound interest in studying the deep-sea realm, one that I (hopefully) intend to pursue. I would like to thank my committee members, Dr. David Kerstetter for his guidance with statistics and invaluable insight throughout this thesis project, and Dr. Patricia Blackwelder for her advice, as well as use of her lab to photograph slides. Thank you Dr. Abby Renegar and Josh Stocker for letting me use the histology lab and teaching me how to properly stain tissue. Furthermore, I would like to thank David Wyanski for helping me learn to read slides and explaining reproduction in fishes. I am truly grateful for Lacey Malarky and Dr. Zan Boyle assisting me in navigating through the complexities of R. Thank you to my other labmates in the Oceanic Ecology Lab, both past and present: April Cook, Katie Bowen, Kendall Lord, Mike
Recommended publications
  • CHECKLIST and BIOGEOGRAPHY of FISHES from GUADALUPE ISLAND, WESTERN MEXICO Héctor Reyes-Bonilla, Arturo Ayala-Bocos, Luis E
    ReyeS-BONIllA eT Al: CheCklIST AND BIOgeOgRAphy Of fISheS fROm gUADAlUpe ISlAND CalCOfI Rep., Vol. 51, 2010 CHECKLIST AND BIOGEOGRAPHY OF FISHES FROM GUADALUPE ISLAND, WESTERN MEXICO Héctor REyES-BONILLA, Arturo AyALA-BOCOS, LUIS E. Calderon-AGUILERA SAúL GONzáLEz-Romero, ISRAEL SáNCHEz-ALCántara Centro de Investigación Científica y de Educación Superior de Ensenada AND MARIANA Walther MENDOzA Carretera Tijuana - Ensenada # 3918, zona Playitas, C.P. 22860 Universidad Autónoma de Baja California Sur Ensenada, B.C., México Departamento de Biología Marina Tel: +52 646 1750500, ext. 25257; Fax: +52 646 Apartado postal 19-B, CP 23080 [email protected] La Paz, B.C.S., México. Tel: (612) 123-8800, ext. 4160; Fax: (612) 123-8819 NADIA C. Olivares-BAñUELOS [email protected] Reserva de la Biosfera Isla Guadalupe Comisión Nacional de áreas Naturales Protegidas yULIANA R. BEDOLLA-GUzMáN AND Avenida del Puerto 375, local 30 Arturo RAMíREz-VALDEz Fraccionamiento Playas de Ensenada, C.P. 22880 Universidad Autónoma de Baja California Ensenada, B.C., México Facultad de Ciencias Marinas, Instituto de Investigaciones Oceanológicas Universidad Autónoma de Baja California, Carr. Tijuana-Ensenada km. 107, Apartado postal 453, C.P. 22890 Ensenada, B.C., México ABSTRACT recognized the biological and ecological significance of Guadalupe Island, off Baja California, México, is Guadalupe Island, and declared it a Biosphere Reserve an important fishing area which also harbors high (SEMARNAT 2005). marine biodiversity. Based on field data, literature Guadalupe Island is isolated, far away from the main- reviews, and scientific collection records, we pres- land and has limited logistic facilities to conduct scien- ent a comprehensive checklist of the local fish fauna, tific studies.
    [Show full text]
  • Fao/Government Cooperative Programme Scientific Basis
    FI:GCP/RLA/140/JPN TECHNICAL DOCUMENT No. 4 FAO/GOVERNMENT COOPERATIVE PROGRAMME SCIENTIFIC BASIS FOR ECOSYSTEM-BASED MANAGEMENT IN THE LESSER ANTILLES INCLUDING INTERACTIONS WITH MARINE MAMMALS AND OTHER TOP PREDATORS CRUISE REPORT FOR THE LAPE ECOSYSTEM SURVEY ON RV CELTIC EXPLORER (CE0607) FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Barbados, 2006 FI:GCP/RLA/140/JPN TECHNICAL DOCUMENT No. 4 FAO/GOVERNMENT COOPERATIVE PROGRAMME SCIENTIFIC BASIS FOR ECOSYSTEM-BASED MANAGEMENT IN THE LESSER ANTILLES INCLUDING INTERACTIONS WITH MARINE MAMMALS AND OTHER TOP PREDATORS CRUISE REPORT FOR THE LAPE ECOSYSTEM SURVEY ON RV CELTIC EXPLORER (CE0607) Lesser Antilles Pelagic Ecosystem Project (GCP/RLA/140/JPN) Bridgetown, Barbados FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Barbados, 2006 This technical report is one of a series of reports prepared during the course of the project identified on the title page. The conclusions and recommendations given in the report are those considered appropriate at the time of its preparation. They may be modified in the light of further knowledge gained at subsequent stages of the project. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries All rights reserved. Reproduction and dissemination of material in this information product for educational or other non-commercial purposes are authorized without any prior written permission from the copyright holders provided the source is fully acknowledged.
    [Show full text]
  • Early Stages of Fishes in the Western North Atlantic Ocean Volume
    ISBN 0-9689167-4-x Early Stages of Fishes in the Western North Atlantic Ocean (Davis Strait, Southern Greenland and Flemish Cap to Cape Hatteras) Volume One Acipenseriformes through Syngnathiformes Michael P. Fahay ii Early Stages of Fishes in the Western North Atlantic Ocean iii Dedication This monograph is dedicated to those highly skilled larval fish illustrators whose talents and efforts have greatly facilitated the study of fish ontogeny. The works of many of those fine illustrators grace these pages. iv Early Stages of Fishes in the Western North Atlantic Ocean v Preface The contents of this monograph are a revision and update of an earlier atlas describing the eggs and larvae of western Atlantic marine fishes occurring between the Scotian Shelf and Cape Hatteras, North Carolina (Fahay, 1983). The three-fold increase in the total num- ber of species covered in the current compilation is the result of both a larger study area and a recent increase in published ontogenetic studies of fishes by many authors and students of the morphology of early stages of marine fishes. It is a tribute to the efforts of those authors that the ontogeny of greater than 70% of species known from the western North Atlantic Ocean is now well described. Michael Fahay 241 Sabino Road West Bath, Maine 04530 U.S.A. vi Acknowledgements I greatly appreciate the help provided by a number of very knowledgeable friends and colleagues dur- ing the preparation of this monograph. Jon Hare undertook a painstakingly critical review of the entire monograph, corrected omissions, inconsistencies, and errors of fact, and made suggestions which markedly improved its organization and presentation.
    [Show full text]
  • A Dataset of Deep-Sea Fishes Surveyed by Research Vessels in the Waters Around Taiwan
    A peer-reviewed open-access journal ZooKeys 466:A Dataset 103–110 of(2014) Deep-Sea Fishes Surveyed by Research Vessels in the Waters around Taiwan 103 doi: 10.3897/zookeys.466.8523 DATA PAPER http://zookeys.pensoft.net Launched to accelerate biodiversity research A Dataset of Deep-Sea Fishes Surveyed by Research Vessels in the Waters around Taiwan Kwang-Tsao Shao1, Jack Lin1, Hsin-Ming Yeh2, Mao-Yin Lee1, Lee-Sea Chen1, Hen-Wei Lin1 1 Biodiversity Research Center, Academia Sinica, No. 128, Sec. 2, Academia Rd. Nankang Dist., 115, Taipei, TAIWAN 2 Coastal and Offshore Resources Research Center, Fisheries Research Institute, COA, No.6, Yugang N. 3rd Rd., Qianzhen Dist., 806, Kaohsiung City, TAIWAN Corresponding authors: Jack Lin ([email protected]); Hsin-Ming Yeh ([email protected]) Academic editor: L. Penev | Received 29 August 2014 | Accepted 1 December 2014 | Published 19 December 2014 http://zoobank.org/083BACA5-921D-4C9D-8243-5CDC40F66C43 Citation: Shao K-T, Lin J, Yeh H-M, Lee M-Y, Chen L-S, Lin H-W (2014) A Dataset of Deep-Sea Fishes Surveyed by Research Vessels in the Waters around Taiwan. ZooKeys 466: 103–110. doi: 10.3897/zookeys.466.8523 Abstract The study of deep-sea fish fauna is hampered by a lack of data due to the difficulty and high cost incurred in its surveys and collections. Taiwan is situated along the edge of the Eurasia plate, at the junction of three Large Marine Ecosystems or Ecoregions of the East China Sea, South China Sea and the Philippines. As nearly two-thirds of its surrounding marine ecosystems are deep-sea environments, Taiwan is expected to hold a rich diversity of deep-sea fish.
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • Fish Have No Feet Free
    FREE FISH HAVE NO FEET PDF JГіn Kalman StefГЎnsson,Philip Roughton | 384 pages | 25 Aug 2016 | Quercus Publishing | 9780857054418 | English | London, United Kingdom ‘Fish Have No Feet’ by Jón Kalman Stefánsson (Review) – Tony's Reading List Powerful and sparkling, it is the backdrop and life-force for three generations of a one-time fishing family as they fall in and Fish Have No Feet of love. The barren blackness Fish Have No Feet the lava-covered land is offset by the untouchable bounty of the water that surrounds it, a striking picture of an almost Fish Have No Feet place. Nora Mahony. Sat, Oct 15,First published: Sat, Oct 15, More from The Irish Times Books. TV, Radio, Web. Sponsored Affordable homecare? Employers can ease employee concerns by prioritising their wellbeing. Think cloud when you think digital transformation. Subscriber Only. Realist versus sceptic: Two takes on the climate crisis. The Book Club Weekly See a sample. Sign up to the Irish Times books newsletter for features, podcasts and more. Sign up. Fighting Words Roddy Doyle introduces head-turning young Irish writing. Most Read in Culture. Short stories. The Cage, a short story by Tony Wright. Viscera, a new short story by Dearbhaile Houston. Book reviews. War: A wide-ranging, readable history of armed conflict. New poetry. Poetry: The Flourishing Shrub. Women writers Putting Irish women writers back in the picture. Brought to Book. Sign In. Don't have an account? Forgot Password? Not an Irish Times subscriber? Fish Have No Feet | Book reviews | RGfE One of the major focuses of the novel is on relationships.
    [Show full text]
  • New Zealand Fishes a Field Guide to Common Species Caught by Bottom, Midwater, and Surface Fishing Cover Photos: Top – Kingfish (Seriola Lalandi), Malcolm Francis
    New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing Cover photos: Top – Kingfish (Seriola lalandi), Malcolm Francis. Top left – Snapper (Chrysophrys auratus), Malcolm Francis. Centre – Catch of hoki (Macruronus novaezelandiae), Neil Bagley (NIWA). Bottom left – Jack mackerel (Trachurus sp.), Malcolm Francis. Bottom – Orange roughy (Hoplostethus atlanticus), NIWA. New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing New Zealand Aquatic Environment and Biodiversity Report No: 208 Prepared for Fisheries New Zealand by P. J. McMillan M. P. Francis G. D. James L. J. Paul P. Marriott E. J. Mackay B. A. Wood D. W. Stevens L. H. Griggs S. J. Baird C. D. Roberts‡ A. L. Stewart‡ C. D. Struthers‡ J. E. Robbins NIWA, Private Bag 14901, Wellington 6241 ‡ Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, 6011Wellington ISSN 1176-9440 (print) ISSN 1179-6480 (online) ISBN 978-1-98-859425-5 (print) ISBN 978-1-98-859426-2 (online) 2019 Disclaimer While every effort was made to ensure the information in this publication is accurate, Fisheries New Zealand does not accept any responsibility or liability for error of fact, omission, interpretation or opinion that may be present, nor for the consequences of any decisions based on this information. Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries website at http://www.mpi.govt.nz/news-and-resources/publications/ A higher resolution (larger) PDF of this guide is also available by application to: [email protected] Citation: McMillan, P.J.; Francis, M.P.; James, G.D.; Paul, L.J.; Marriott, P.; Mackay, E.; Wood, B.A.; Stevens, D.W.; Griggs, L.H.; Baird, S.J.; Roberts, C.D.; Stewart, A.L.; Struthers, C.D.; Robbins, J.E.
    [Show full text]
  • Molecular Phylogeny and the Evolution of an Adaptive Visual System in Deep-Sea Dragonfishes (Stomiiformes: Stomiidae)
    ORIGINAL ARTICLE doi:10.1111/evo.12322 THE COMPLEX EVOLUTIONARY HISTORY OF SEEING RED: MOLECULAR PHYLOGENY AND THE EVOLUTION OF AN ADAPTIVE VISUAL SYSTEM IN DEEP-SEA DRAGONFISHES (STOMIIFORMES: STOMIIDAE) Christopher P. Kenaley,1,2 Shannon C. DeVaney,3 and Taylor T. Fjeran4 1Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138 2E-mail: [email protected] 3Life Science Department, Los Angeles Pierce College, Woodland Hills, California 91371 4College of Forestry, Oregon State University, Corvallis, Oregon 97331 Received December 12, 2012 Accepted November 12, 2013 The vast majority of deep-sea fishes have retinas composed of only rod cells sensitive to only shortwave blue light, approximately 480–490 nm. A group of deep-sea dragonfishes, the loosejaws (family Stomiidae), possesses far-red emitting photophores and rhodopsins sensitive to long-wave emissions greater than 650 nm. In this study, the rhodopsin diversity within the Stomiidae is surveyed based on an analysis of rod opsin-coding sequences from representatives of 23 of the 28 genera. Using phylogenetic inference, fossil-calibrated estimates of divergence times, and a comparative approach scanning the stomiid phylogeny for shared genotypes and substitution histories, we explore the evolution and timing of spectral tuning in the family. Our results challenge both the monophyly of the family Stomiidae and the loosejaws. Despite paraphyly of the loosejaws, we infer for the first time that far-red visual systems have a single evolutionary origin within the family and that this shift in phenotype occurred at approximately 15.4 Ma. In addition, we found strong evidence that at approximately 11.2 Ma the most recent common ancestor of two dragonfish genera reverted to a primitive shortwave visual system during its evolution from a far-red sensitive dragonfish.
    [Show full text]
  • Marine Fishes from Galicia (NW Spain): an Updated Checklist
    1 2 Marine fishes from Galicia (NW Spain): an updated checklist 3 4 5 RAFAEL BAÑON1, DAVID VILLEGAS-RÍOS2, ALBERTO SERRANO3, 6 GONZALO MUCIENTES2,4 & JUAN CARLOS ARRONTE3 7 8 9 10 1 Servizo de Planificación, Dirección Xeral de Recursos Mariños, Consellería de Pesca 11 e Asuntos Marítimos, Rúa do Valiño 63-65, 15703 Santiago de Compostela, Spain. E- 12 mail: [email protected] 13 2 CSIC. Instituto de Investigaciones Marinas. Eduardo Cabello 6, 36208 Vigo 14 (Pontevedra), Spain. E-mail: [email protected] (D. V-R); [email protected] 15 (G.M.). 16 3 Instituto Español de Oceanografía, C.O. de Santander, Santander, Spain. E-mail: 17 [email protected] (A.S); [email protected] (J.-C. A). 18 4Centro Tecnológico del Mar, CETMAR. Eduardo Cabello s.n., 36208. Vigo 19 (Pontevedra), Spain. 20 21 Abstract 22 23 An annotated checklist of the marine fishes from Galician waters is presented. The list 24 is based on historical literature records and new revisions. The ichthyofauna list is 25 composed by 397 species very diversified in 2 superclass, 3 class, 35 orders, 139 1 1 families and 288 genus. The order Perciformes is the most diverse one with 37 families, 2 91 genus and 135 species. Gobiidae (19 species) and Sparidae (19 species) are the 3 richest families. Biogeographically, the Lusitanian group includes 203 species (51.1%), 4 followed by 149 species of the Atlantic (37.5%), then 28 of the Boreal (7.1%), and 17 5 of the African (4.3%) groups. We have recognized 41 new records, and 3 other records 6 have been identified as doubtful.
    [Show full text]
  • Supporting Information
    Supporting Information Choy et al. 10.1073/pnas.0900711106 Table S1. Total mercury values (mean ؎ SD) of prey taxa from Hawaiian waters measured in this study Taxonomic group n Size, mm Depth category Ref(s). Day-time depth range, m THg, ␮g/kg Mixed Zooplankton 5 1–2 epi 1 0–200 2.26 Ϯ 3.23 Invertebrates Phylum Ctenophora Ctenophores (unidentified) 3 20–30 TL other 2 0–600 0.00 Ϯ 0.00 Phylum Chordata, Subphylum Tunicata Class Thaliacea Pyrosomes (unidentified) 2 (8) 14–36 TL upmeso.dvm 2, 3 400–600ϩ 3.49 Ϯ 4.94 Salps (unidentified) 3 (7) 200–400 TL upmeso.dvm 2, 4 400–600ϩ 0.00 Ϯ 0.00 Phylum Arthropoda Subphylum Crustacea Order Amphipoda Phronima sp. 2 (6) 17–23 TL lomeso.dvm 5, 6 400–975 0.00 Ϯ 0.00 Order Decapoda Crab Megalopae (unidentified) 3 (14) 3–14 CL epi 7, 8 0–200 0.94 Ϯ 1.63 Janicella spinacauda 7 (10) 7–16 CL upmeso.dvm 9 500–600 30.39 Ϯ 23.82 Lobster Phyllosoma (unidentified) 5 42–67 CL upmeso.dvm 10 80–400 18.54 Ϯ 13.61 Oplophorus gracilirostris 5 9–20 CL upmeso.dvm 9, 11 500–650 90.23 Ϯ 103.20 Sergestes sp. 5 8–25 CL upmeso.dvm 12, 13 200–600 45.61 Ϯ 51.29 Sergia sp. 5 6–10 CL upmeso.dvm 12, 13 300–600 0.45 Ϯ 1.01 Systellapsis sp. 5 5–44 CL lomeso.dvm 9, 12 600–1100 22.63 Ϯ 38.18 Order Euphausiacea Euphausiids (unidentified) 2 (7) 5–7 CL upmeso.dvm 14, 15 400–600 7.72 Ϯ 10.92 Order Isopoda Anuropus sp.
    [Show full text]
  • Dynamics of the Continental Slope Demersal Fish Community in the Colombian Caribbean – Deep-Sea Research in the Caribbean
    Andrea Polanco Fernández Dynamics of the continental slope demersal fish community in the Colombian Caribbean – Deep-sea research in the Caribbean DYNAMICS OF THE CONTINENTAL SLOPE DEMERSAL FISH COMMUNITY IN THE COLOMBIAN CARIBBEAN Deep-sea research in the Caribbean by Andrea Polanco F. A Dissertation Submitted to the DEPARTMENT OF MINES (Universidad Nacional de Colombia) and the DEPARTMENT OF BIOLOGY & CHEMISTRY (Justus Liebig University Giessen, Germany) in Fulfillment of the Requirements for obtaining the Degree of DOCTOR IN MARINE SCIENCES at UNIVERSIDAD NACIONAL DE COLOMBIA (UNal) and DOCTOR RER. NAT. at THE JUSTUS-LIEBIG-UNIVERSITY GIESSEN (UniGiessen) 2015 Deans: Prof. Dr. John William Branch Bedoya (Unal) Prof. Dr. Holger Zorn (UniGiessen) Advisors: Prof. Dr. Arturo Acero Pizarro (Unal) Prof. Dr. Thomas Wilke (UniGiessen) Andrea Polanco F. (2014) Dynamics of the continental slope demersal fish community in the Colombian Caribbean - Deep-sea research in the Caribbean. This dissertation has been submitted in fulfillment of the requirements for a cotutelled advanced degree at the Universidad Nacional de Colombia (UNal) and the Justus Liebig University of Giessen adviced by Professor Arturo Acero (UNal) and Professor Thomas Wilke (UniGiessen). A mi familia y al mar… mi vida! To my family and to the sea….. my life! Después de esto, jamás volveré a mirar el mar de la misma manera… Ahora, como un pez en el agua… rodeado de inmensidad y libertad. After this, I will never look again the sea in the same way Now, as a fish in the sea… surounded of inmensity and freedom. TABLE OF CONTENTS TABLE OF CONTENTS .................................................................................................................................. I TABLE OF FIGURES ...................................................................................................................................
    [Show full text]
  • Visual Acuity in Pelagic Fishes and Mollusks
    W&M ScholarWorks VIMS Articles 2013 Visual acuity in pelagic fishes and mollusks YL Gagnon TT Sutton S Johnsen Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Aquaculture and Fisheries Commons Recommended Citation Gagnon, YL; Sutton, TT; and Johnsen, S, "Visual acuity in pelagic fishes and mollusks" (2013). VIMS Articles. 885. https://scholarworks.wm.edu/vimsarticles/885 This Article is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Vision Research 92 (2013) 1–9 Contents lists available at ScienceDirect Vision Research journal homepage: www.elsevier.com/locate/visres Visual acuity in pelagic fishes and mollusks ⇑ Yakir L. Gagnon a, , Tracey T. Sutton b, Sönke Johnsen a a Department of Biology, Duke University, Durham, NC 27708, USA b College of William & Mary, Virginia Institute of Marine Science, Gloucester Point, VA, USA article info abstract Article history: In the sea, visual scenes change dramatically with depth. At shallow and moderate depths (<1000 m), Received 26 June 2013 there is enough light for animals to see the surfaces and shapes of prey, predators, and conspecifics. This Received in revised form 13 August 2013 changes below 1000 m, where no downwelling daylight remains and the only source of light is biolumi- Available online 30 August 2013 nescence. These different visual scenes require different visual adaptations and eye morphologies. In this study we investigate how the optical characteristics of animal lenses correlate with depth and ecology.
    [Show full text]