Spectroscopic Metallicities for Planet-Host Stars: Extending the Samples

Total Page:16

File Type:pdf, Size:1020Kb

Spectroscopic Metallicities for Planet-Host Stars: Extending the Samples A&A 437, 1127–1133 (2005) Astronomy DOI: 10.1051/0004-6361:20052895 & c ESO 2005 Astrophysics Spectroscopic metallicities for planet-host stars: Extending the samples N. C. Santos1,2, G. Israelian3, M. Mayor2,J.P.Bento1,P.C.Almeida1,S.G.Sousa1, and A. Ecuvillon3 1 Centro de Astronomia e Astrofísica da Universidade de Lisboa, Observatório Astronómico de Lisboa, Tapada da Ajuda, 1349-018 Lisboa, Portugal e-mail: [email protected] 2 Observatoire de Genève, 51 Ch. des Maillettes, 1290 Sauverny, Switzerland 3 Instituto de Astrofísica de Canarias, 38200 La Laguna, Tenerife, Spain Received 17 February 2005 / Accepted 23 March 2005 Abstract. We present stellar parameters and metallicities for 29 planet-host stars, as well as for a large volume-limited sample of 53 stars not known to be orbited by any planetary-mass companion. These stars add to the results presented in our previous series of papers, providing two large and uniform samples of 119 planet-hosts and 94 “single” stars with accurate stellar param- eters and [Fe/H] estimates. The analysis of the results further confirms that stars with planets are metal-rich when compared with average field dwarfs. Important biases that may compromise future studies are also discussed. Finally, we compare the metallicity distributions for single planet-hosts and planet-hosts in multiple stellar systems. The results show that a small differ- ence cannot be excluded, in the sense that the latter sample is slighly overmetallic. However, more data are needed to confirm this correlation. Key words. stars: abundances – stars: fundamental parameters – stars: chemically peculiar – stars: planetary systems – stars: planetary systems: formation 1. Introduction the metal content of the Sun have an orbiting planetary-mass companion. The discovery that stars with giant planet companions are par- Interestingly, these observational results are now being cor- ticularly metal-rich when compared to single field dwarfs is roborated by theoretical models of planet formation, and give providing crucial clues to our understanding of the processes support to the core-accretion model to explain the origin of of planetary formation and evolution. This fact, first discussed the now discovered giant planets (Pollack et al. 1996; Alibert by Gonzalez (1997) and Gonzalez (1998), was later proved by et al. 2004). Current models can even reasonably explain the the uniform analysis of large samples of planet-host and field observed [Fe/H] distribution of planet-host stars (Ida & Lin “single” stars (Santos et al. 2001). 2004a,b). However, and as discussed in Santos et al. (2004b), Further refinements to these studies have shown that the current data still cannot exclude that giant planets may also be probability of finding (and presumably forming) a planet, at formed by the disk instability model (Boss 1997, 2002; Mayer least of the kind now discovered by radial-velocity surveys, et al. 2002), in particular planets orbiting low metallicity stars. is a strong function of the stellar metal content (Santos et al. In the last few years we have published a series of pa- 2001, 2003, 2004b; Reid 2002; Fischer & Valenti 2005). pers regarding the study of the stellar metallicity-giant planet Although the exact dependence is still not completely settled connection (Santos et al. 2000, 2001, 2003, 2004b) (hereafter (see Santos et al. 2004b, and references therein), it was shown Papers I, II, III and IV, respectively). In the last three of these that about 25% of solar type stars with twice the solar metal- papers we have presented a spectroscopic analysis of a sample licity are orbited by a planet, while less than 5% of stars with of 41 “single” field stars, used as a reference to study the excess metallicity observed in planet hosts. In Paper IV we presented Based on observations collected at La Silla Observatory, ESO, a uniform spectroscopic analysis of 98 extra-solar planet-host Chile, with the FEROS spectrograph at the 2.2-m MPI/ESO tele- scope (programs 72.C-0033 and 74.C-0135) and the CORALIE spec- stars, including most of the known objects. The continuation of trograph at the 1.2-m Euler Swiss Telescope, with the UVES spec- this work is extremely important, since the search for new pos- trograph at the VLT 8.2-m Kueyen telescope (programs 074.C-0134), sible correlations between the presence (and properties) of ex- and with the SARG spectrograph at the TNG telescope, operated at oplanets and the chemical abundances of their host stars needs the island of La Palma. increased samples. Article published by EDP Sciences and available at http://www.edpsciences.org/aa or http://dx.doi.org/10.1051/0004-6361:20052895 1128 N. C. Santos et al.: Spectroscopic metallicities for planet-host stars In this paper we add 53 new stars to our “comparison” in December 2004, using the UVES spectrograph at the sample, as well as precise and uniform metallicity estimates VLT 8.2-m Kueyen telescope (run ID 074.C-0134). These lat- for a further 29 known planet-hosts, most of which have no ter spectra were reduced using the UVES pipeline and have a previous spectroscopic metallicity estimate. In Sects. 2 and 3 resolution R ∼ 75 000. we present the observed samples, and in Sect. 4 we review For HD 104985 and HD 219449 we further obtained spec- the metallicity distribution of planet-host stars, as well as of tra with a resolution of 57 000 using the SARG spectrograph, the whole volume-limited comparison sample of 94 solar-type at the TNG telescope (La Palma Observatory, Spain). For a few F-G-K dwarfs. The analysis confirms, as expected, that stars other recently-announced planet-hosts, stellar parameters were with planets are clearly metal-rich when compared to average derived using the HARPS spectrograph (R ∼ 100 000 – for de- field dwarfs. In Sect. 4.1 we review a few possible biases that tails see e.g. Pepe et al. 2004). These parameters were also pre- should be considered when studying the metallicity of planet- sented in the papers announcing the discovery of the exoplanets host stars. In Sect. 5 we compare the metallicity distributions (see Table 1). for “single” planet-host stars with that found for planet-hosts in The list of planet-host stars presented in this paper is shown multiple stellar systems. We conclude in Sect. 6. in Table 1. For planet-discovery references see the Geneva Planet-Search web pages1. / 2. The samples Adding the 97 planet-host stars whose [Fe H] values were listed in Paper IV2 to the results listed in Table 1, we now 2.1. New comparison sample have a uniform sample of metallicities and stellar parameter for 119 stars with orbiting planets. From the whole known In Papers II through IV we compared the metallicity distribu- planet-host star sample, the only 4 objects for which we could tion for stars with planets with a volume-limited sample of h h not obtain metallicity estimates are GJ 876 and GJ 436 (both stars having right-ascensions (RA) between 20 and 9 ,and M-dwarfs – see Bonfils et al. 2005), HD 45350 and HD 13189 a distance below 20 pc as derived from Hipparcos parallaxes (a giant star). To these we add the transiting planets detected (ESA 1997). All these stars belong to the CORALIE southern by the OGLE survey (Konacki et al. 2003; Bouchy et al. 2004; planet search sample (Udry et al. 2000), have spectral types be- Pont et al. 2004), three currently with poor estimates given tween F8 and M1, and were not found to harbor any planetary the low quality of the now available spectra, as well as TrEs-1 companion. (Alonso et al. 2004). In order to extend the number of comparison stars in our samples, we have now observed a complementary sample of CORALIE stars with RA between 9h and 20h (and d < 20 pc). 3. Spectroscopic analysis These stars were observed using the FEROS spectrograph at the 2.2-m ESO/MPI telescope (ESO, La Silla) in March 2004 The spectroscopic analysis was done in LTE using the 2002 3 (observing run ID 072.C-0033). Data reduction was done us- version of the code MOOG (Sneden 1973) and a grid of ing the FEROS pipeline, and the wavelength calibration was Kurucz Atlas plane-parallel model atmospheres (Kurucz 1993). done using the spectrum of a ThAr lamp. The final spectra have Stellar parameters and metallicities were derived as in a resolution R =∆λ/λ = 48 000, and the S/N between ∼200 Santos et al. (2004b), based on the Equivalent Widths (EW) and 400. of 39 Fe and12Fe week lines, and by imposing excitation A few stars from the former comparison sample for which and ionization equilibrium. The line EW were measured using 4 we could not obtain a spectrum before were also observed, IRAF “splot” and “bplot” routines within the echelle pack- both using FEROS and the CORALIE spectrograph at the age. A Fortran 77 code that uses a Downhill Simplex Method 1.2-m Euler Swiss telescope, also at La Silla observatory (R = (Press et al. 1992) was then used to find the best solution in the 50 000). (stellar) parameter space once the line EWs are measured. The comparison sample presented in this paper is listed in The results of this analysis are presented in Tables 1 and 2. Table 2. Together with Table 5 of Paper IV, this constitutes As shown in Paper IV, this methodology gives excellent results a large volume-limited sample of 94 “single” stars (with no for the derived stellar parameters, compatible with other spec- known planetary-mass companions).
Recommended publications
  • Arxiv:1809.07342V1 [Astro-Ph.SR] 19 Sep 2018
    Draft version September 21, 2018 Preprint typeset using LATEX style emulateapj v. 11/10/09 FAR-ULTRAVIOLET ACTIVITY LEVELS OF F, G, K, AND M DWARF EXOPLANET HOST STARS* Kevin France1, Nicole Arulanantham1, Luca Fossati2, Antonino F. Lanza3, R. O. Parke Loyd4, Seth Redfield5, P. Christian Schneider6 Draft version September 21, 2018 ABSTRACT We present a survey of far-ultraviolet (FUV; 1150 { 1450 A)˚ emission line spectra from 71 planet- hosting and 33 non-planet-hosting F, G, K, and M dwarfs with the goals of characterizing their range of FUV activity levels, calibrating the FUV activity level to the 90 { 360 A˚ extreme-ultraviolet (EUV) stellar flux, and investigating the potential for FUV emission lines to probe star-planet interactions (SPIs). We build this emission line sample from a combination of new and archival observations with the Hubble Space Telescope-COS and -STIS instruments, targeting the chromospheric and transition region emission lines of Si III,N V,C II, and Si IV. We find that the exoplanet host stars, on average, display factors of 5 { 10 lower UV activity levels compared with the non-planet hosting sample; this is explained by a combination of observational and astrophysical biases in the selection of stars for radial-velocity planet searches. We demonstrate that UV activity-rotation relation in the full F { M star sample is characterized by a power-law decline (with index α ≈ −1.1), starting at rotation periods & 3.5 days. Using N V or Si IV spectra and a knowledge of the star's bolometric flux, we present a new analytic relationship to estimate the intrinsic stellar EUV irradiance in the 90 { 360 A˚ band with an accuracy of roughly a factor of ≈ 2.
    [Show full text]
  • Dynamics and Stability of Telluric Planets Within the Habitable Zone of Extrasolar Planetary Systems
    A&A 488, 1133–1147 (2008) Astronomy DOI: 10.1051/0004-6361:200809822 & c ESO 2008 Astrophysics Dynamics and stability of telluric planets within the habitable zone of extrasolar planetary systems Numerical simulations of test particles within the HD 4208 and HD 70642 systems T. C. Hinse1,2, R. Michelsen1,U.G.Jørgensen1 ,K.Go´zdziewski3, and S. Mikkola4 1 Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Ø, Denmark e-mail: [tobiash; rm]@astro.ku.dk 2 Armagh Observatory, College Hill, BT61 9DG Armagh, Northern Ireland, UK 3 Nicolaus Copernicus University, Torun Centre for Astronomy, Gagarin Str. 11, 87-100 Torun, Poland 4 Turku University Observatory, Väisäläntie 20, Piikkiö, Finland Received 20 March 2008 / Accepted 3 June 2008 ABSTRACT Aims. We study gravitational perturbation effects of observed giant extrasolar planets on hypothetical Earth-like planets in the context of the three-body problem. This paper considers a large parameter survey of different orbital configuration of two extrasolar giant planets (HD 70642b and HD 4208b) and compares their dynamical effect on Earth-mass planetary orbits initially located within the respective habitable terrestrial region. We are interested in determining giant-planet orbit (and mass) parameters that favor the condi- tion to render an Earth-mass planet to remain on a stable and bounded orbit within the continuous habitable zone. Methods. We applied symplectic numerical integration techniques to studying the short and long term time evolution of hypothetical Earth-mass planets that are treated as particles. In addition, we adopt the MEGNO technique to obtain a complete dynamical picture of the terrestrial phase space environment.
    [Show full text]
  • Prospects of Detecting the Polarimetric Signature of the Earth-Mass Planet Α Centauri B B with SPHERE/ZIMPOL
    A&A 556, A64 (2013) Astronomy DOI: 10.1051/0004-6361/201321881 & c ESO 2013 Astrophysics Prospects of detecting the polarimetric signature of the Earth-mass planet α Centauri B b with SPHERE/ZIMPOL J. Milli1,2, D. Mouillet1,D.Mawet2,H.M.Schmid3, A. Bazzon3, J. H. Girard2,K.Dohlen4, and R. Roelfsema3 1 Institut de Planétologie et d’Astrophysique de Grenoble (IPAG), University Joseph Fourier, CNRS, BP 53, 38041 Grenoble, France e-mail: [email protected] 2 European Southern Observatory, Casilla 19001, Santiago 19, Chile 3 Institute for Astronomy, ETH Zurich, 8093 Zurich, Switzerland 4 Laboratoire d’Astrophysique de Marseille (LAM),13388 Marseille, France Received 12 May 2013 / Accepted 4 June 2013 ABSTRACT Context. Over the past five years, radial-velocity and transit techniques have revealed a new population of Earth-like planets with masses of a few Earth masses. Their very close orbit around their host star requires an exquisite inner working angle to be detected in direct imaging and sets a challenge for direct imagers that work in the visible range, such as SPHERE/ZIMPOL. Aims. Among all known exoplanets with less than 25 Earth masses we first predict the best candidate for direct imaging. Our primary objective is then to provide the best instrument setup and observing strategy for detecting such a peculiar object with ZIMPOL. As a second step, we aim at predicting its detectivity. Methods. Using exoplanet properties constrained by radial velocity measurements, polarimetric models and the diffraction propaga- tion code CAOS, we estimate the detection sensitivity of ZIMPOL for such a planet in different observing modes of the instrument.
    [Show full text]
  • Li Abundances in F Stars: Planets, Rotation, and Galactic Evolution,
    A&A 576, A69 (2015) Astronomy DOI: 10.1051/0004-6361/201425433 & c ESO 2015 Astrophysics Li abundances in F stars: planets, rotation, and Galactic evolution, E. Delgado Mena1,2, S. Bertrán de Lis3,4, V. Zh. Adibekyan1,2,S.G.Sousa1,2,P.Figueira1,2, A. Mortier6, J. I. González Hernández3,4,M.Tsantaki1,2,3, G. Israelian3,4, and N. C. Santos1,2,5 1 Centro de Astrofisica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal e-mail: [email protected] 2 Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762 Porto, Portugal 3 Instituto de Astrofísica de Canarias, C/via Lactea, s/n, 38200 La Laguna, Tenerife, Spain 4 Departamento de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife, Spain 5 Departamento de Física e Astronomía, Faculdade de Ciências, Universidade do Porto, Portugal 6 SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS, UK Received 28 November 2014 / Accepted 14 December 2014 ABSTRACT Aims. We aim, on the one hand, to study the possible differences of Li abundances between planet hosts and stars without detected planets at effective temperatures hotter than the Sun, and on the other hand, to explore the Li dip and the evolution of Li at high metallicities. Methods. We present lithium abundances for 353 main sequence stars with and without planets in the Teff range 5900–7200 K. We observed 265 stars of our sample with HARPS spectrograph during different planets search programs. We observed the remaining targets with a variety of high-resolution spectrographs.
    [Show full text]
  • Stability of Planets in Binary Star Systems
    StabilityStability ofof PlanetsPlanets inin BinaryBinary StarStar SystemsSystems Ákos Bazsó in collaboration with: E. Pilat-Lohinger, D. Bancelin, B. Funk ADG Group Outline Exoplanets in multiple star systems Secular perturbation theory Application: tight binary systems Summary + Outlook About NFN sub-project SP8 “Binary Star Systems and Habitability” Stand-alone project “Exoplanets: Architecture, Evolution and Habitability” Basic dynamical types S-type motion (“satellite”) around one star P-type motion (“planetary”) around both stars Image: R. Schwarz Exoplanets in multiple star systems Observations: (Schwarz 2014, Binary Catalogue) ● 55 binary star systems with 81 planets ● 43 S-type + 12 P-type systems ● 10 multiple star systems with 10 planets Example: γ Cep (Hatzes et al. 2003) ● RV measurements since 1981 ● Indication for a “planet” (Campbell et al. 1988) ● Binary period ~57 yrs, planet period ~2.5 yrs Multiplicity of stars ~45% of solar like stars (F6 – K3) with d < 25 pc in multiple star systems (Raghavan et al. 2010) Known exoplanet host stars: single double triple+ source 77% 20% 3% Raghavan et al. (2006) 83% 15% 2% Mugrauer & Neuhäuser (2009) 88% 10% 2% Roell et al. (2012) Exoplanet catalogues The Extrasolar Planets Encyclopaedia http://exoplanet.eu Exoplanet Orbit Database http://exoplanets.org Open Exoplanet Catalogue http://www.openexoplanetcatalogue.com The Planetary Habitability Laboratory http://phl.upr.edu/home NASA Exoplanet Archive http://exoplanetarchive.ipac.caltech.edu Binary Catalogue of Exoplanets http://www.univie.ac.at/adg/schwarz/multiple.html Habitable Zone Gallery http://www.hzgallery.org Binary Catalogue Binary Catalogue of Exoplanets http://www.univie.ac.at/adg/schwarz/multiple.html Dynamical stability Stability limit for S-type planets Rabl & Dvorak (1988), Holman & Wiegert (1999), Pilat-Lohinger & Dvorak (2002) Parameters (a , e , μ) bin bin Outer limit at roughly max.
    [Show full text]
  • A Proxy for Stellar Extreme Ultraviolet Fluxes
    Astronomy & Astrophysics manuscript no. main ©ESO 2020 November 2, 2020 Ca ii H&K stellar activity parameter: a proxy for stellar Extreme Ultraviolet Fluxes A. G. Sreejith1, L. Fossati1, A. Youngblood2, K. France2, and S. Ambily2 1 Space Research Institute, Austrian Academy of Sciences, Schmiedlstrasse 6, 8042 Graz, Austria e-mail: [email protected] 2 Laboratory for Atmospheric and Space Physics, University of Colorado, UCB 600, Boulder, CO, 80309, USA Received date / Accepted date ABSTRACT Atmospheric escape is an important factor shaping the exoplanet population and hence drives our understanding of planet formation. Atmospheric escape from giant planets is driven primarily by the stellar X-ray and extreme-ultraviolet (EUV) radiation. Furthermore, EUV and longer wavelength UV radiation power disequilibrium chemistry in the middle and upper atmosphere. Our understanding of atmospheric escape and chemistry, therefore, depends on our knowledge of the stellar UV fluxes. While the far-ultraviolet fluxes can be observed for some stars, most of the EUV range is unobservable due to the lack of a space telescope with EUV capabilities and, for the more distant stars, to interstellar medium absorption. Thus, it becomes essential to have indirect means for inferring EUV fluxes from features observable at other wavelengths. We present here analytic functions for predicting the EUV emission of F-, G-, K-, and M-type ′ stars from the log RHK activity parameter that is commonly obtained from ground-based optical observations of the ′ Ca ii H&K lines. The scaling relations are based on a collection of about 100 nearby stars with published log RHK and EUV flux values, where the latter are either direct measurements or inferences from high-quality far-ultraviolet (FUV) spectra.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • An Upper Boundary in the Mass-Metallicity Plane of Exo-Neptunes
    MNRAS 000, 1{8 (2016) Preprint 8 November 2018 Compiled using MNRAS LATEX style file v3.0 An upper boundary in the mass-metallicity plane of exo-Neptunes Bastien Courcol,1? Fran¸cois Bouchy,1 and Magali Deleuil1 1Aix Marseille University, CNRS, Laboratoire d'Astrophysique de Marseille UMR 7326, 13388 Marseille cedex 13, France Accepted XXX. Received YYY; in original form ZZZ ABSTRACT With the progress of detection techniques, the number of low-mass and small-size exo- planets is increasing rapidly. However their characteristics and formation mechanisms are not yet fully understood. The metallicity of the host star is a critical parameter in such processes and can impact the occurence rate or physical properties of these plan- ets. While a frequency-metallicity correlation has been found for giant planets, this is still an ongoing debate for their smaller counterparts. Using the published parameters of a sample of 157 exoplanets lighter than 40 M⊕, we explore the mass-metallicity space of Neptunes and Super-Earths. We show the existence of a maximal mass that increases with metallicity, that also depends on the period of these planets. This seems to favor in situ formation or alternatively a metallicity-driven migration mechanism. It also suggests that the frequency of Neptunes (between 10 and 40 M⊕) is, like giant planets, correlated with the host star metallicity, whereas no correlation is found for Super-Earths (<10 M⊕). Key words: Planetary Systems, planets and satellites: terrestrial planets { Plan- etary Systems, methods: statistical { Astronomical instrumentation, methods, and techniques 1 INTRODUCTION lation was not observed (.e.g.
    [Show full text]
  • Annual Report 2005
    Max Planck Institute t für Astron itu o st m n ie -I k H c e n id la e l P b - e x r a g M M g for Astronomy a r x e b P l la e n id The Max Planck Society c e k H In y s m titu no Heidelberg-Königstuhl te for Astro The Max Planck Society for the Promotion of Sciences was founded in 1948. It operates at present 88 Institutes and other facilities dedicated to basic and applied research. With an annual budget of around 1.4 billion € in the year 2005, the Max Planck Society has about 12 400 employees, of which 4300 are scientists. In addition, annually about 11000 junior and visiting scientists are working at the Institutes of the Max Planck Society. The goal of the Max Planck Society is to promote centers of excellence at the fore- front of the international scientific research. To this end, the Institutes of the Society are equipped with adequate tools and put into the hands of outstanding scientists, who Annual Report have a high degree of autonomy in their scientific work. 2005 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. 2005 Public Relations Office Hofgartenstr. 8 80539 München Tel.: 089/2108-1275 or -1277 Annual Report Fax: 089/2108-1207 Internet: www.mpg.de Max Planck Institute for Astronomie K 4242 K 4243 Dossenheim B 3 D o s s E 35 e n h e N i eckar A5 m e r L a n d L 531 s t r M a a ß nn e he im B e e r r S t tr a a - K 9700 ß B e e n z - S t r a ß e Ziegelhausen Wieblingen Handschuhsheim K 9702 St eu b A656 e n s t B 37 r a E 35 ß e B e In de A5 r r N l kar ec i c M Ne k K 9702 n e a Ruprecht-Karls- ß lierb rh
    [Show full text]
  • Arxiv:0809.1275V2
    How eccentric orbital solutions can hide planetary systems in 2:1 resonant orbits Guillem Anglada-Escud´e1, Mercedes L´opez-Morales1,2, John E. Chambers1 [email protected], [email protected], [email protected] ABSTRACT The Doppler technique measures the reflex radial motion of a star induced by the presence of companions and is the most successful method to detect ex- oplanets. If several planets are present, their signals will appear combined in the radial motion of the star, leading to potential misinterpretations of the data. Specifically, two planets in 2:1 resonant orbits can mimic the signal of a sin- gle planet in an eccentric orbit. We quantify the implications of this statistical degeneracy for a representative sample of the reported single exoplanets with available datasets, finding that 1) around 35% percent of the published eccentric one-planet solutions are statistically indistinguishible from planetary systems in 2:1 orbital resonance, 2) another 40% cannot be statistically distinguished from a circular orbital solution and 3) planets with masses comparable to Earth could be hidden in known orbital solutions of eccentric super-Earths and Neptune mass planets. Subject headings: Exoplanets – Orbital dynamics – Planet detection – Doppler method arXiv:0809.1275v2 [astro-ph] 25 Nov 2009 Introduction Most of the +300 exoplanets found to date have been discovered using the Doppler tech- nique, which measures the reflex motion of the host star induced by the planets (Mayor & Queloz 1995; Marcy & Butler 1996). The diverse characteristics of these exoplanets are somewhat surprising. Many of them are similar in mass to Jupiter, but orbit much closer to their 1Carnegie Institution of Washington, Department of Terrestrial Magnetism, 5241 Broad Branch Rd.
    [Show full text]
  • Arxiv:1512.00417V1 [Astro-Ph.EP] 1 Dec 2015 Velocity Surveys
    Draft version December 2, 2015 Preprint typeset using LATEX style emulateapj v. 5/2/11 THE LICK-CARNEGIE EXOPLANET SURVEY: HD 32963 { A NEW JUPITER ANALOG ORBITING A SUN-LIKE STAR Dominick Rowan 1, Stefano Meschiari 2, Gregory Laughlin3, Steven S. Vogt3, R. Paul Butler4,Jennifer Burt3, Songhu Wang3,5, Brad Holden3, Russell Hanson3, Pamela Arriagada4, Sandy Keiser4, Johanna Teske4, Matias Diaz6 Draft version December 2, 2015 ABSTRACT We present a set of 109 new, high-precision Keck/HIRES radial velocity (RV) observations for the solar-type star HD 32963. Our dataset reveals a candidate planetary signal with a period of 6.49 ± 0.07 years and a corresponding minimum mass of 0.7 ± 0.03 Jupiter masses. Given Jupiter's crucial role in shaping the evolution of the early Solar System, we emphasize the importance of long-term radial velocity surveys. Finally, using our complete set of Keck radial velocities and correcting for the relative detectability of synthetic planetary candidates orbiting each of the 1,122 stars in our sample, we estimate the frequency of Jupiter analogs across our survey at approximately 3%. Subject headings: Extrasolar Planets, Data Analysis and Techniques 1. INTRODUCTION which favors short-period planets. The past decade has witnessed an astounding acceler- Given the importance of Jupiter in the dynamical his- ation in the rate of exoplanet detections, thanks in large tory of our Solar System, the presence of a Jupiter ana- part to the advent of the Kepler mission. As of this writ- log is likely to be a crucial differentiator for exoplanetary ing, more than 1,500 confirmed planetary candidates are systems.
    [Show full text]
  • Kein Folientitel
    The Doppler Method, or the Radial Velocity Detection of Planets: II. Results Telescope Instrument Wavelength Reference 1-m MJUO Hercules Th-Ar / Iodine cell 1.2-m Euler Telescope CORALIE Th-Ar 1.8-m BOAO BOES Iodine Cell 1.88-m Okayama Obs, HIDES Iodine Cell 1.88-m OHP SOPHIE Th-Ar 2-m TLS Coude Echelle Iodine Cell 2.2m ESO/MPI La Silla FEROS Th-Ar 2.7m McDonald Obs. 2dcoude Iodine cell 3-m Lick Observatory Hamilton Echelle Iodine cell 3.8-m TNG SARG Iodine Cell 3.9-m AAT UCLES Iodine cell 3.6-m ESO La Silla HARPS Th-Ar 8.2-m Subaru Telescope HDS Iodine Cell 8.2-m VLT UVES Iodine cell 9-m Hobby-Eberly HRS Iodine cell 10-m Keck HiRes Iodine cell Campbell & Walker: The Pioneers of RV Planet Searches 1988: 1980-1992 searched for planets around 26 solar-type stars. Even though they found evidence for planets, they were not 100% convinced. If they had looked at 100 stars they certainly would have found convincing evidence for exoplanets. Campbell, Walker, & Yang 1988 „Probable third body variation of 25 m s–1, 2.7 year period, superposed on a large velocity gradient“ The first (?) extrasolar planet around a normal star: HD 114762 with M sin i = 11 MJ discovered by Latham et al. (1989) Filled circles are data taken at McDonald Observatory using the telluric lines at 6300 Ang. The mass was uncomfortably high (remember sin i effect) to regard it unambiguously as an extrasolar planet The Search For Extrasolar Planets At McDonald Observatory Bill Cochran & Artie Hatzes Hobby-Eberly 9 m Telescope Harlan J.
    [Show full text]