CSE 1400/MTH 2051 Discrete Math Notes William David Shoaff February 3, 2018

Total Page:16

File Type:pdf, Size:1020Kb

CSE 1400/MTH 2051 Discrete Math Notes William David Shoaff February 3, 2018 CSE 1400/MTH 2051 Discrete Math Notes William David Shoaff February 3, 2018 Preliminaries • Read and understand the syllabus • Use Canvas to communicate and review grades • Use my page (cs.fit.edu/~wds/classes/adm) for supplemental material • Follow the calendar: Listen for announced calendar changes. • Recitation sessions: Lead by Zubin Kadva, is scheduled on TBA from TBA to TBA in TBA • Edward Tufte recommends this lecture structure: – Provide audience 1 to 2 pages of notes – Allow audience 10 to 20 minutes to read notes – Glare at those who are not reading (his wry sense of humor?) – While fleshing-out notes ask and answer questions • I’m going to change Tufte’s formula a bit. – I’ve provided the daily notes here – Students shall read a few pages ahead before class – Students shall develop a list of questions – Students shall bring notes and questions to class Contents Induction 29 Recursion 35 Preliminaries 1 Numbers 2 Functions 39 Conversions Among Number Systems 4 The Pigeonhole Principle 48 Negative Numbers 6 Relations 50 Rational Numbers 12 Equivalences 54 Truth 17 Orders 57 Sets 21 Modular Arithmetic 59 Rules of Inference 23 Mathematical Proof 66 First-Order Logic 23 Paradoxes 71 Sequences 25 Questions and Problems 73 cse 1400/mth 2051 discrete math notes 2 Numbers Numbers are very useful. Numbers can be written in many different languages. The decimal language, base 10, is the lingua franca for common conversations. The decimal alphabet is D = f0, 1, 2, 3, 4, 5, 6, 7, 8, 9g called digits These digits provide coefficients for powers of 10, where the power p is determined by the position of the 10. An example should help: 314.15 = 3 · 102 + 1 · 101 + 4 · 100 + 1 · 10−1 + 5 · 10−2 The syntax (position) of the digit determines the semantics (meaning) of the expression. A computing breakthrough occurred in the late first-half of the twentieth century when electronic com- puters were built. The design of these machines made the binary language, base 2, important. The binary alphabet is B = f0, 1g called bits These bits provide coefficients for powers of 2. The power p is positional. (Do you find it interesting that 2 is written as (10)2 in base 2?, I do, there is a pattern. 16 written in base 16 is (10)16.) When written in binary, the value 314.15 is = 314.15 1 0011 1010.001 0011 0011 2 where 0011 repeats without bound One goal of the class is to master techniques for conversions between these two languages. First, agree that by arithmetic, 8 5 4 3 1 314 = (1 0011 1010)2 = 2 + 2 + 2 + 2 + 2 Negative numbers and fractions of integers will be studied later. Numbers written in binary are long, about lg 10 ≈ 3.3219 ··· longer than decimal. To write shorter strings, use larger alphabets. The early 70’s Intel 4004 CPU was a 4-bit chip. Four bits are sometimes called a nybble. Four bits define hexadecimal digits (hexits). The hexadecimal language, base 16 uses the alphabet H = f0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, Fg called hexits The letters A to F stand for the numbers 10 to 15. Now the value equivalence is 2 314 = (13A)16 = 16 + 3 · 16 + 10 Numbers written in hexadecimal are about 4 = lg 16 times shorter than numbers written in binary and about 1.204 · · · ≈ log10 16 times shorter than numbers written in decimal. The generic name for elements in numerical alphabets such as B, D, H is numerals. Exponential – Logarithmic Map between Value and String Length There is an exponential – logarithmic relationship between the value of a number n and the length of its representation in a given base. Approximately logb n numerals are needed to write (n)b. The exact formula is logb n + 1 = numerals required to write n in base b. cse 1400/mth 2051 discrete math notes 3 Examples provide a start to understanding: log10 314 + 1 = b≈ 2.4 ···c + 1 = 3 the number of digits to write 314. blog2 314c + 1 = b≈ 8.2946 ···c + 1 = 9 the number of digits to write 314. Nothing is important! Starting from nothing, zero, you can count up to 10k − 1 using k digits. For instance, you can count from 0 to 99 using at most 2 digits. Similarly, you can count from 0 to (111)2 using at most 3 bits. As a general statement: You can count from 0 to bk − 1 using at most k base b numerals. Historical number systems are interesting. The sexagesimal system, base 60, remains in use today. Babylonians made sexagesimal famous. They learned it from the Sumerians. (This was about 4000 to 5000 years ago) There are 60 minutes in an hour; 60 seconds in a minute. There are 360 degrees in a circle, 60 minutes of arc in a degree. The number 60 = 223151 is highly composite: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 all divide 60. Properties of prime and composite numbers are studied in number theory. A topic with inter- esting uses. Given the prime factorization of n, being able to count n’s divisors is a useful skill too. I find it interesting that the Romans are known for their engineering, but their number system is infa- mous for calculations. The Roman numeral alphabet is fI, V, X, L, C, D, Mg. Arcane rules define the value interpretation (semantics) from the format (syntax) of a number written using Roman numerals. Finally, as a teacher, I like to ask questions about numbers in arbitrary bases, say base 3 or 11, to test if students understand the ideas presented here. Questions and Problems 1. What is the alphabet for base 3, ternary numbers? 2. What is the alphabet for base 8, octal numbers? 3. If you were to use digits and lower case English alphabet to represent numbers, what would the base be? 4. Are Roman numerals a positional number system? 5.L ogarithms are important! The expression lg n stands for the log base 2 of n. What are the values of lg 1, lg 2, lg 16, lg 256? 6. What does it mean to say a number p is prime? 7. What does it mean to say a number c is composite? 8. What does it mean to say a is a divisor of n? 9. Describe the prime factorization of a number. 10.L anguages are important! How would you define language? Syntax and semantics are words about languages. How would you define syntax and how would you define semantics? cse 1400/mth 2051 discrete math notes 4 Conversions Among Number Systems Language translation is an interesting topic. Natural language translation remains difficult, but significant progress is being made. Translations between number systems is algorithmic. There is one basic efficient algorithm, and its inverse. The algorithm is known as Horner’s rule, but everyone knows her as synthetic division. To be sure, there are other conversion algorithms and efficiencies in special cases. Horner’s rule Horner’s rule converts numbers written in base b into numbers written base 10 decimal notation. You are proficient in base 10 decimal arithmetic. By hand, Horner’s rule is used to change base b numbers into base 10 (decimal) numbers. Here are three examples: Show that the binary number (0010 1010)2 = 42. Horner’s Rule @ x = 2 0 0 1 0 1 0 1 0 0 0 2 4 10 20 42 0 0 1 2 5 10 21 42 Show that the binary number (1100 1100)2 = 204. Horner’s Rule @ x = 2 1 1 0 0 1 1 0 0 2 6 12 24 50 102 204 1 3 6 12 25 51 102 204 Show that the octal number (237)8 = 159. Horner’s Rule @ x = 8 2 3 7 16 152 2 19 159 Horner’s schema can be expressed by the code below. The code evaluates the polynomial n n−1 p(x) = an x + an−1 x + ··· + a1 x + a0 at the base x = b. That is, the code computes the value p(b) = (an an−1 ··· a1 a0 )b horner : : (Num a ) => a −> [ a ] −> a horner b [ ] = 0 horner b [a] = a horner b [a:a1 ] = a *b + a1 horner b [a:a1 :as] = horner b [a *b+a1 : as ] cse 1400/mth 2051 discrete math notes 5 If you pretend numerals are stored in little-endian order, that is reversed of the usual order, so the less sig- nificant numeral is first: (1234)le = 4321, then replace the line horner x [b:c:ds] = horner x [b*x+c:ds] with horner x (b:bs) = b + x * (horner x bs) What’s clear from the code is: It takes n multiplies and n adds to convert a number (a0a1 ··· an − 1an)b to decimal. Inverting Horner’s rule Horner’s rule uses multiplication; it should not be surprising that its inverse uses divi- sion. By hand, the inverse of Horner’s rule converts a decimal number to some other base. Here are three examples: • Convert the decimal number 161 to binary. Repeated Remaindering mod 2 Quotients 161 80 40 20 10 5 2 1 Remainders 1 0 0 0 0 1 0 1 Therefore 161 = (1010 0001)2. • Convert the decimal number 237 to binary. Repeated Remaindering mod 2 Quotients 237 118 59 29 14 7 3 1 Remainders 1 0 1 1 0 1 1 1 Therefore 237 = (1110 1101)2. • Convert the decimal number 73 to octal.
Recommended publications
  • 13054-Duodecimal.Pdf
    Universal Multiple-Octet Coded Character Set International Organization for Standardization Organisation Internationale de Normalisation Международная организация по стандартизации Doc Type: Working Group Document Title: Proposal to encode Duodecimal Digit Forms in the UCS Author: Karl Pentzlin Status: Individual Contribution Action: For consideration by JTC1/SC2/WG2 and UTC Date: 2013-03-30 1. Introduction The duodecimal system (also called dozenal) is a positional numbering system using 12 as its base, similar to the well-known decimal (base 10) and hexadecimal (base 16) systems. Thus, it needs 12 digits, instead of ten digits like the decimal system. It is used by teachers to explain the decimal system by comparing it to an alternative, by hobbyists (see e.g. fig. 1), and by propagators who claim it being superior to the decimal system (mostly because thirds can be expressed by a finite number of digits in a "duodecimal point" presentation). • Besides mathematical and hobbyist publications, the duodecimal system has appeared as subject in the press (see e.g. [Bellos 2012] in the English newspaper "The Guardian" from 2012-12-12, where the lack of types to represent these digits correctly is explicitly stated). Such examples emphasize the need of the encoding of the digit forms proposed here. While it is common practice to represent the extra six digits needed for the hexadecimal system by the uppercase Latin capital letters A,B.C,D,E,F, there is no such established convention regarding the duodecimal system. Some proponents use the Latin letters T and E as the first letters of the English names of "ten" and "eleven" (which obviously is directly perceivable only for English speakers).
    [Show full text]
  • Positional Notation Or Trigonometry [2, 13]
    The Greatest Mathematical Discovery? David H. Bailey∗ Jonathan M. Borweiny April 24, 2011 1 Introduction Question: What mathematical discovery more than 1500 years ago: • Is one of the greatest, if not the greatest, single discovery in the field of mathematics? • Involved three subtle ideas that eluded the greatest minds of antiquity, even geniuses such as Archimedes? • Was fiercely resisted in Europe for hundreds of years after its discovery? • Even today, in historical treatments of mathematics, is often dismissed with scant mention, or else is ascribed to the wrong source? Answer: Our modern system of positional decimal notation with zero, to- gether with the basic arithmetic computational schemes, which were discov- ered in India prior to 500 CE. ∗Bailey: Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. Email: [email protected]. This work was supported by the Director, Office of Computational and Technology Research, Division of Mathematical, Information, and Computational Sciences of the U.S. Department of Energy, under contract number DE-AC02-05CH11231. yCentre for Computer Assisted Research Mathematics and its Applications (CARMA), University of Newcastle, Callaghan, NSW 2308, Australia. Email: [email protected]. 1 2 Why? As the 19th century mathematician Pierre-Simon Laplace explained: It is India that gave us the ingenious method of expressing all numbers by means of ten symbols, each symbol receiving a value of position as well as an absolute value; a profound and important idea which appears so simple to us now that we ignore its true merit. But its very sim- plicity and the great ease which it has lent to all computations put our arithmetic in the first rank of useful inventions; and we shall appre- ciate the grandeur of this achievement the more when we remember that it escaped the genius of Archimedes and Apollonius, two of the greatest men produced by antiquity.
    [Show full text]
  • The Hexadecimal Number System and Memory Addressing
    C5537_App C_1107_03/16/2005 APPENDIX C The Hexadecimal Number System and Memory Addressing nderstanding the number system and the coding system that computers use to U store data and communicate with each other is fundamental to understanding how computers work. Early attempts to invent an electronic computing device met with disappointing results as long as inventors tried to use the decimal number sys- tem, with the digits 0–9. Then John Atanasoff proposed using a coding system that expressed everything in terms of different sequences of only two numerals: one repre- sented by the presence of a charge and one represented by the absence of a charge. The numbering system that can be supported by the expression of only two numerals is called base 2, or binary; it was invented by Ada Lovelace many years before, using the numerals 0 and 1. Under Atanasoff’s design, all numbers and other characters would be converted to this binary number system, and all storage, comparisons, and arithmetic would be done using it. Even today, this is one of the basic principles of computers. Every character or number entered into a computer is first converted into a series of 0s and 1s. Many coding schemes and techniques have been invented to manipulate these 0s and 1s, called bits for binary digits. The most widespread binary coding scheme for microcomputers, which is recog- nized as the microcomputer standard, is called ASCII (American Standard Code for Information Interchange). (Appendix B lists the binary code for the basic 127- character set.) In ASCII, each character is assigned an 8-bit code called a byte.
    [Show full text]
  • The What and Why of Whole Number Arithmetic: Foundational Ideas from History, Language and Societal Changes
    Portland State University PDXScholar Mathematics and Statistics Faculty Fariborz Maseeh Department of Mathematics Publications and Presentations and Statistics 3-2018 The What and Why of Whole Number Arithmetic: Foundational Ideas from History, Language and Societal Changes Xu Hu Sun University of Macau Christine Chambris Université de Cergy-Pontoise Judy Sayers Stockholm University Man Keung Siu University of Hong Kong Jason Cooper Weizmann Institute of Science SeeFollow next this page and for additional additional works authors at: https:/ /pdxscholar.library.pdx.edu/mth_fac Part of the Science and Mathematics Education Commons Let us know how access to this document benefits ou.y Citation Details Sun X.H. et al. (2018) The What and Why of Whole Number Arithmetic: Foundational Ideas from History, Language and Societal Changes. In: Bartolini Bussi M., Sun X. (eds) Building the Foundation: Whole Numbers in the Primary Grades. New ICMI Study Series. Springer, Cham This Book Chapter is brought to you for free and open access. It has been accepted for inclusion in Mathematics and Statistics Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Authors Xu Hu Sun, Christine Chambris, Judy Sayers, Man Keung Siu, Jason Cooper, Jean-Luc Dorier, Sarah Inés González de Lora Sued, Eva Thanheiser, Nadia Azrou, Lynn McGarvey, Catherine Houdement, and Lisser Rye Ejersbo This book chapter is available at PDXScholar: https://pdxscholar.library.pdx.edu/mth_fac/253 Chapter 5 The What and Why of Whole Number Arithmetic: Foundational Ideas from History, Language and Societal Changes Xu Hua Sun , Christine Chambris Judy Sayers, Man Keung Siu, Jason Cooper , Jean-Luc Dorier , Sarah Inés González de Lora Sued , Eva Thanheiser , Nadia Azrou , Lynn McGarvey , Catherine Houdement , and Lisser Rye Ejersbo 5.1 Introduction Mathematics learning and teaching are deeply embedded in history, language and culture (e.g.
    [Show full text]
  • Positional Notation Consider 101 1015 = ? Binary: Base 2
    1/21/2019 CS 362: Computer Design Positional Notation Lecture 3: Number System Review • The meaning of a digit depends on its position in a number. • A number, written as the sequence of digits dndn‐1…d2d1d0 in base b represents the value d * bn + d * bn‐1 + ... + d * b2 + d * b1 + d * b0 Cynthia Taylor n n‐1 2 1 0 University of Illinois at Chicago • For a base b, digits will range from 0 to b‐1 September 5th, 2017 Consider 101 1015 = ? • In base 10, it represents the number 101 (one A. 26 hundred one) = B. 51 • In base 2, 1012 = C. 126 • In base 8, 1018 = D. 130 101‐3=? Binary: Base 2 A. ‐10 • Used by computers B. 8 • A number, written as the sequence of digits dndn‐1…d2d1d0 where d is in {0,1}, represents C. 10 the value n n‐1 2 1 0 dn * 2 + dn‐1 * 2 + ... + d2 * 2 + d1 * 2 + d0 * 2 D. ‐30 1 1/21/2019 Binary to Decimal Decimal to Binary • Use polynomial expansion • Repeatedly divide by 2, recording the remainders. • The remainders form the binary digits of the number. 101102 = • Converting 25 to binary 3410=?2 Hexadecimal: Base 16 A. 010001 • Like binary, but shorter! • Each digit is a “nibble”, or half a byte • Indicated by prefacing number with 0x B. 010010 • A number, written as the sequence of digits dndn‐ C. 100010 1…d2d1d0 where d is in {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}, represents the value D.
    [Show full text]
  • 2 1 2 = 30 60 and 1
    Math 153 Spring 2010 R. Schultz SOLUTIONS TO EXERCISES FROM math153exercises01.pdf As usual, \Burton" refers to the Seventh Edition of the course text by Burton (the page numbers for the Sixth Edition may be off slightly). Problems from Burton, p. 28 3. The fraction 1=6 is equal to 10=60 and therefore the sexagesimal expression is 0;10. To find the expansion for 1=9 we need to solve 1=9 = x=60. By elementary algebra this means 2 9x = 60 or x = 6 3 . Thus 6 2 1 6 40 1 x = + = + 60 3 · 60 60 60 · 60 which yields the sexagsimal expression 0; 10; 40 for 1/9. Finding the expression for 1/5 just amounts to writing this as 12/60, so the form here is 0;12. 1 1 30 To find 1=24 we again write 1=24 = x=60 and solve for x to get x = 2 2 . Now 2 = 60 and therefore we can proceed as in the second example to conclude that the sexagesimal form for 1/24 is 0;2,30. 1 One proceeds similarly for 1/40, solving 1=40 = x=60 to get x = 1 2 . Much as in the preceding discussion this yields the form 0;1,30. Finally, the same method leads to the equation 5=12 = x=60, which implies that 5/12 has the sexagesimal form 0;25. 4. We shall only rewrite these in standard base 10 fractional notation. The answers are in the back of Burton. (a) The sexagesimal number 1,23,45 is equal to 1 3600 + 23 60 + 45.
    [Show full text]
  • Number Systems and Number Representation Aarti Gupta
    Number Systems and Number Representation Aarti Gupta 1 For Your Amusement Question: Why do computer programmers confuse Christmas and Halloween? Answer: Because 25 Dec = 31 Oct -- http://www.electronicsweekly.com 2 Goals of this Lecture Help you learn (or refresh your memory) about: • The binary, hexadecimal, and octal number systems • Finite representation of unsigned integers • Finite representation of signed integers • Finite representation of rational numbers (if time) Why? • A power programmer must know number systems and data representation to fully understand C’s primitive data types Primitive values and the operations on them 3 Agenda Number Systems Finite representation of unsigned integers Finite representation of signed integers Finite representation of rational numbers (if time) 4 The Decimal Number System Name • “decem” (Latin) => ten Characteristics • Ten symbols • 0 1 2 3 4 5 6 7 8 9 • Positional • 2945 ≠ 2495 • 2945 = (2*103) + (9*102) + (4*101) + (5*100) (Most) people use the decimal number system Why? 5 The Binary Number System Name • “binarius” (Latin) => two Characteristics • Two symbols • 0 1 • Positional • 1010B ≠ 1100B Most (digital) computers use the binary number system Why? Terminology • Bit: a binary digit • Byte: (typically) 8 bits 6 Decimal-Binary Equivalence Decimal Binary Decimal Binary 0 0 16 10000 1 1 17 10001 2 10 18 10010 3 11 19 10011 4 100 20 10100 5 101 21 10101 6 110 22 10110 7 111 23 10111 8 1000 24 11000 9 1001 25 11001 10 1010 26 11010 11 1011 27 11011 12 1100 28 11100 13 1101 29 11101 14 1110 30 11110 15 1111 31 11111 ..
    [Show full text]
  • About Numbers How These Basic Tools Appeared and Evolved in Diverse Cultures by Allen Klinger, Ph.D., New York Iota ’57
    About Numbers How these Basic Tools Appeared and Evolved in Diverse Cultures By Allen Klinger, Ph.D., New York Iota ’57 ANY BIRDS AND Representation of quantity by the AUTHOR’S NOTE insects possess a The original version of this article principle of one-to-one correspondence 1 “number sense.” “If is on the web at http://web.cs.ucla. was undoubtedly accompanied, and per- … a bird’s nest con- edu/~klinger/number.pdf haps preceded, by creation of number- mtains four eggs, one may be safely taken; words. These can be divided into two It was written when I was a fresh- but if two are removed, the bird becomes man. The humanities course had an main categories: those that arose before aware of the fact and generally deserts.”2 assignment to write a paper on an- the concept of number unrelated to The fact that many forms of life “sense” thropology. The instructor approved concrete objects, and those that arose number or symmetry may connect to the topic “number in early man.” after it. historic evolution of quantity in differ- At a reunion in 1997, I met a An extreme instance of the devel- classmate from 1954, who remem- ent human societies. We begin with the bered my paper from the same year. opment of number-words before the distinction between cardinal (counting) As a pack rat, somehow I found the abstract concept of number is that of the numbers and ordinal ones (that show original. Tsimshian language of a tribe in British position as in 1st or 2nd).
    [Show full text]
  • Binary, Quaternary, Octary, Denary and Hexadecimal Number Systems Yue Kwok Choy
    Binary, Quaternary, Octary, Denary and Hexadecimal number systems Yue Kwok Choy There are some methods of handling various number system not described in the textbook. (1) Binary →→→ Denary Rule : Start for the right-most digit, multiply by 2 and add to adjacent digit on its left. Continue to do this until the left-most digit. e.g. Change 101101(2) to denary system. (1) 1 × 2 + 0 = 2 (2) 2 × 2 + 1 = 5 (3) 5 × 2 + 1 = 11 (4) 11 × 2 + 0 = 22 (5) 22 × 2 + 1 = 45 ∴ 101101 (2) = 45 (10) (2) Quaternary →→→ Denary Rule : Start for the right-most digit, multiply by 4 and add to adjacent digit on its left. Continue to do this until the left-most digit. e.g. Change 13201 (4) to denary system. (1) 1 × 4 + 3 = 7 (2) 7 × 4 + 2 = 30 (3) 30 × 4 + 0 = 120 (4) 120 × 4 + 1 = 481 ∴ 13201 (4) = 481 (10) (3) Octary →→→ Denary Rule : Start for the right-most digit, multiply by 8 and add to adjacent digit on its left. Continue to do this until the left-most digit. e.g. Change 13746 (8) to denary system. (1) 1 × 8 + 3 = 11 (2) 11 × 8 + 7 = 95 (3) 95 × 8 + 4 = 764 (4) 764 × 8 + 6 = 6118 ∴ 13746 (8) = 6118 (10) (4) Hexadecimal →→→ Denary Rule : Start for the right-most digit, multiply by 16 and add to adjacent digit on its left. Continue to do this until the left-most digit. 1 e.g. Change A2D7(16) to denary system. (1) 10 × 16 + 2 = 162 (Note : A (16) = 10 (10) ) (2) 162 × 16 + 13 = 2605 (Note : D (16) = 13 (10) ) (3) 2605 × 16 + 7 = 41687 ∴ A2D7 (16) = 41687 (10) (5) Binary →→→ Quaternary Rule : Starting from the left-most, divide the binary number into groups of two digits.
    [Show full text]
  • Number Systems Number Systems Positional Notation
    8/5/2019 Number Systems Decimal (Base 10) 10 digits (0,1,2,3,4,5,6,7,8,9) Binary (Base 2) 2 digits (0,1) Digits are often called bits (binary digits) Hexadecimal (Base 16) 16 digits (0-9,A,B,C,D,E,F) Often referred to as Hex 8/5/2019 CSE, Rajshahi University Number Systems Positional Notation Each digit is weighted by the base(r) to the positional power N = dn-1dn-2 …d0.d1d2…dm n-1 n-1 0 = (dn-1x r ) + (dn-2x r ) + … + (d0 1x r ) + 1 2 m (d1x r ) + (d2 x r ) + … (dm x r ) • Example : 872.6410 2 1 0 (8 x 10 ) + (7 x 10 ) + (2 x 10 ) -1 -2 + (6 x 10 ) + (4 x 10 ) • Example: 1011.12 = ? • Example :12A16 = ? 8/5/2019 CSE, Rajshahi University 8/5/2019 CSE, Rajshahi University 1 8/5/2019 Positional Notation Positional Notation (Solutions to Example Problems) (Solutions to Example Problems) 1011.12 3 2 1 0 -1 2 1 0 -1 -2 = 1x2 + 0x2 + 1x2 + 1x2 + 1x2 872.6410 = 8x10 + 7x10 + 2x10 + 6x10 + 4 x10 = 8 + 0 + 2 + 1 + .5 . 800 + 70 + 2 + .6 + .04 = 11.510 8/5/2019 CSE, Rajshahi University 8/5/2019 CSE, Rajshahi University Positional Notation Powers of Bases (Solutions to Example Problems) 2-3= .125 2-2= .25 2-1= .5 160 = 1 20 = 1 161 = 16 = 24 21 = 2 162 = 256 = 28 2 1 0 12A16 = 1x16 + 2x16 + Ax16 22 = 4 163 = 4096 = 212 23 = 8 = 256 + 32 + 10 24 = 16 25 = 32 = 29810 26 = 64 27 = 128 28 = 256 210 = 1024 = 1Kb 29 = 512 220 = 1,048,576 = 1Mb 210 = 1024 230 = 1,073,741,824 = 1Gb 211 = 2048 212 = 4096 8/5/2019 CSE, Rajshahi University 8/5/2019 CSE, Rajshahi University 2 8/5/2019 Determining What Base is being Used Conversion from Base R to Decimal Subscripts Use Positional Notation 87410 10112 AB916 AB9(16) Prefix Symbols %11011011 = ?10 (None) 874 %1011 $AB9 Postfix Symbols $3A94 = ?10 AB9H If I am only working with one base there is no need to add a symbol.
    [Show full text]
  • Non-Power Positional Number Representation Systems, Bijective Numeration, and the Mesoamerican Discovery of Zero
    Non-Power Positional Number Representation Systems, Bijective Numeration, and the Mesoamerican Discovery of Zero Berenice Rojo-Garibaldia, Costanza Rangonib, Diego L. Gonz´alezb;c, and Julyan H. E. Cartwrightd;e a Posgrado en Ciencias del Mar y Limnolog´ıa, Universidad Nacional Aut´onomade M´exico, Av. Universidad 3000, Col. Copilco, Del. Coyoac´an,Cd.Mx. 04510, M´exico b Istituto per la Microelettronica e i Microsistemi, Area della Ricerca CNR di Bologna, 40129 Bologna, Italy c Dipartimento di Scienze Statistiche \Paolo Fortunati", Universit`adi Bologna, 40126 Bologna, Italy d Instituto Andaluz de Ciencias de la Tierra, CSIC{Universidad de Granada, 18100 Armilla, Granada, Spain e Instituto Carlos I de F´ısicaTe´oricay Computacional, Universidad de Granada, 18071 Granada, Spain Keywords: Zero | Maya | Pre-Columbian Mesoamerica | Number rep- resentation systems | Bijective numeration Abstract Pre-Columbian Mesoamerica was a fertile crescent for the development of number systems. A form of vigesimal system seems to have been present from the first Olmec civilization onwards, to which succeeding peoples made contributions. We discuss the Maya use of the representational redundancy present in their Long Count calendar, a non-power positional number representation system with multipliers 1, 20, 18× 20, :::, 18× arXiv:2005.10207v2 [math.HO] 23 Mar 2021 20n. We demonstrate that the Mesoamericans did not need to invent positional notation and discover zero at the same time because they were not afraid of using a number system in which the same number can be written in different ways. A Long Count number system with digits from 0 to 20 is seen later to pass to one using digits 0 to 19, which leads us to propose that even earlier there may have been an initial zeroless bijective numeration system whose digits ran from 1 to 20.
    [Show full text]
  • Digital Computers Masterclass: Extra Background Information
    Digital Computers Masterclass: Extra Background Information Finger counting and number systems Historically, fingers have always been used for counting, and it is the basis of our decimal number system that a standard pair of human hands has 10 fingers. Other systems historically, including the vigesimal system used by the Ancient Mayans, have used base 20 which is a multiple of 10. Counting on your fingers can be achieved in many ways - as well as the standard systems shown on the first slide (the ‘thumb first’ system is claimed to be widespread in continental Europe, while starting with the index finger is supposedly more popular in the UK and North America, although there is variation everywhere), there exist many other finger counting systems. In Japan, zero is represented by an open palm, and fingers are counted inwards for 1-5 and then out again for 6-10 on the same hand. Chinese systems also allow counting up to 10 on one hand, while counting in binary (as described in the workshop) allows you to count to over 1000 on your fingers. The Ancient Mesopotamians developed a system of finger counting using the left thumb to point to different parts of the right hand - 1 at the tip of the little finger, then 2 and 3 for the other sections of that finger, and 4 starting at the top of the ring finger and so on. The other hand is used to store groups of 12, up to a maximum of 60 on two hands. This is suspected to be the origin of our current 60-minute/12-hour clock system.
    [Show full text]