Silicon Brainpower Artificial Intelligence - the New Frontier for Software Development
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Vol. 47, No. 2 June 2018 a New Star Appears in Europe Page 14 Journal
Online PDF: ISSN 233333-9063 Vol. 47, No. 2 June 2018 Journal of the International Planetarium Society A New Star Appears in Europe Page 14 Reach for the stars... and beyond. ZEISS powerdome IV // INSPIRATION MADE BY ZEISS True Hybrid with brilliant stars and perfect renderings from a single source ZEISS powerdome IV brings many new features to your star theater: an integrated planetarium for earthbound and extraterrestrial astronomy with seamless transitions between optical and digital star fields (True Hybrid) | The universe from Earth via the solar system and Milky Way galaxy to the very edge of the observable space | Stereo projection | 8k performance | 10 bit color depth for smooth gradients | HEVC codec for efficient video renderings free of artifacts | All constellation figures, individually and in groups without any mutual overlapping | Telescope function for deep-sky imagery applying Astronomy Visualization Metadata | Complete image set of all Messier objects | Customizable polar lights, comets with gas and dust tails, and shooting stars with a great variety of parameters for location, brightness, colors and appearance | Simulation of day and night with dusk and dawn coloring of sky and panorama images | Customizable weather effects such as clouds, rain, fog, snow, rainbow, halos, air and light pollution effects | Digital rights management to secure your productions | Remote service for quick help, and much more from the only company serving planetariums for nearly a century. www.zeiss.com/planetariums zeiss-ad_pdIV_letter_x3.indd -
Live Distributed Objects
LIVE DISTRIBUTED OBJECTS A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Krzysztof Jan Ostrowski August 2008 c 2008 Krzysztof Jan Ostrowski ALL RIGHTS RESERVED LIVE DISTRIBUTED OBJECTS Krzysztof Jan Ostrowski, Ph.D. Cornell University 2008 Distributed multiparty protocols such as multicast, atomic commit, or gossip are currently underutilized, but we envision that they could be used pervasively, and that developers could work with such protocols similarly to how they work with CORBA/COM/.NET/Java objects. We have created a new programming model and a platform in which protocol instances are represented as objects of a new type called live distributed objects: strongly-typed building blocks that can be composed in a type-safe manner through a drag and drop interface. Unlike most prior object-oriented distributed protocol embeddings, our model appears to be flexible enough to accommodate most popular protocols, and to be applied uniformly to any part of a distributed system, to build not only front-end, but also back-end components, such as multicast channels, naming, or membership services. While the platform is not limited to applications based on multicast, it is replication- centric, and reliable multicast protocols are important building blocks that can be used to create a variety of scalable components, from shared documents to fault-tolerant storage or scalable role delegation. We propose a new multicast architecture compatible with the model and designed in accordance with object-oriented principles such as modu- larity and encapsulation. -
Metadefender Core V4.17.3
MetaDefender Core v4.17.3 © 2020 OPSWAT, Inc. All rights reserved. OPSWAT®, MetadefenderTM and the OPSWAT logo are trademarks of OPSWAT, Inc. All other trademarks, trade names, service marks, service names, and images mentioned and/or used herein belong to their respective owners. Table of Contents About This Guide 13 Key Features of MetaDefender Core 14 1. Quick Start with MetaDefender Core 15 1.1. Installation 15 Operating system invariant initial steps 15 Basic setup 16 1.1.1. Configuration wizard 16 1.2. License Activation 21 1.3. Process Files with MetaDefender Core 21 2. Installing or Upgrading MetaDefender Core 22 2.1. Recommended System Configuration 22 Microsoft Windows Deployments 22 Unix Based Deployments 24 Data Retention 26 Custom Engines 27 Browser Requirements for the Metadefender Core Management Console 27 2.2. Installing MetaDefender 27 Installation 27 Installation notes 27 2.2.1. Installing Metadefender Core using command line 28 2.2.2. Installing Metadefender Core using the Install Wizard 31 2.3. Upgrading MetaDefender Core 31 Upgrading from MetaDefender Core 3.x 31 Upgrading from MetaDefender Core 4.x 31 2.4. MetaDefender Core Licensing 32 2.4.1. Activating Metadefender Licenses 32 2.4.2. Checking Your Metadefender Core License 37 2.5. Performance and Load Estimation 38 What to know before reading the results: Some factors that affect performance 38 How test results are calculated 39 Test Reports 39 Performance Report - Multi-Scanning On Linux 39 Performance Report - Multi-Scanning On Windows 43 2.6. Special installation options 46 Use RAMDISK for the tempdirectory 46 3. -
Vexcel Imaging / Microsoft Photogrammetry User Meeting, Tokyo, September 2008
Vexcel Imaging / Microsoft Photogrammetry User Meeting, Tokyo, September 2008 Michael Gruber, [email protected] Vexcel Imaging Photogrammetry Products UltraCamXp UltraCam Xp Based on the most successfull UltraCamX Key features • CCD size 6.0 µm (UCX: 7.2 µm) • 195 Mega pixel (UCX: 136 Mega pixel) • Storage system 2 x 2.1 Terra byte (UCX: 2 x 1.7 TB) • Storage system 6600 images (UCX: 4700 images) • New filters for even improved image dynamic UltraCam Xp Projects • 500m flying height ‐> 2.9 cm GSD ‐> 514m strip width • 1000m flying height ‐> 5.8 cm GSD ‐> 1028m strip width • 3000m flying height ‐> 17.4 cm GSD ‐> 3085m strip width Largest digital camera world‐wide Lowest possible collection costs Most efficient digital camera world‐wide Success Story Sales Figures • 244 cameras world‐wide • 101 cameras of UCD and UCX • 47 UltraCamD • 54 UltraCamX Announcement: The UltraCam #100 has been sold in July 2008 Vexcel market share to Geokosmos, Russia, 42% with UCD/UCX by our partner GeoLidar Success Story Sales Figures Announcement: • 244 cameras world‐wide Aerodata, Belgium, • 103 cameras of UCD, UCX purchased UltraCam Xp and UCXp #1 and #2 at ISPRS 08 • 47 UltraCamD • 54 UltraCamX • 2 UltraCamXp • (end of July 08) UltraCamXp Computing Unit exchangeable Data Unit Data Unit Docking Station 4 parallel Download Ports UltraCamXp Largest Image Format 17310 by 11310 pixel (195 Mpixel) On board Data Storage 6600 Frames / Data Unit Short frame intervall (2 sec) 3cm GSD / 60% Endlap / 140 kn Microsoft/Vexcel Aerial Camera Evolution UltraCamD -
Microsoft Surface User Experience Guidelines
Microsoft Surface™ User Experience Guidelines Designing for Successful Touch Experiences Version 1.0 June 30, 2008 1 Copyright This document is provided for informational purposes only, and Microsoft makes no warranties, either express or implied, in this document. Information in this document, including URL and other Internet Web site references, is subject to change without notice. The entire risk of the use or the results from the use of this document remains with the user. Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places, financial and other data, and events depicted herein are fictitious. No association with any real company, organization, product, domain name, e-mail address, logo, person, places, financial or other data, or events is intended or should be inferred. Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft. Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property. © 2008 Microsoft Corporation. All rights reserved. Microsoft, Excel, Microsoft Surface, the Microsoft Surface logo, Segoe, Silverlight, Windows, Windows Media, Windows Vista, Virtual Earth, Xbox LIVE, XNA, and Zune are either registered trademarks or trademarks of the Microsoft group of companies. -
Examining Surprise Billing: Protecting Patients from Financial Pain Hearing
EXAMINING SURPRISE BILLING: PROTECTING PATIENTS FROM FINANCIAL PAIN HEARING BEFORE THE SUBCOMMITTEE ON HEALTH, EMPLOYMENT, LABOR, AND PENSIONS COMMITTEE ON EDUCATION AND LABOR U.S. HOUSE OF REPRESENTATIVES ONE HUNDRED SIXTEENTH CONGRESS FIRST SESSION HEARING HELD IN WASHINGTON, DC, APRIL 2, 2019 Serial No. 116–14 Printed for the use of the Committee on Education and Labor ( Available via the World Wide Web: www.govinfo.gov or Committee address: https://edlabor.house.gov U.S. GOVERNMENT PUBLISHING OFFICE 36–589PDF WASHINGTON : 2019 VerDate Mar 15 2010 11:59 Nov 19, 2019 Jkt 000000 PO 00000 Frm 00001 Fmt 5011 Sfmt 5011 C:\USERS\NWILLIAMS\ONEDRIVE - US HOUSE OF REPRESENTATIVES\DESKTOP\3658 EDL-011-D with DISTILLER COMMITTEE ON EDUCATION AND LABOR ROBERT C. ‘‘BOBBY’’ SCOTT, Virginia, Chairman Susan A. Davis, California Virginia Foxx, North Carolina, Rau´ l M. Grijalva, Arizona Ranking Member Joe Courtney, Connecticut David P. Roe, Tennessee Marcia L. Fudge, Ohio Glenn Thompson, Pennsylvania Gregorio Kilili Camacho Sablan, Tim Walberg, Michigan Northern Mariana Islands Brett Guthrie, Kentucky Frederica S. Wilson, Florida Bradley Byrne, Alabama Suzanne Bonamici, Oregon Glenn Grothman, Wisconsin Mark Takano, California Elise M. Stefanik, New York Alma S. Adams, North Carolina Rick W. Allen, Georgia Mark DeSaulnier, California Francis Rooney, Florida Donald Norcross, New Jersey Lloyd Smucker, Pennsylvania Pramila Jayapal, Washington Jim Banks, Indiana Joseph D. Morelle, New York Mark Walker, North Carolina Susan Wild, Pennsylvania James Comer, Kentucky Josh Harder, California Ben Cline, Virginia Lucy McBath, Georgia Russ Fulcher, Idaho Kim Schrier, Washington Van Taylor, Texas Lauren Underwood, Illinois Steve Watkins, Kansas Jahana Hayes, Connecticut Ron Wright, Texas Donna E. -
Developing a Zoomable Timeline for Big History
19 From Concept to Reality: Developing a Zoomable Timeline for Big History Roland Saekow Abstract Big History is proving to be an excellent framework for designing undergradu- ate synthesis courses. A serious problem in teaching such courses is how to convey the vast stretches of time from the Big Bang, 13.7 billion years ago, to the present, and how to clarify the wildly different time scales of cosmic history, Earth and life history, human prehistory and human history. Inspired by a se- ries of printable timelines created by Professor Walter Alvarez at the Univer- sity of California, Berkeley, a time visualization tool called ‘ChronoZoom’ was developed through a collaborative effort of the Department of Earth and Plane- tary Science at UC Berkeley and Microsoft Research. With the help of the Of- fice of Intellectual Property and Industry Research Alliances at UC Berkeley, a relationship was established that resulted in the creation of a prototype of ChronoZoom, leveraging Microsoft Seadragon zoom technology. Work on a sec- ond version of ChronoZoom is presently underway with the hope that it will be among the first in a new generation of tools to enhance the study of Big History. In Spring of 2009, I had the good fortune of taking Walter Alvarez' Big His- tory course at the University of California Berkeley. As a senior about to com- plete an interdisciplinary degree in Design, I was always attracted to big picture courses rather than those that focused on specifics. So when a housemate told me about Walter's Big History course, I immediately enrolled. -
User Interaction in Deductive Interactive Program Verification
User Interaction in Deductive Interactive Program Verification Zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften von der KIT-Fakult¨atf¨urInformatik des Karlsruher Instituts f¨urTechnologie (KIT) genehmigte Dissertation von Sarah Caecilia Grebing aus Mannheim Tag der m¨undlichen Pr¨ufung: 07. Februar 2019 Erster Gutachter: Prof. Dr. Bernhard Beckert Zweiter Gutachter: Assoc. Prof. Dr. Andr´ePlatzer Contents Deutsche Zusammenfassung xv 1. Introduction1 1.1. Structure and Contribution of this Thesis . .2 1.1.1. Qualitative, Explorative User Studies . .3 1.1.2. Interaction Concept for Interactive Program Verification . .5 1.2. Previously Published Material . .6 I. Foundations for this Thesis9 2. Usability of Software Systems: Background and Methods 11 2.1. Human-Computer Interaction . 12 2.2. User-Centered Process . 12 2.3. Usability . 13 2.3.1. What is Usability? . 13 2.3.2. Usability Principles . 14 2.4. Interactions . 16 2.4.1. Models of Interaction . 16 2.4.2. Interaction Styles . 18 2.5. Task Analysis . 20 2.5.1. A brief Introduction to Sequence Models . 20 2.6. Evaluation Methods . 22 2.6.1. Questionnaires . 23 2.6.2. Interviews . 24 2.6.3. Focus Groups . 24 2.6.4. Preparation and Conduction of Focus Groups and Interviews . 25 3. Interactive Deductive Program Verification 29 3.1. Introduction . 29 3.2. Logical Calculi . 30 3.3. Specification of Java Programs with JML . 32 3.3.1. Method Contracts . 33 3.3.2. Loop Invariants . 34 3.3.3. Class Invariants . 36 3.3.4. The Purpose of Specifications . 36 3.4. A Brief Introduction to Java Dynamic Logic (JavaDL) . -
Web-Based Interactive Editing and Analytics for Supervised Segmentation of Biomedical Images
WEB-BASED INTERACTIVE EDITING AND ANALYTICS FOR SUPERVISED SEGMENTATION OF BIOMEDICAL IMAGES A Thesis presented to the Faculty of the Graduate School at the University of Missouri-Columbia In Partial Fulfillment of the Requirements of the Degree Master of Science by RAHUL KUMAR SINGH Dr. Kannappan Palaniappan, Thesis Supervisor DECEMBER 2014 © Copyright by Rahul Kumar Singh 2014 All Rights Reserved The undersigned, appointed by the Dean of the Graduate School, have examined the thesis entitled: WEB-BASED INTERACTIVE EDITING AND ANALYTICS FOR SUPERVISED SEGMENTATION OF BIOMEDICAL IMAGES Presented by Rahul Kumar Singh, a candidate for the degree of Master of Science, and hereby certify that, in their opinion, it is worthy of acceptance. Dr. Kannappan Palaniappan Dr. Jianlin Cheng Dr. Filiz Bunyak ACKNOWLEDGMENTS I would like to thank my advisor Dr. Kannappan Palaniappan for his support and guidance during this project. I completely utilized every opportunity I had during my study at University of Missouri, Columbia with his help and encouragement. I would also like to thank Dr. Stefan Jaeger and Dr. Sema Candemir at the National Institute of Health, Dr. Surya Prasath and Rengarajan Pelapur at the Computation Imaging and Visual Analysis Lab and all my other colleagues for their continuous assistance and advice on this project. I would like to thank Dr. Jianlin Cheng and Dr. Filiz Bunyak for giving me high-quality knowledge and taking out the time to serve on my project committee. I would also like to thank my parents, brother and sister in law for constantly motivating me during this project and guiding me in the right path in all aspects of life and my new born nephew for bringing immense joy in my life. -
LADS Tour Authoring & Playback System
LADS Tour Authoring & Playback System Master’s Project Report May 20, 2011 James C. Chin [email protected] Department of Computer Science Brown University Providence, RI 02912 CONTENTS 1 Abstract .........................................................................................................................3 2 Introduction ..................................................................................................................4 3 Related Work ................................................................................................................5 4 Design ............................................................................................................................7 4.1 Overall Workflow .......................................................................................................... 7 4.2 Backend Architecture .................................................................................................... 7 4.3 Authoring UI .................................................................................................................. 9 4.4 Playback UI ................................................................................................................. 12 5 Discussion ...................................................................................................................13 5.1 Challenges .................................................................................................................... 13 5.2 Future Work ............................................................................................................... -
Digital Literacy Skills Development Resource
Digital Literacy Skills Development Resource EARLY LEVEL-FOURTH LEVEL Digital Literacy - Skills Development Resource EARLY LEVEL Building the Curriculum 4 ICT skills, which will be delivered in a variety of contexts and settings throughout the learner’s journey, are detailed in those Experiences and Outcomes within the Technologies Curriculum area under “ICT to enhance learning”. These state that (they) “are likely to be met in all curriculum areas and so all practitioners can contribute to and reinforce them”. EARLY LEVEL EXPERIENCE AND OUTCOME I explore software and use what I learn to solve problems and present my ideas, thoughts or information. TCH 0-03a OTHER RELATED ICT SKILLS I CAN... LEARNING AND TEACHING MIGHT RESOURCES MIGHT (red, amber and green bullet points OUTCOMES MIGHT DEVELOPED INCLUDE: INCLUDE: to show progression of skills) INCLUDE: Log on and off the aware of logging on and on the • General discussion around HWB 0 -16a Generic log in for class computer computer logging on and off HWB 0 -17a • Explanation of having own log in and why log on and off the computer passwords are important and should be kept with a generic log in Think You Know website – hectors secret and not shared with others. World explains the need to keep log on and off the computer • Individual log in on cards for each child with your passwords safe. with their own log in username and password http://tinyurl.com/yjkqopg Move objects on use the pen to move items • Use Serif Craft Artist or the Internet to LIT 0-01a, 0-11a, 0-20a Interactive Whiteboard pen an interactive on the interactive white board move objects around the interactive whiteboard whiteboard. -
Canada Teacher Awar Canada Innovative Teacher Awards 2012 Innovative R Awards
CANADA INNOVATIVE TEACHER AWARDS 2012 Program Overview and Guidelines 1 TABLE OF CONTENTS 1. Introduction …………………………………………………………………………………3 2. Canada Innovative Teacher Awards & World Wide Global Forum Overview……….4 3. Microsoft Software and Tools for Canada Innovative Teacher Awards Projects………………………………………………5 4. Procedures, Guidelines and Timelines…………………………………………………..6 • Section 1: Create Your Learning Project Video/Criteria • Section 2: Submit Video Learning Activity Application Form 5. Partners in Learning Canada Virtual Innovative Educator Forum Overview:……….9 Virtual Competition for Canada Innovative Teacher Awards • Video Learning Activity Selection Process • Steps/Guidelines for Selected Participants 6. APPENDIX ‘A’: Judging Rubric…………………………………………………………10 7. APPENDIX ‘B’: Instructions to Upload VCT/Learning Activity………………………16 8. APPENDIX ‘C’: Video Learning Activity Application Form…………………………..20 2 1. Introduction About Microsoft in Education http://www.microsoft.com/education/ww/about/Pages/index.aspx An educated population is the one natural resource that increases in value as it increases in size. Microsoft’s mission in education is to help every student and educator around the world realize their full potential by helping educators and school leaders connect, collaborate, create, and share so that students can realize their greatest potential. We do this by building capacity, growing learning communities and expanding teaching and learning through our Partners in Learning Program. Microsoft Partners in Learning Vision Microsoft Partners in Learning is a global initiative designed to actively increase access to technology and improve its use in learning. At Microsoft, we are deeply committed to working with governments, communities, schools, and educators to use the power of information technology to deliver technology, services, and programs that provide anytime, anywhere learning for all.