COMMITTED TO EXCELLENCE

PLEASE CHECK FOR CHANGE INFORMATION AT THE REAR OF THIS MANUAL.

PROGRAMMABLE POWER SUPPLY Francais Deutsch

INSTRUCTION MANUAL

Tektronix, Inc. P.O. Box 500 Beaverton, Oregon 97077 Serial Number 070-3391-00 First Printing JUN 1981 Product Group 76 Revised APR 1988 Copyright @ 1981 , Inc. All rights reserved. Copyright O 1981 durch Tektronix, Inc. Alle Rechte vorbe- Contents of this publication may not be reproduced in any halten. Der lnhalt dieser Publikation dad ohne Genehmtgung form withouf the written permission of Tektronix. Inc. von Tektronix, Inc. nicht weitergegeben werden.

Products of Tektronix. Inc. and its subsidiaries are covered Produkte von Tektronix, Inc. und seinen Tochtergesellschaften by U.S. and foreign patents and/or pending patents. sind durch US- und Auslandspatente undloder schwebende Patente abgedeckt. TEKTRONIX. TEK, SCOPE-MOBILE, and @ are reg- istered trademarks of Tektronix. Inc. TEKTRONIX. TEK. SCOPE-MOBILE und @ slnd geschutrte Warenzeichen von Tektronix. Inc. Printed in U.S.A. Specification and price change privileges are reserved. Gedruckt in U.S.A. Spezifikations- und Preisanderungen bleiben vorbehalten.

Copyrrght C 1981 TE KTRONl X I NC. Tous dro~tsrCservCs Le contenu de ce rnanuel ne peut atre reprodu~tsous quelque tor- 01981 % &?'& pfi 8 f 3 b a = 3 7 ti Ft7G% me que ce so~tsans I'accord de Tektron~xInc.

Tous les produ~tsTEKTRONIX sont brevet& US et Etranger et TEKTRONIX, TEK, SCOPE-MOBILE, les logotypes TEKTRONIX, TEK SCOPE MOBILE, @(d-7-3 t+ n=3xttnZftiW2Td- dCposCs.

Imprime aux USA. TEKTRONI X se rCserve le drort de modifier : NZIE 7 EPR~J,wm u!~%&(d?g'i ( ZFT~~S caractkristiques et prix dans le cadre de d&veloppements techno- logiques. 2b.h 9 3 t -

INSTRUMENT SERIAL NUMBERS

Each instrument has a serial number on a panel insert, tag, or stamped on the chassis. The first number or letter designates the country of manufacture. The last five digits of the serial number are assigned sequentially and are unique to each instrument. Those manufactured in the United States have six unique digits. The country of manufacture is identified as follows: BOO0000 Tektronix, Inc., Beaverton, Oregon, USA 100000 Tektronix Guernsey, Ltd., Channel Islands 200000 Tektronix United Kingdom, Ltd., London 300000 SonyJTektronix, Japan 700000 Tektronix Holland, NV, Heerenveen, The Netherlands TABLE OF CONTENTS

Page Page LlST OF ILLUSTRATIONS...... v Chapitre 2 INSTRUCTIONS D'UTILISATION(cont) LlST OF TABLES ...... vii OPERATORS SAFETY SUMMARY ...... viii Commandes, connecteurs et SERVICE SUMMARY ...... ix indicateurs ...... 2-2 RECAPITULATIF DES CONSIGNES DE SECURITE x Conditions d'utilisation ...... 2-7 CONSIGNES DE SECURITE ...... xi Commutation automatique ...... 2-7 SICHERHEITSANGABEN FUR DEN ANWENDER . . xii Limitation de courant par SICHERHEITSANGABEN FUR DEN SERVICE.. . . . xiii retournement (alimentation logique) ...... Alimentations connectees en serie . Alimentations connecthes en parallele ...... Section 1 SPECIFICATION Inversion d'une tension dans la Introduction ...... 1-1 charge ...... IEEE 488 (GPIB) Function Capability 1-1 Inversion d'un courant dans la Performance Conditions ...... 1-2 charge ...... Electrical Characteristics ...... 1-2 Connexion de la charge et de Environmental Characteristics . . . . . 1-6 I'instrument de test ...... Physical Characteristics ...... 1-7 Sorties de I'interface arriere ...... Regulation a distance ...... Boucles de rnasse de I'Alimentation Section 2 OPERATING INSTRUCTIONS Logique ...... Preparation for Use...... 2-1 Elevation des Alimentations Repackaging Information ...... 2-1 Flottantes ...... Power Up Conditions (Self Test) . . . 2-2 Controls, Connectors and Indicators 2-2 Abschnitt 2 BEDIENUNGSANLEITUNG Operating Considerations ...... 2-7 Auto Crossover...... 2-7 Vorbereitende Hinweise ...... Logic Supply Foldback Current Versandhinweise ...... Limit...... 2-7 Einschaltbedingungen Series-Connected Supplies ...... 2-8 (Selbst-Test) ...... Parallel-Connected Supplies ...... 2-8 Bedienungselemente, Reverse Voltage Loading ...... 2-8 Anschliisse und Anzeigen ...... Reverse Current Loading ...... 2-8 Bedienungshinweise ...... Overvoltage...... 2-9 Automatische Load and Monitor Connections . . . . 2-9 Begrenzungsumschaltung ...... Rear Interface Outputs ...... 2-10 Kurzschlu~strom-Ruck- Remote Sense...... 2-10 regelung der Logik Logic Supply Ground Loops...... 2-1 0 Spannungsversorgung ...... Floating Supply Elevation ...... 2-1 0 In Reihe geschaltete Spannungsversorgungen ...... Parallel geschaltete Chapitre 2 INSTRUCTIONS D'UTILISATION Spannungsversorgungen ...... lnstructions d'utilisation ...... 2-1 Polaritatswechel der Instructions de reemballage ...... 2-1 Lastspannung ...... Auto-test a la mise en service . . . . . 2-2 Polaritatswechsel Tableau 2-1 - Reglages obtenus a des Lastromes ...... la mise en service ...... 2-2 Uberspannung ...... Tableau 2-2 - Codes d'erreurs Anschlufi von Last en face avant...... 2-2 und MeBgeraten ......

REV MAR I986 TABLE OF CONTENTS (cont)

Page Page Abschnitt 2 BEDIENUNGSANLEITUNG (cont) Chapitre 3 PROGRAMMATlON (cont) Ruckseitige Schnittstellen- Liste des commandes detaillees ..... Ausgange ...... 2-10 Messages et protocole de Fern-Abtastung ...... 2-10 communication ...... Erdschleifen bei Logik ~elimiteurde commande ...... Spannungsversorgungen ...... 2-10 Fin de message ...... Erdfreie Anschlusse ...... 2-1 0 Formattage d'un message ...... Formats numbriques ...... Table de conversion ASCII et IEEE Section 3 PROGRAMMING 488(GPIB) ...... Introduction ...... 3-1 Arguments numeriques arrondis ... Commands ...... 3-2 Protocole d'un message ...... Functional Command List ...... 3-2 Messages multiples ...... Detailed Command List ...... 3-3 Weponse de I'instrument aux Messages and Communication messages de I'interface IEEE-488 ... Protocol ...... 3-15 Indications d'etats et erreurs ...... Command Separator ...... 3-15 Tableau 3-1 .Codes d'erreurs Message Terminator ...... 3-15 utilises sur le bus et reponse Formatting A Message ...... 3-15 a I'appel selectif en serie ...... Number Formats ...... 3-15 Tableau 3-2 .Codes d'erreur Rounding of Numeric Arguments ... 3-17 relatifs au controle en face Message Protocal ...... 3-17 avant ...... Multiple Messages ...... 3-17 Tableau 3-3 .Reglages a la mise en Instrument Response to IEEE-488 service ...... Interface Messages ...... 3-18 Applications ...... Status and Error Reporting ...... 3-20 Programme de transmission et de Power Up (Initial) Conditions ...... 3-22 reception pour contrbleurs de la sbrie Applications ...... 3-23 4050 ...... TalkerIListener Program for 4050 Description de ce programme ..... Series Controllers ...... 3-23 Programme de transmission et de 4050 Series TalkerJListener Pro- reception pour le controleur 4041 . . gram Description ...... 3-23 Description du programme ...... TalkerIListener Program for the 4041 Controller ...... 3-23 Abschnitt 3 PROGRAMMIERUNG Sample Program ...... 3-23 The POLL Statement and Clearing Einfuhrung ...... 3-1 SRQ ...... 3-25 Befehle ...... 3-2 Using Low Level Settings ...... 3-25 Liste der Funktions-Befehle ...... 3-2 Program Delays ...... 3-25 Detaillierte Befehlsliste ...... 3-3 Information Available ...... 3-25 Mitteilungen und Kommunikation .... 3-15 Befehls-Trennzeichen ...... 3-15 Mitteilungs-Endezeichen ...... 3-15 Chapitre 3 PROGRAMMATION Formatieren einer Mitteilung ...... 3-15 Introduction ...... 3-1 Zahlenformate ...... 3-15 Commandes ...... 3-2 Rundung numerischer Argumente . . 3-17 Liste des commandes de fonctions . 3-2 Mitteilungs-Protokoll ...... 3-17 Commandes de I'instrument ...... 3-2 Reaktion des Gerates auf Commandes d8entr6e/sortie...... 3-2 IEEE-488 Interface-Mitteilungen ..... 3-18 Commandes d'btat de I'instrument . 3-2 Status- und Fehleranzeige ...... 3-20 Commandes du systime ...... 3-2 Einschalt- (Anfangs-) Bedingungen . 3-22

REV MAR 1986 TABLE OF CONTENTS (cont)

Page Page Sec PROGRAMMIERUNG (cont) Section 4 THEORY OF OPERATION (cont) Anwendungen ...... 3-23 Circuits @ . 4-4 SprecherlHorer Programm fur Logic Supply ...... 4-5 Controller der Serie 4050 ...... 3-23 Beschreibung des SprecherIHorer ...... 4-6 Programms fijr die Serie 4050 ..... 3-23 SprecherlHorer Programm fur den Converter Circuits 10 ...... 4-6 Controller 4041 ...... 3-23 + Floating Supply @ ...... 4-7 Muster-Programm ...... 3-23 .Floating Supply @ ...... 4-8 POLL und Loschung von SRQ .... 3-25 Die Anwendung binarer Eistellbefehle ...... 3-25 Section 5 CALIBRATION Programm-Verzogerungen ...... 3-25 Lieferbares lnformationsmaterial ... 3-25 Performance Check Procedure ...... 5-1 Introduction ...... 5-1 Test Equipment Required ...... 5-1 Performance Check Summary Sheet 5-3 I WARNING ) Internal Adjustment Procedure ...... 5-15 Introduction ...... 5-15 Services Available ...... 5-15 THE FOLLOWING SERVICING INSTRUCTIONS Test Equipment Required ...... 5-15 A RE FOR USE BY QUALIFIED PERSONNEL ONLY. Adjustment Access ...... 5-15 TO AVOID PERSONAL INJURY. DO NOT PERFORM ANY SERVICING OTHER THAN THAT CONTAINED IN OPERATING INSTRUCTIONS UNLESS YOU ARE Section 6 MAINTENANCE QUALIFIED TO DO SO. General Maintenance Information .... 6-1 Bus Address Switch ...... 6-1 Section 4 THEORY OF OPERATION Internal Jumpers ...... 6-1 Static-Sensitive Components ...... 6-1 Logic and Floating Supply Block Cleaning ...... 6-2 Diagram Description ...... 4-1 Obtaining Replacements Parts ..... 6-3 Introduction ...... 4-1 Soldering Techniques ...... 6-3 Logic Supply Block Diagram ...... 4-1 Semiconductors ...... 6-3 Floating Supply Block Diagram .... 4-1 Multipin Connectors ...... 6-4 ...... 4-2 Instrument Disassembly ...... 6-4 ...... 4-2 General Troubleshooting ...... 6-5 ...... 4-2 Troubleshooting Information ...... 6-5 ...... 4-2 CPU Board ...... 6-5 ...... 4-2 Logic Supply ...... 6-6 ...... 4-3 Floating Supplies ...... 6-6 4-3 Loop Balance Status Indicators ...... 4-3 (Floating and Logic Supplies) ...... 6-6 ...... 4-3 Signature Analysis ...... 6-7 4-3 Introduction ...... 6-7 ...... 4-3 Mode Descriptions ...... 6-7 4-4 How To Use Signature Analysis ... 6-7 4-4 Rear Interface Information ...... 6-8 Functions Available at Rear ...... 4-4 Connector ...... 6-8

REV MAR 1986 iii TABLE OF CONTENTS (cont)

Section 7 OPTIONS

Secti~n8 REPLACEABLE ELECTRICAL PARTS

Section 9 DIAGRAMS AND CIRCUIT BOARD ILLUSTRATIONS Signature Analysis Test Adjustment Locations Component Reference Charts Schematic Diagrams

Section 10 REPLACEABLE MECHANICAL PARTS Fig. I Exploded View Accessories

CHANGE INFORMATION

REV MAR 1986 LIST OF ILLUSTRATIONS

Fig. Fig. No . Page No. Page Installation and removal ...... 2-1 2-1 Ein- und Ausbau ...... 2-1 Front panel controls and connectors ...... 2-3 2-2 Bedienungselemente und ~nschlijsse Sequence of events used to enter a auf der Frontplatte ...... 2-3 parameter into a supply ...... 2-5 Eingabevorgang eines Parameters Load lines for individual load in eine Spannungsversorgung ...... 2-5 impedances ...... 2-7 Lastleitungen fiir individuelle Graph of output characteristics for Lastwiderstande ...... 2-7 logic supply ...... 2-8 Grafik der Ausgangscharakteristika Supplies series connected ...... 2-8 einer Logik Spannungsversorgung ...... 2-8 Supplies parallel connected ...... 2-9 Spannungsversorgungen in Reihe Reverse-current shunt (R,) with active geschaitet ...... 2-9 load ...... 2-9 Spannungsversorgungen parallel Proper connection of load and monitor geschaltet ...... 2-9 tests leads to minimize voltage reading Polaritatswechsel durch Stromteiler error ...... 2-9 (R,) bei aktiver Last ...... 2-9 Multiple load connections ...... 2-1 0 Richtiger ~nschlu6von Last- und -Typicalapplication utilizing remote Prufleitungen zur Vermeidung von sensing ...... 2-11 Spannungs-Ablesefehlern ...... 2-9 AnschluB von mehreren Lasten ...... 2-10 Typische Anwendung mit Fern- Abtastung ...... 2-11 Installation et retrait du tiroir ...... 2-1 Commandes et connecteurs en face avant ...... 2-3 Skquence d'&nements utilisbe pour Bus commands and relationships to entrer un paramhtre dans une the front panel ...... 3-1 alimentation...... 2-5 ASCll and IEEE-488 (GPIB) Code Droites de charge correspondant & Chart ...... 3-16 diff6rentes impedance de charge ...... 2-7 Definition of status bytes ...... 3-20 ~aracteristiquesde sortie de IIAlimentation Logique ...... 2-8 Alimentations connecthes en s6rie ...... 2-8 Commandes du Bus et relations avec Alimentations connecties en paral161e ...... 2-9 la face avant ...... 3-1 Inversion de courant par une Table de conversion ASCll et rgsistance (shunt) en parallile avec IEEE-488 (GPIB) ...... 3-16 la charge active ...... 2-9 ~Lfinitiondes mots d' Etats ...... 3-20 Connexion de la charge et de I'instru- ment de contrale pour minimiser les erreurs de lecture de tension ...... 2-9 Bus-Befehle und ihre Beziehung Connexions de plusieurs charges ...... 2-10 zur Frontplatte ...... 3-1 Exemple d'utilisation de rigulation ASCII und IEEE-488 (GPIB) Code ...... 3-16 distance ...... 2-1 4 Definition der Status-Bytes ...... 3-20

REV MAR I986 LIST OF ILLUSTRATIONS (cont)

Fig. Fig. No. Page No. 5-1 Connections for rear interface load effect check. Dvm must be connected NOTE to same point as sense lines...... 5-6 5-2 Test fixture for load transient recovery. .... 5-7 The following illustrations are located in the diagrams section at the rear of this manual. 5-3 Load transient recovery waveforms ...... 5-7 5-4 Test setup for checking load effect in the constant current mode ...... 5-1 0 5-5 Connections for rear interface logic GPlB address switch and buffer test supply load effect check. Dvm must Kernel test-CPU address lines and be connected to same point as sense address coding lines ...... 5-13 Kernel test-ROM verification Firmware signature analysis 5-6 Adjustment interactions. If the inter- addressldata bus secting square is darkened the ad- Firmware signature analysis- justments interact ...... 5-16 addressable latches 5-7 Test setup for Max I Adj., Step 2 ...... 5-17 Firmware signature analysis-GPIB 5-8 Locations of Sl6OO and Sl5OO on rear chip test (U1001) of instrument...... 5-19 Firmware signature analysis- keyboard encoder (U 1421 ) Firmware signature analysis-logic 6- 1 Address switch and jumpers ...... supply shift registers Floating supply board (A14) adjustments 6-2 Orientation and disassembly of Adjustments access through bottom multipin connectors ...... of instrument 6-3 Bottom view of instrument showing CPU board (A12) screws holding boards ...... CPU board (A12) 6-4 Interface board removal ...... CPU board (A12) 6-5 CPU clock waveform timing CPU board (A12) tolerances. This waveform is TTL CPU board (A12) compatible...... Front panel board (A10) Floating supply filter board (A13) 6-6 Assignments for rightmost connector Logic supply board (A14) as viewed from rear of instrument ...... Logic supply filter board (A13) 6-7 Assignments for leftmost connector Floating supply board (A14) as viewed from rear of instrument ...... Floating supply board (A14) 6-8 Assignments for GPlB connector as Floating supply board (A14) viewed from rear of instrument ...... Interconnect board (A11 )

REV MAR 1986 LIST TABLES

Table No. Page lEEE 488-1978 Interface Function Subsets . 1-1 Electrical Characteristics ...... 1-2 Environmental Characteristics ...... 1-6 Physical Characteristics ...... 1-7 Power On Settings ...... 2-2 Front Panel Error Codes ...... 2-2 dglages obtenus ?I la mise en service .... 2-2 Codes d'erreurs en face avant ...... 2-2 Einschalt-Einstellungen ...... 2-2 Fehler-Codes auf der Frontplatte ...... 2-2 Error Query and Status Information ...... 3-21 Front Panel Error Codes ...... 3-22 Power On Settings ...... 3-22 Cpdes d'erreurs utilises sur le Bus et reponse H ~'appelsd~ectif en she ...... 3-21 Codes d'erreurs relatifs au contrcle en face avfnt ...... 3-22 ~dglagesa la mise en service ...... 3-22 Fehler-Abfrage und Status-Information ...... 3-21 Fehler-Codes auf der Frontplatte ...... 3-22 Eischalt-Einstellungen ...... 3-22 U1120 Chip Selects @ ...... 4-3 U1310 Chip Selects ...... 4-3 U1311 chip selects '@ ...... 4-3 Firmware Location and Addresses ...... 4-3 Suggested Test Equipment ...... 5-2 Relative Susceptibility to Static Discharge Damage ...... 6-2 Troubleshooting Chart ...... 6-8

The following tables are located in the diagrams sec- tion at the rear of this manual .

9- 1 thru 9-13 Component Reference Charts

REV MAR 1986 vii OPERATORS SAFETY SUMMARY

The general safety information in this part of the summary is Power Source for both operating and servicing personnel. Specific This product is intended to operate from a power module warnings and cautions will be found throughout the manual connected to a power source that will not apply more than where they apply, but may not appear in this summary. 250 volts rms between the supply conductors or between either supply conductor and ground. A protective ground connection by way of the grounding conductor in the power cord is essential for safe operation. TERMS

In This Manual Grounding the Product CAUTION statements identify conditions or practices that This product is grounded through the grounding conductor could result in damage to the equipment or other property. of the power module power cord. To avoid electrical shock, plug the power cord into a properly wired receptacle before WARNING statements identify conditions or practices that connecting to the product input or output terminals. A pro- could result in personal injury or loss of life. tective ground connection by way of the grounding conduc- tor in the power module power cord is essential for safe operation. As Marked on Equipment CAUTION indicates a personal injury hazard not immediate- ly accessible as one reads the marking, or a hazard to prop- Danger Arising From Loss of Ground erty including the equipment itself. Upon loss of the protective-ground connection, all accessi- ble conductive parts (including knobs and controls that may DANGER indicates a personal injury hazard immediately ac- appear to be insulating) can render an electric shock. cessible as one reads the marking.

Use the Proper Fuse SYMBOLS To avoid fire hazard, use only the fuse of correct type, volt- age rating and current rating as specified in the parts list for In This Manual your product. Refer fuse replacement to qualified service personnel. This symbol indictes where applicable caution- ary or other information is to be found. Do Not Operate in Explosive Atmospheres As Marked on Equipment To avoid explosion, do not operate this product in an explo- sive atmosphere unless it has been specifically certified for such operation. DANGER - High voltage.

Do Not Operate Without Covers @ Protective ground (earth) terminal. To avoid personal injury, do not operate this product with- out covers or panels installed. Do not apply power to the ATTENTION - refer to manual. plug-in via a plug-in extender.

viii REV MAR 1986 SERVICE SAFETY SUMMARY FOR QUALIFIED SERVICE PERSONNEL ON6 Y

Refer also to the preceding Operators Safety Summary.

Do Not Service Alone Disconnect power before removing protective panels, sol- dering, or replacing components. Do not perform internal service or adjustment of this prod- uct unless another person capable of rendering first aid and resuscitation is present. Power Source This product is intended to operate in a power module con- nected to a power source that will not apply more than Use Care When Servicing With Power On 250 volts rms between the supply conductors or between Dangerous voltages may exist at several points in this prod- either supply conductor and ground. A protective ground uct. To avoid personal injury, do not touch exposed connec- connection by way of the grounding conductor in the power tions and components while power is on. cord is essential for safe operation.

REV MAR 1986 RECAPITULATIF DES CONSIGNES DE SECURITE

Termes utilises dans ce manuel Danger provoqu6 par la coupure de connexion de Les paragraphes intitules ATTENTION identifient les cir- masse constances ou operations pouvant entrainer la deterioration En cas de coupure de la connexion de masse, tous les elements de I'appareil ou de tout autre equipement. conducteurs accessibles (y compris boutons et commandes apparaissant isolants) peuvent provoquer un choc electrique. Les paragraphes intitules AVERTISSEMENT indiquent les circonstances dangereuses pour I'utilisateur (danger de mort ou risque de blessure).

Repiires graves su r I'apparei l Utiliser le cordon d'alimentatisn approprik CAUTION (ATTENTION) : ce mot identifie les zones de ris- N'utiliser que le cordon d'alimentation el la prise recom- que de blessure non perceptibles immediatement ou un risque mandes pour votre appareil. Utiliser un cordon d'alimen- eventuel de deterioration de I'appareil. tation en parfait 6tat, Seul, un personnel qualifie peut proceder a un changement de cordon et prises. DANGER (DANGER) : ce mot indique les zones de risque immediat pouvant entraher blessures ou mort.

Sy mboles graves sur I'equ ipement

DANGER - Haute tension Utiliser le fusible approprib Pour eviter tout risque d'accident (incendie...) n'utiliser @ Borne de masse de protection (terre) que le fusible recommande pour votre appareil. Le fusible de remplacement doit toujours correspondre au fusible ATTENTION - se reporter au manuel remplace : m6me type, m6me tension et mime courant. Un remplacement de fusible ne doit 6tre effectue que par Source d'alimentation un personnel qualifie. L'appareil est conGu pour fonctionner a partir d'une source d'alimentation maximale de 250 V efficaces entre les conduc- teurs d'alimentation ou entre chaque conducteur d'alimenta- tion et la terre. Pour utiliser I'appareil en toute securite, une connexion a la masse, realisee au moyen d'un conducteur Ne pas util iser I'appareil en atmosphgre explosive prevu dans le cordon d'alimentation, est indispensable. Pour eviter toute explosion, ne pas utiliser cet appareil dans Mise i la masse de I'appareil une atmosph2re de gaz explosifs. Une fois installe dans le chdssis d'alimentation, I'appareil est relie a la masse a I'aide d'un conducteur du cordon d'alimen- tation. Pour eviter tout choc electrique, inserer la prise du cordon d'alimentation dans une prise de distribution corres- pondante avant de connecter I'entree ou les sorties de I'appa- Ne pas demonter les capots reil. Pour utiliser I'appareil en toute sc!curitc!, une connexion Pour eviter toute blessure, ne pas utiliser cet appareil sans B la masse r6alis6e au moyen d'un conducteur pr6vu dans le capots ou panneaux. Ne pas alimenter le tiroir B travers cordon d'alimentation, est indispensable. un prolongateur.

ADD NOV 1985 CONSIGNES DE SECURITE UNIQUEMENT DESTINEES AU PERSONNEL DE MA1NTENANCE

Ne depannez pas seul tension. Debrancher I'alimentation avant le demontage des Ces consignes s'adressent exclusivement i3 un personnel qua- panneaux, soudure ou remplacement de composants. lifie. II est egalement indispensable de se reporter aux consi- gnes de securite precedantes. Toute intervention interne ou reglage doit s'effectuer en presence d'une autre personne ca- pable d'assurer les premiers secours en cas de danger. Source d'alimentation Cet appareil est conqu pour fonctionner a partir d'une sour- Agir avec precaution lorsque I'appareil est sous ten- ce d'alimentation qui n'applique pas plus de 250 \/ efficaces sion entre les conducteurs d'alimentation ou entre un conduc- Des potentiels dangereux existent en differents points de teur et la masse. Pour utiliser I'appareil en toute securite, I'appareil. Pour eviter toute blessure, ne pas intervenir sur les une connexion B la masse realisee au moyen d'un conduc- connexions et les composants alors que I'appareil est sous teur prkvu dans le cordon d'alimentation est indispensable.

ADD NOV 1985 SICHERHEITSANGABEN F~JR DEN ANWENDER Die allgemeinen Sicherheitsinformationen in diesem Teil dung von elektrischen Schlagen vor der Beschaltung der der Angaben dienen dem Anwender- und Serviceperso- Ein-und AusgAnge ist der Netzstecker in eine korrekt ver- nal. Spezielle Warnungen und Hinweise sind uberall im drahtete Steckdose einzustecken. Vetwenden Sie den Handbuch zu finden, mussen jedoch in diesen Angaben Schutzleiter nicht als einzige Verbindung zwischen zwei nicht erscheinen. oder mehreren Geraten. Zur Vermeidung von elektri- scken Schlagen sind die Gerate untereinander mit sepa- raten Leitungen mu verbinden. BEGRIFFE In diesem Handbuch Gefahr durch fehlende Schutzerde VORSICHTSHINWEISE erlautern Bedingungen, die zur Durch eine fehlende Schutzerde konnen alle beruhr- Zerstorung des Gerates oder anderer Gegenstande fuh- baren, leitenden Teile (einschliefllich Knopfe und andere ren konnen. Bedienungselemente, die isoliert sind) einen elektri- schen Schlag bei der Beruhrung auslbsen. WARNUNGSHINWEISE erlautern Bedingungen, die zu Personenschaden fuhren konnen oder lebensgefahr- lich sind. Vetwendung eines richtigen Netzkabels Markierungen auf dem Gerat Vetwenden Sie nur Netzkabel, die fijr die Versorgungs- CAUTION - VORSlCHTweist darauf hin, d28 durch zufalli- einheit geeignet sind und die sich in gutem Zustand be- ges Beruhren an einer nicht unmittelbar zuganglichen finden. Stelle Personenschaden entstehen kann, oder Schaden am Gerat selbst. Fur detaillierte lnformationen uber Kabel und Stecker be- ziehen Sie sich bitte auf Abbildungen innerhalb des DANGER - GEFAHR weist darauf hin, da8 durch zufalliges Handbuches. Beruhren an einer zuganglichen Stelle Personenscha- den entstehen kann. Ein Austausch von Kabeln und Steckern ist nur von ge- schultem Personal vorzunehmen.

SYMBOLE Vennrendung einer richtigen Sicherung In diesem Handbuch Zur Vermeidung von Brandschaden sind nur Sicherun- Dieses Symbol zeigt an, wo Vorsicht walten gen zu vetwenden, die in den Teilelisten dieses Gerates A zu lassen ist, oder wo lnformationen zu aufgefuhrt sind und die in Spannungs- und Stromwert finden sind. entsprechend sind.

Markierungen auf dem Gerat Ersatz von Sicherungen ist nur von geschultem Personal vorzunehmen. f GEFAHR - Hochspannung. Arbeiten Sie nicht in explosiver Umgebung @ Schutzerdungskontakt. Zur Vermeidung von Explosionen ist die lnbetriebnahme dieses Gerates in explosiver Umgebung zu unterlassen, wenn das Gerat nicht dafur geeignet ist. ACHTUNG - beziehen Sie sich auf das Handbuch. Entfernen Sie keine Gehauseabdeckungen Netzspannungsversorgung Zur Vermeidung von Personenschaden sind keine Ge- Die Betriebsspannung fur dieses Gerat darf 250 V,,, nicht hauseteile zu entfernen. Auch ist das Gerat ohne Gehau- uberschreiten und ist an die Versorgungsleitungen bzw. se nicht in Betrieb zu nehmen. an eine Versorgungsleitung und Masse anzulegen. Inner- halb des Netzanschlu8kabels mu8 ein Schutzleiter vor- handen sein, der mit Geratemasse verbunden ist. Arbeiten Sie nicht ohne Gehauseabdeckung MasseanschluO des Gerates Zur Vermeidung von Personenschaden ist das Gerat nicht ohne Gehause in Betrieb zu nehmen. Der Einschub Dieses Gerat wird uber den Schutzleiter der Versor- sollte nicht iiber einen Verliingerungsadapter betrieben gungseinheit mit Erdpotential verbunden. Zur Vermei- werden.

xii ADD NOV 1985 SICHERHEITSANGABEN FUR DEN SERVICE NUR FUR GESCHULTES PERSONAL

Beziehen Sie sich auch auf die vorangehenden Sicherheitsangaben fur den Anwender.

Fiihren Sie keine Servicetatigkeiten alleine dutch schaden sind solche Stellen und Bauteile nicht zu beruh- Nehmen Sic an dem Gerat keine Service- oder Einstell- - wahrend Betriebss~annunganliegt. arbeiten vor, wenn nicht eine andere Person verfijgbar ist, Vor dem Entfernen von Gehauseteilen, Lijten oder Er- urn im Bedarfsfall Erste Hilfe oder Wiederbelebungsver- setzen "on Bauteilen 1st irr,mer die Betriebsspannung zu suche zu leisten. entfernen.

bletzspannungsversorgung Lassen Sie besondere Vorsicht walten, wenn Die Betriebsspannung fur dieses Gerat darf 250 V,,, nicht an einem unter Spannung Gerat Oberschreiten und ist an die Versorgungsleitungen bzw. arbeiten an eine Versorgungsleity ng und Masse anzulegen. Inner- An verschiedenen Stellen im Gerat liegen hohe und damit halb des NetzanschluOkabels muO ein Schutzleiter vor- gefahrliche Spannungen. Zur Vermeidung von Personen- handen sein, der mit Geratemasse verbunden ist.

ADD NOV 1985 1

PS SO 10 Programmable POWWSuppiy

ADD NOV 1985 Section 1-PS 58 10

SPECIFICATION

Introduction NOTE This PS 5010 Programmable Power Supply provides a The PS 50 10 operates only in a TM 5000 series floating dual supply and a ground referenced logic supply. power module. Each supply has independent constant voltage or constant current modes with automatic crossover. The floating supply provides 0 to +32 Vdc and 0 to -32 Vdc, both with respect to a common front panel termi- lEEE 488 (GPIB)Function Capability nal. All floating supply terminals may be elevated above The PS 5010 is programmable via the digital interface ground to a maximum 150 V peak. Voltages from 0 to 64 V specified in IEEE Standard 488-1978, "Standard Digital In- are available across the dual supply terminals. When the terface for Programmable Instrumentation". In this manual, PS. 501 0 is installed in a TM 5000 series power module with the interface is commonly called the General Purpose Inter- one high power compartment, currents to 750 mA (from 0 to face Bus (GPIB). 32 V) and 1.6 A (from 0 to 15 V) are available. When the PS 5010 is installed in two low power compartments of the The IEEE Standard identifies the interface function reper- TM 5000 series power module, currents to 400 mA (from 0 toire of an instrument on the GPIB in terms of interface func- to 32 V) and 750 MA (from 0 to 15 V) are available. The tion subsets. The subsets are defined in the standard. The floating supplies are programmable in increments of 10 mV subsets that apply to the PS 501 0 are listed in Table 1-1. from 0 to 10.0 V and in increments of 100 mV from 10.1 V to 32.0 V. The current programmed in 50 mA increments from 50 mA to 1.6 A. The logic supply provides 4.5 Vdc to 5.5 Vdc at currents to 3 A. The logic supply is programmable in increments of 10 mV from 4.50 V to 5.50 V and in current increments of 100 mA over a range of 100 mA to 3.0 A. Table 1-1 The front panel LED display is divided into three sections. IEEE 488-1978 Each section indicates the programmed current or voltage INTERFACE FUNCTION SUBSETS for one supply. Each display contains a three digit seg- mented numeric LED display and two separate LEDs. These Function Subset Capability LEDs are located at the bottom of the numeric displays. They indicate whether voltage or current is being displayed. Source Handshake SH1 Complete. -- - In the operating mode, the display show the true output Acceptor Handshake I AH1 1 Complete. voltage in constant voltage mode or current in the constant -- - current mode. Since the display parameter changes with the Basic Talker T6 1 Responds to Serial automatic crossover the displays always indicate the true Poll. output values. Basic Listener Unlisten if My Talk Complete information for programming the PS 5010 via Address (MTA) is the GPIB is found in the Programming section of this man- __1 received. ual. A sample program is provided in the Programming sec- Service Request complete. tion to verify the operation of the instrument on the GPIB. t;; 1 Remote-Local 1 Complete. Parallel Poll PPO Does not respond to Parallel Poll. Device Clear 1 !:; 1 Complete. NOTE Device Trigger Complete. All references to the SA 501 in this manual now apply Controller No controller function. to the 067- 1099-00 Signature Analyzer.

REV MAR 1984 Performance Conditions The electrical and environmental performance limits, to- gether with their related validation procedures, comprise a The electrical characteristics in this specification are valid complete statement of the electrical and environmental per- only if the PS 5010 has been adjusted at an ambient tem- formance of a calibrated instrument. perature between +20° C and + 30" C. The instrument must be in a noncondensing environment whose limits are described under the environmental part. Allow twenty min- utes warm-up time for operation to specified accuracy; sixty ltems listed in the Performance Requirements column of minutes after exposure to or storage in a high humidity (con- the Electrical Characteristics are verified by completing the densing) environment. Any conditions that are unique to a Performance Check in the Calibration section of this man- particular characteristic are expressly stated as part of that ual. ltems listed in the Supplemental Information column are characteristic. not verified in this manual.

Table 1-2 ELECTRICAL CHARACTERISTICS Characteristics Performance Requirements Supplemental Information POSITIVE and NEGATIVE FLOATING SUPPLIES Configuration Dual floating supplies with shared common termi- nal. Independent constant voltage or constant cur- rent modes with automatic crossover. Constant voltage mode Range Positive supply Negative supply

------Step size (resolution) 10 mV k 10 mV to 10.0 V Typically 10 mV + 2 mV at 20°C to 30°C.

100 mV 2 40 mV above 10.1 V Typically 100 mV 5 10 mV at 20" C to 30" C Overall accuracy (total effect) Measured at front panel output terminals.

-- - Source effect (line regulation) Load effect (load 10 mV for a 1 A change in load regulation) current 1 mV when using rear interface out- Maximum allowable combined voltage drop in out- put connections with remote put leads is 500 mV. This may be less when output sensing. conditions exceed 14.5 V and 1.3 A at low line. Maximum allowable combined sense line resis- tance is 400 mR.

Drift Typically ((0.1 O/O + 2 mV) for 8 hours. Temperature coefficient Typically <(0.01% + 0.1 mV)/"C PARD (ripple and noise) 10 mV peak-to-peak, 1 mV rms 20 Hz to 20 MHz measured at front panel.

Load transient recovery 500 ps to recover within 20 mV of For a 1A change measured at the front panel nominal value Specification-PS 50 1 0

Table 1-2 (cont) Characteristics Performarice Requirements Supplemental Information

POSITIVE and NEGATIVE FLOATING SUPPLIES (cant)

Voltage change response time No load Max load

UP 1 ms 1 ms Down Constant current mode

Range High power compartment and below) Standard compartment 50 mA to 400 mA (0.750 A at 15 V and below) I Step size (resolution) Overall accuracy Source effect (line regulation) -- -- Load effect (load 10 mA Output impedance is typically 5 kR shunted by regulation) 10 /tF. Drift Typically <(0.S0/0 + 5 mA) for 8 hours. Temperature coefficient Typically <(O.lOh + 1 mA)I0C PARD (ripple and noise) 10 mA peak-to-peak, 5 mA rms 20 Hz to 20 MHz measured at front panel output terminals.

Current change response time

Down Isolation voltage (maximum al- lowable voltage on any terminal I with respect to ground) Front panel operation 150 V peak Rear interface operation 42 V peak Typical shunting capacitance be- tween floating supplies and ground Output on-off response time Typically 12 ms Programming Time GET time Without output on-off 10 ms typical change -- With output on-off change

REV APR 1988 Table 1-2 (cont)

Characteristics Performance Requirements Supplemental Information

LOGIC SUPPLY Single supply with negative terminal internally con- Configuration nected to chassis ground. Constant voltage mode with current limit and automatic crossover. Foldback current limiting starts below 4.5 V.

Constant voltage mode Voltage range 4.50 to 5.50 V Ground referenced Voltage step size 10 mV +I0 mV Overall accuracy +50 mV Source effect (line 1 mV regulation) Load effect (load 10 mV for a 1 A change in load regulation) current I 1 mV when using rear interface out- Maximum allowable combined voltage drop in out- put with remote sensing put leads is 500 mV. Maximum allowable combined sense line resistance is 400 mQ.

Drift Typically t 5 mV/hour Temperature coefficient Typically 500 pVI0C PARD (r terminals. Transient recovery 500 ps to within 20 mV of nominal value. ------Current limit Range 100 mA to 3.0 A Foldback characteristic below 4.5 V. Maximum short circuit output current is < 1.5 A. Step size 100 mA 230 mA ------Accuracy +(5% + 20 mA) Scaled current out (rear interface only)

Scale factor 10 mA = 1 mV 1(2% + 2 mV) Not ground referenced. Requires two terminal

Output impedance 1 kl'l .--._ . .. _. ..._. - -__- Programming time GET time Without output on-off 3 ms typical I change With output on-off change 35 ms typical Overvoltage protection SCR crowbar. Typically trips at 6 V to 7 V.

REV AUG 1981 Table 1-2 (cont)

Characteristics Description MISCELLANEOUS Fuse Data 1 25 Vac input from power module 2 ea 2.5 A medium blow, 3 AG, 125 V 2 ea 1.6 A, slow blow, 3 AG, 250 V +26 Vdc from power module I 1 A, fast blow, 3 AG, 250 V - - - -26 Vdc from power module / 1 A, fast blow, 3 AG, 250 V + 8 Vdc from power module 6 A, fast blow, 3 AG, 250 V Logic supply output 6 A, fast blow, 3 Ag, 250 V Power consumption 250 VA maximum in high power compartment, 200 VA in standard compartment

-- - Calibration interval 1000 hours or 6 months whichever occurs first Warm-up time 20 minutes Table 1-3 ENVIRONMENTAL CHARACTERISTICS~

Characteristics Description Temperature Meets MIL-T-288008, class 5. -- Operating

------

Nonoperating T-GCto +75"C - Humidity 95% RH, 0°C to 30°C Exceeds MIL-T-28800B, 75% RH, to 40°C class 5. 45% RH, to 50°C Altitude Exceeds MIL-T-288008, class 5.

Operating 4.6 Km (15,000 ft) Nonoperating 15 Km (50,000 ft) Vibration 0.38 mm (0.01 5 in) peak to Meets MIL-T-28800B, peak, 5 Hz to 55 Hz, class 5, when installed in 75 minutes. qualified power modu~es.~

Shock 3Q g's (1/2 sine) 11 ms duration, Meets MIL-T-288008, class 5, when installed in quali- 3 shocks in each directiond along fied power modu~es.~ 3 major axes, 18 total shocks. Bench handlingC 12 drops from 45", 4 inches or Meets MIL-T-288006, class 5, when installed in quali- equilibrium, whichever occurs fied power modu~es.~ first. Qualified under National Safe Transit Association Preshipment Test Procedures 1A-B-1 and 1A-B-2.

Within limits of F.C.C. Regulations, Part 15, Subpart 5, Class A; VDE 0871 ; and MIL-461A tests REO1, CEO1, CEO3 (relaxed 15 dB below 70 kHz), RSO1, RS03, CSOl and CS02. Electrical discharge 1 15 kV maximum charge applied to instrument case.

a With power module. Refer to TM 5000 power module specifications. Without power module. Requires retainer clip in plug-in exit direction. System performance subject to exceptions of power module or other individual plug-ins.

REV MAR 1984 Table 1-4 PHYSICAL CHARACTERISTICS Characteristics Description

Maximum overall dimensions Height 126.0 mm (4.96 in) Width , 134.47 mm (5.29 in) Length 285.37 mm (11.24 in) -- Net weight ~27kg (6 Ibs)

Finish Laminated polycarbonate front panel with anodized aluminum chassis.

- -- - - Enclosure type and style per MIL-T-288006

TYpe II I Style E (style F in rackmount power modules)

Section 2PS50 10

OPERATING INSTRUCTIONS

Preparation For Use Refer to Fig. 2-1 for the following instructions. Align the PS 5010 chassis with the upper and lower guides of the The PS 5010 is calibrated and ready to use when re- selected power module compartments. Push the PS 5010 ceived. The PS 501 0 operates in any two adjacent compart- into the mainframe and press firmly to seat the rear connec- ments of a TM 5000 series power module. The PS 5010 is tors in their respective jacks at the rear of the power mod- preset to GPIB address 22 with an EOI message terminator. ule. Connect the power cord to the power source and turn The address may be verified by pressing the INST ID button on the power module POWER switch. on the front panel. A decimal appears after the address in the display if the terminator is LF-EOI. If other values are required they may be set by qualified service personnel as Repackaging Information described in the Maintenance section of this manual. If this instrument is to be shipped to a Tektronix Service center for service or repair, attach a tag showing owner (with address) and the name of an individual to contact. In- CAUTION clude the complete instrument serial number and a descrip- D tion of the service required. To prevent damage to the PS 501 0, turn the power module off before installing or removing the plug-in Save and reuse the package in which the instrument was from the power module. Do not use excessive force to shipped. If the original packaging is unfit for use or not avail- install or remove. able, repackage the instrument as follows:

Fig. 2-1. Installation and removal. Operating Instructions-PS 5010

1. Obtain a corrugated carton having inside dimensions Table 2-2 of no less than six inches more than the instrument FRONT PANEL ERROR CODES dimensions; this will allow for cushioning. Use a car- ton having a test strength of at least 200 pounds. Error Code System error 302 Math pack error 303 2. Surround the instrument with protective polyethylene 340 sheeting. System RAM error System RAM error (low nibble) 34 1 COOO ROM placement error 372 3. Cushion the instrument on all sides by tightly packing DO00 ROM placement error 373 dunnage or urethane foam between carton and instru- EOOO ROM placement error 374 ment, allowing three inches on all sides. FOOO ROM placement error 375 COOO ROM checksum error 392 DO00 ROM checksum error 393 4. Seal carton with tape or industrial staples. EOOO ROM checksum error 394 FOOO ROM checksum error 395 Signature analysis mode 52 1 Power Up Conditions (Self Test) Calibration Mode CAL ----- At power up, the PS 5010 microprocessor performs a diagnostic routine to check the functionality of the ROM and RAM. If no internal error is found, the instrument enters the If one of these codes appears on the display during pow- Local State (LOCS) with default settings as shown in Table er up or operation, turn the power module off and on. If the 2-1. The SRQ line on the GPlB is also asserted. error repeats, a qualified service person should refer to the procedure in the Troubleshooting part of the Maintenance section of this manual.

NOTE

Table 2-1 I€€€ Standard 488-1978 states that a complete sys- tem on the GPlB must be operated with power ap- POWER ON SETTINGS plied to at least one more than half the devices in the system. Powering up a device while the system is run- ning may cause faulty operation. The instrument goes to the following settings at power on and when the INIT command is executed. To remove the PS 5010 from the power module, pull the Function Condition release latch located on the lower left hand corner of the front panel. Positive supply voltage 0.0 Volts Positive supply current 0.4 Amps Negative supply voltage 0.0 Volts Controls, Connectors and Indicators Negative supply current 0.4 Amps Logic supply voltage 5.0 Volts All controls, connectors and indicators (except for the Logic supply current 1.0 Amps rear interface connector and the output selector switch) re- Floating supply output OFF quired for operation of the PS 5010 are located on the front panel. The following information along with Fig. 2-2 provides Logic supply output OFF a description of front panel controls, connectors and Positive regulation interrupt OFF indicators. Negative regulation interrupt OFF Logic regulation interrupt OFF Request for service ON There are two modes of front panel operation for the User request OFF PS 5010. These are the entry and operating modes. The Device trigger OFF voltage and current limits can be examined and changed rn -. -. --- - .- - - the entry mode. In the operating mode these values can be examined but not changed. The operating mode is the nor- If an internal error is found, an error code is displayed in mal functional mode. All of the displays are bright in this the front-panel readout. See Table 2-2 for error codes. mode. Supply parameter changes are made in the entry Operating Instructions-PS 50 1Q

F1g. 2-2. Front panel controls and connectors. Operating Instructions-PS 5010

mode. the display for the entry supply is bright with the In the operating mode, the displayed parameter auto- other displays dim. Figure 2-3 graphically illustrates the en- matically switches with regulation mode changes (the dis- try mode. play indicates volts in the constant voltage mode and amperes in the constant current mode). The display blanks out (both VOLTS and AMPS LEDs off) when the supply is When the VOLTS or AMPS LED is steadily on the pa- neither in constant voltage or current mode. This occurs rameter value in the display is the actual value outputed by when the logic supply folds back or when any supply is driv- the supply. A flashing VOLTS or AMPS LED indicates that en into an overvoltage situation from an external source. the displayed parameter is not the true value of the output because the supply is not operating in this regulation mode.

Operating Mode Entry Mode @ OUTPUT Turns output on or off. LED in pushbutton Turns output on or off. LED in pushbutton indi- indicates output on. Functional in any key- cates output on. Functional in any keystroke stroke sequence. sequence. Displays instruments primary address while Displays instruments primary address while pressed. Asserts SRQ on GPlB if USER RE- pressed. Asserts SRQ on GPlB if USER RE- QUEST is enabled. Functional in any key- QUEST is enabled. Functional in any keystroke stroke sequence. sequence. @ CLEAR Cancels SUPPLY SELECT keystroke. The display of the supply in the entry mode returns to the previous entry if the ERROR light or NOT ENTERED light is flashing. This key is the only method to release the keyboard for other functions if the ERROR light is flashing. This key places the front panel into the operating mode if neither light is flashing. SUPPLY SELECT Pressing this button places a supply in the Changes entry mode from one supply to any other entry mode. This must be followed with ei- supply. This is also a two keystroke function, the ther NEG, POS, TRACK, or LOGIC. This but- supply selected is the other keystroke. This button ton is nonfunctional if the NOT ENTERED or is nonfunctional if the NOT ENTERED or ERROR ERROR lights are flashing. lights are flashing. @ VOLTAGE Pressing this button displays the voltage limit Places only the display of the selected supply into of all three supplies. When this button is re- the voltage entry mode. leased, the display is returned to the voltage or current limit each supply is operating under. @ CURRENT Pressing this button displays the current limit Places only the display of the selected supply into of all three supplies. When this button is re- the current entry mode. leased, the display returns to the voltage or current limit each supply is operating under. @ ENTER Nonfunctional. A change in the voltage or current (except via the INCREMENT pushbuttons) must be completed with this button. Press the desired voltage or cur- rent pushbuttons and then the ENTER button to implement the value selected. The display indicates failure to enter by flashing the NOT ENTERED light. When entering current in the positive or nega- tive supplies an automatic roundoff occurs if the current is not in 50 mA increments. @ 0 through 9 and Button 0, 1, 4, and 7 are functional to select Numeric key pad for entering voltages and period supplies or tracking mode only after SUP- currents. PLY SELECT is pushed. Operating Instructions-PS 50 1Q

DISPLAYS AND DESCRIPTIONS

Buttons Pushed

(Power on)

Operating mode 4- All bright

To enter either SUPPLY parameter in I SELECT different supply. -[ 1 4-, All dim -

NEG POS TRACK LOGIC

To enter the Lotherparameter -\ in same supply. \

CURRENT VOLTAGE +Default Entry mode

VOLTS or AMPS lights flashing or steady. If steady supply is at limit, if flashing no.

4

789 4 5 6 123 OaC 4- Digits selected are bright. NOT ENTERED light flashes.

NOT ENTERED light quits flashing. Supply goes to new param- eter value.

All displays bright.

t Operating mode

Fig. 2-3. Sequence of events used to enter a parameter into a supply. Operating Instructions-PS 501 0

Operating Mode (cont) Entry Mode (cont)

@ INCREMENT Nonfunctional. Increases or decreases the voltage or current (whichever is programmed) by the smallest step possible. Holding these buttons in increases or de- creases the voltage automatically at an increasing rate up to the supply limits. This is an automatic enter function. This pushbutton is nonfunctional if the NOT ENTERED or ERROR lights are flashing. In the track mode both supplies increment by the least significant digit of the highest display. Incre- menting occurs until either supply reaches its maxi- mum or minimum allowable value. 10 Negative supply Normally indicates output parameter value. A A bright display indicates the parameter value be- O display blank display occurs when the supply is nei- ing entered. The remaining dim displays function ther in the constant current or constant volt- the same as in the operating mode. age mode. This may be caused by driving the supply into an overvoltage situation from an external source. Normally indicates output parameter value. A A bright display indicates the parameter value be- blank display occurs when the supply is nei- ing entered. The remaining dim displays function ther in the constant current or constant volt- the same as in the operating mode. age mode. This may be caused by driving the supply into an overvoltage situation from an external source. Normally indicates output parameter value. A A bright display indicates the parameter value be- blank display occurs when the supply is nei- ing entered. The remaining dim displays function ther in the constant current or constant volt- the same as in the operating mode. age mode. This happens when the output is foldback current limited or driven into over- voltage by an external source. When illuminated, indicates the displayed When illuminated, indicates the displayed param- paramter is amperes. A flashing AMPS LED eter is amperes. A flashing LED indicates the value occurs when the supply is not in constant displayed is not the present value of the output. current mode while the current button is For example, this LED will flash while entering the pressed. amperage of a supply which is in voltage limit. @ VOLTS When illuminated, indicates the displayed pa- When illuminated, indicates the displayed param- rameter is voltage. A flashing VOLTS LED eter is voltage. A flashing LED indicates the value occurs when the supply is not in constant displayed is not the present value of the output. current mode while the current button is For example, this LED will flash while entering the pressed. voltage of a supply which is in current limit. This button is nonfunctional if the NOT ENTERED or ERROR lights are flashing.

@ REMOTE Illuminated when instrument is in remote state (controller programmable) via GPIB. This does not apply to either entry or operating mode.

@ ADDRESS Indicates the instrument is addressed by a controller as a talker or listener via GPIB. @ ERROR Illuminated when an attempt is made to enter an out-of-range value from the numerical keyboard. @ NOT ENTERED lndicates value in intensified display(s) is not entered. @ NEGATIVE supply output terminal @) Floating supply common terminal Operating Instructions-PS 50 10

Operating Mode (cont) Entry Mode (cont)

@ POSITIVE supply output terminal @ LOGIC supply ground (chassis ground) terminal @ LOGIC supply positive output terminal @ Ground binding post @ Plug-in release latch

OPERATING CONSIDERATIONS

Auto Crossover

The floating supplies are the automatic crossover type. Decreasing Under normal conditions, !hi3 supply operates in one of two Load modes: constant voltage or constant current. In the con- stant voltage mode, decreasing the load impedance in- creases the output current until the programmed current limit is reached. Further reduction in load impedance puts , the supply in constant current mode. As the load impedance continues to decrease, the output current remains constant Increasing and the output voltage decreases. Voltage Crossover Point The opposite is true with increasing load impedance. The supply provides constant current until the voltage reaches the programmed voltage limit. Further increase in load im- pedance puts the supply in the constant voltage mode. See Fig. 2-4.

Logic Supply Foldback Current Limit The logic supply regulator employs foldback current limit- ing. This term refers to current limit which is a function of the output voltage. The specified output voltage range of the Fig. 2-4. Load lines for individual load impedances. logic supply is 4.5 V to 5.5 V. As long as the output voltage remains in the specified range, the supply operates in a con- stant voltage, constant current automatic crossover mode. zero output voltage (short circuit). When the logic supply is For voltages under approximately 4 V, the maximum current in foldback mode, neither the current loop nor the voltage limit becomes a linearly proportional function of output volt- loop are balanced. The front panel will display this (blank in age. The current limit folds back to approximately 1 A with operating mode). See Fig. 2-5. Operating Instructions-PS SO 10

h

Power Power Supply Supply

- + - + Q 0 0 OOQ

L Load

Fig. 2-5. Graph of output characteristics for logic supply.

Fig. 2-6. Supplies series connected. Series-Connected Supplies The outputs of two or more PS 501 0s can be connected Both supplies should be programmed to the same volt- in series as shown in Fig. 2-6 to obtain an output voltage age. When operating, the display of one supply may blank equal to the sum of the output voltages from each supply. out, indicating that it is out of regulation. This happens when Each supply must be programmed individually to obtain the the supply is driven into overvoltage by the other supply. If desired output voltage. the load current increases enough, one supply will go into the constant current mode, and the other in constant volt- age mode. NOTE The PS 501 0 has internal diodes connected across Reverse Voltage Loading the output to protect the series-connected supplies against reverse polarity if the load is shorted, or one If the polarity across the output of a supply is reversed, a of the supplies is not on. protection diode across the output forward biases, limiting this excursion to the forward voltage drop of the diode. This can occur when a supply is connected in series with another supply and one of two supplies current limit. The diode Parallel-Connected Supplies clamp protects the output transistors from over dissipation The output of two or more PS 501 0s can be connected in and the output capacitors from polarity reversal. parallel as shown in Fig. 2-7 to obtain an output current equal to the sum of the output currents from each supply. Each supply must be programmed individually to obtain the CAUTION desired output current. a To prevent instrument damage current must be limited to 3 A or less when the polarity is reversed. NOTE

The + and - supplies are internally connected in se- Reverse Current Loading ries. Therefore, the + and - supplies cannot be ex- ternally connected in parallel to obtain an output In some bias supply and digital circuitry applications the current equal to the sum of the currents from each load may behave as a current source for part of the operat- supply. ina cvcle. Since the out~utcircuit of a series reaulated SUD- Operating Instructions-PS 501 0

Overvoltage

CAUTION Power Power D Supply Supply Do not externally apply a voltage greater than the maximum rated output voltage of the supply across - COM + - COM + the output terminals.

Component failure in the PS 5010 can result in floating supply output voltages that exceed the normal range. This can cause load damage if external protection is not provided.

The logic supply output is overvoltage protected by a SCR crowbar connected to the supply input. The trip volt- age is approximately 6.2 V. If an internal supply failure or externally applied voltage exceeds this limit, the SCR fires, pulling down the mainframe supplies. This in turn opens the Fig. 2-7. Supplies parallel connected. output relays to protect the load and supply from damage. ply is unidirectional, current will not pass in the opposite Load and Monitor Connections direction except through undesirable paths. The internal re- verse current diodes conduct only when the PS 5010 termi- A common source of voltage error is improper connec- nal voltage reverses. Connecting a shunt resistor (R,) as tion of loads and monitoring instruments to a power supply shown in Fig. 2-8 provides an external reverse current path output. When using front panel terminals, the sense lines so the power supply always sources current. are internally connected. See Fig. 2-9. This maintains load regulation at the terminal. Any lead impedance results in voltage drop at the load. Monitoring of supply output or verification of specifications must be at the output terminal. If one supply output is used to power several loads, each

Power Active Supply

- + J Monitor

Banana leads such as Tektronix Part No. 0 12-003 1-00 or 0 1 2-0039-00

Fig. 2-9. Proper connection of load and monitor test leads to Fig. 2-8. Reverse-current shunt (R,) with active load. minimize voltage reading error. Operating Instructions-PS 5010 load must have its own pair of leads connected as shown in If the output of a supply with remote sensing utilized Fig. 2-10. Usually, the load regulation degradation caused must be switched, the switch must interrupt both the output by voltage drop in the output leads is insignificant. If it is not, leads and the sense leads. It is desirable to open the sense remote sense can be utilized via the rear interface. leads first, and close them last. This is done internally when using the OUTPUT ON-OFF button.

Rear Interface Outputs Remote Sense The logic supply and floating supply outputs and their associated remote sensing lines are available through the Remote sensing means acquiring voltage feedback from rear interface. The logic supply output is available simulta- the point of load, rather than from the output terminals. This neously at the front panel and rear interface. The sense lines improves load regulation by allowing the supply to compen- are clamped to the front panel terminals with 1 kQ resistors. sate for voltage drop in the power leads. Remote sensing This impedance is large enough so that the lines can be involves only the voltage loop; it has no effect on constant easily pulled to the potential at the remote load. The three current operation. Since utilization of remote sensing in- floating supply output terminals, and the three associated volves bringing the feedback path outside the power supply, sense lines are switched to the front panel or rear interface precautions must be observed to avoid introducing voltage by S1500 which is accessible from the rear panel of the errors, noise or instability into the voltage loop. See instrument. When using rear interface outputs, remote Fig. 2-1 1. sense must be used.

The power leads to the load should be large enough to Increasing the length of the output leads adds series in- minimize the voltage drop. Each sense line is diode clamped ductance to the output. This increases the ac impedance to its respective output. This prevents uncontrolled regula- which degrades the load transient response. The effect can tor response should the sense lines be inadvertently left be minimized by placing a capacitor with good high frequen- unconnected. These diodes limit the amount of load lead cy characteristics directly across the point of load. Larger drop which the supply can correct for. The load regulation capacitor values will improve transient resonse in the con- specification for the PS 5010 is valid for a 500 mV maximum stant voltage mode, but greatly reduce the response charac- combined voltage drop in both load leads. While the current teristics in the constant current mode. Since this capacitor drawn through the sense lines is small, it is not totally insig- will temporarily supply large currents into a rapidly decreas- nificant. This current produces a voltage drop in the sense ing load impedance, delicate load components may be line which may introduce error. Again, a condition for load damaged from current supplied by this capacitor before the regulation specification is a maximum combined sense line power supply has time to current limit. impedance of 400 mQ.

The sense lines should be shielded to avoid noise and power line frequency pick up which might be amplified in the voltage loop and appear in the output. The shield should be connected to chassis ground at the power supply end only.

Power Supply Logic Supply Ground Loops The common output terminal of the logic supply is inter- nally connected to chassis ground. If this terminal is also - connected to earth ground at the point of load, a ground + loop results. If this situation cannot be avoided, it is recom- mended that the logic supply ground lead be as large a con- ductor as practical. this insures that return currents will flow primarily through this lead rather than undesirable paths.

Floating Supply Elevation Load Load Load The floating supply can be operated with any of the three 1 2 3 output termiansl grounded or connect to an elevated poten- tial. When operated at an elevated potential, the maximum 3391-10 voltage allowable on any front panel floating supply output terminal with respect to ground is 150 V peak. For example, if the supplies are operated at +- 30 V, the common terminal Fig. 2- 10. Multiple load connections. Operating Instructions-PS 50 1Q

PS 5010 rear interface I + Sense

+ 10pF 50 v Aluminum If needed

Observe sense lead polarity when connecting leads to load. Also see material under heading Floating Limitations in this section. Connection information can be found in Rear Inter- face part of Maintenance section (Section 6) and in the power module manual.

Fig. 2-1 1. Typical application utilizing remote sensing. could be floated to any potential between plus and minus When floating this supply with an ac potential, there is an 120 Vdc or peak ac with respect to chasis (earth) ground. inherent capacitance to chassis ground. This capacitance is The maximum allowable voltage on any rear interface out- distributed to all output terminals and has a value of ap- put or sense terminal is 60 Vdc or 42 Vac peak with respect proximately 0.01 5 pF. to ground.

When any of the floating supply output terminals are elevated with respect to ground, shorting a remaining terminal to ground will apply the elevating potential across the supply. If the elevating potential is of oppo- site polarity or exceeds the rated output of the supply severe damage to the PS 5010 may result.

Chapitre 2 - PS 501 0

INSTRUCTIONS D'UTILISATION

Instructions d'utilisation Aligner les rainures superieure et inferieure du tiroir avec les guides des compartiments selectionnes (v. figure 2.1 ). Inserer Le PS 5010 est etalonne et prQt a I'emploi a la livraison. I1 I'Alimentation PS 5010 dans le compartiment et la pousser a occupe deux compartiments d'un module d'alimentation de la fond pour que le circuit imprime se place correctement. Mettre serie TM 500. 11 est livre avec I'adresse primaire 22 (selection le module en service (commutateur POWER). interne), et la Fin de message EOI. Pour afficher I'adresse du PS 5010, appuyer sur le bouton INST ID (face avant). Si la Fin de message est LF EOI, un point decimal est affiche apres I'a- dresse. Pour selectionner une autre adresse et une autre Fin de message, s'adresser a un personnel de maintenance qualifie Instructions de riiemballage (v. chapitre Maintenance). Si cet instrument doit Qtre renvoye a un service de mainte- nance Tektronix pour une revision ou un travail de mainte- nance, y apposer une etiquette portant le nom (et I'adresse) de ATTENTION la societe utilisatrice et le nom de la personne a y contacter, ainsi que le numero de serie complet de I'instrument et la des- En vue de prevenir toute deterioration de cet instrument, cription du defaut constate. couper lblimentation du module d'alimentation avant 1'111sfalla ti011ou le retraif de tout firoir. lrls faller ef ufer le Si I'ernballaye d'oriyirie n'est plus disponible, emballer I'ap- tiroir avec precaution. pareil de la facon suivante :

Fig. 2.1. Installation et retrait du tiroir

ADD NOV 1985 French 2-1 Instructions d'utilisation - PS 50 1 0

1. Se procurer un carton resistant dont les dimensions in- Tableau 2.2 ternes soient superieures de 15 cm aux dimensions de CODES D'ERREURS EN FACE AVANT I'appareil. La resistance de I'emballage doit 6tre de 100 kg/cml. - Erreur /Codep

------2. Entourer I'instrument d'une feuille de polyetylene. Erreur dans le systeme 302 Logiciel mathematique errone 303 RAM du systeme erronee 340 3. Tapisser le fond et les bords du carton de mousse d'ure- RAM du systeme erronee 341 thane sur une epaisseur de 7,5 cm. Position de la ROM COO0 erronee 372 Position de la ROM DO00 erronee 373 Position de la ROM EOOO erronee 374 Position de la ROM FOOO erronee 375 4. Fermer le carton au moyen d'une bande adhesive. Checksum de la ROM COO0 errone 392 Checksum de la ROM DO00 errone 393 Checksum de la ROM EOOO errone 394 5. Y inscrire la mention "FRAGILE". Checksum de la ROM FOOO errone 395 Mode Analyse de signature 521 Mode Etalonnage CAL

Auto-test a la mise en service Si I'un de ces codes est affiche durant la mise en service ou A la mise en service, le microprocesseur du PS 5010 en cours de fonctionnement, couper I'alimentation puis la reta- execute un sous-programme de test pour verifier le bon fonc- blir. Si I'erreur se repete, s'adresser a un personnel de mainte- tionnement des ROMs et des RAMS. Si aucune erreur n'est nance qualifie (lire la procedure de depannage du chapitre detectee, il passe en mode LOCAL (LOCS), avec les reglages Maintenance). par defaut indiques au tableau 2.1. La ligne SRQ (Bus GPIB) passe a I'etat bas.

NOTE

Selon les normes IEEE 488- 7 9 78, l'utilisa tion d'un systeme complet sur le Bus GPIB necessite que la rnoit1.6 TABLEAU 2.1. plus un des instruments du systeme soient en service. REGLAGES OBTENUS A LA MlSE EN SERVICE Toute mise en service d'un instrument au cours du fonc- tiormerr,er,l du syslerne peul errlrairrer urre op4rat1ot1 erronee.

Pour extraire le tiroir du module d'alimentation, couper I'ali- A la mise en service, et lorsque la commande lNlT est mentation (commutateur POWER) et tirer le bouton de dever- executee, I'instrument est regle de la facon suivante : rouillage (coin gauche a I'avant du tiroir).

Fonction I Condition

Tension de I'alimentation positive 0,o Volt Courant de I'alimentation positive 0,4 Amp Tension de I'alimentation negative 0,o Volt Courant de I'alimentation negative 0,4 Amp Commandes, connecteurs et indicateurs Tension de I'alimentation logique 5.0 Volts Toutes les commandes et tous les connecteurs et indica- Courant de l'alimentation logique 1.0 Amp teurs (a I'exception du connecteur de I'interface arriere et du Sortie des alimentations flottantes OFF seiecteur de tension) contrcilant le fonctionnement du PS Sortie de I'alimentation logique OFF 5010 se trouvent en face avant. Une description en est lnterruption de la regulation positive OFF donnee ci-apres. Se referer egalement a la figure 2.2. lnterruption de la regulation negative OFF lnterruption de la regulation logique OFF II existe deux modes de contrcile de la face avant : le mode Demande de service ON Entree et le mode Utilisation. Les limites de tension et de cou- Requete de I'utilisateur OFF rant peuvent etre examinees et modifiees en mode dlEntree. Declenchement de I'instrument (DT) OFF Elles peuvent 6tre examinees mais non modifiees en mode Utilisation. En mode Utilisation (mode de fonctionnement normal), tous les afficheurs sont illumines. En mode Entree Dans le cas d'une erreur interne, un code d'erreur est affiche (modification du parametre de I'alimentation), seule I'alimenta- en face avant. Les differents codes d'erreurs sont indiques au tion concernee a son affichage illumine, la luminosite des tableau 2.2. autres etant attenuee.

French 2-2 ADD NOV 1985 Instructions d'utilisatlon - PS 501 0

Fig. 2.2. Commandes et connectaun en hcervnt

ADD NOV 1985 French 2-3 Instructions d'utilisation - PS 501 6

La figure 2.3 est une illustration graphique des differentes En mode Utilisation, le parametre affiche varie automatique- phases constituant le mode Entree. ment avec un changement de mode de regulation (Volts en mode Tension Constante, et Amperes en mode Courant Con- Lorsque I'indicateur (DELI VOLTS ou AMPS est eclaire de stant). L'affichage disparait (les DELs \/OLTS et AMPS etant facon constante, la valeur du parametre affiche est la valeur eteintes) lorsque I'on n'est pas dans I'un de ces deux modes. reelle de I'alimentation fournie par le tiroir. Un clignotement in- Ceci se produit lors d'une chute rapide de I'alimentation dique que le parametre affiche ne correspond pas a la sortie, logique, ou d'une surtension issue d'une source externe. I'alimentation ne fonctionnant pas dans le mode de regulation indique.

Mode Utilisation Mode Entree @ OUTPUT Valide ou inhibe la sortie. L'eclairage de la Valide ou inhibe la sortie. L'eclairage de la DEL DEL dans le bouton poussoir indique que les sor- dans le bouton poussoir indique que la sortie est ties sont validees. Cette commande peut 6tre uti- validee. Cette commande peut 6tre utilisee quelle lisee quelle que soit la sequence entree au clavier. que soit la sequence entree au clavier.

(Enfonce) affiche' I'adresse primaire de I'instru- (Enfonck) affiche I'adresse primaire de I'instru- ment. Fait passer la ligne SRQ (sur le Bus GPIB) a ment. Fait passer la ligne SRQ a I'etat bas si le l'etat bas si le mode USER REQUEST (requete de mode USER REQUEST (requdte de I'utilisateur) est I'utilisateur) est valide. Cette commande peut 6tre valide. Cette commande peut etre utilisee quelle utilisee quelle que soit la sequence entree au cla- que soit la sequence entree au clavier. vier.

@ CLEAR Annule les selections effectuees avec la com- Si le voyant ERROR ou NOT ENTERED est eclaire, mande SUPPLY SELECT fait apparaitre I'alimentation precedemment af- fichee. Ceci est la seule faqon de liberer le clavier pour d'autres fonctions, lorsque le voyant ERROR clignote. Lorsqu'aucun voyant n'est allume, cette touche valide le mode Utilisation.

SUPPLY SELECT Une pression sur ce bouton perrnet de program- En mode Entree permet de passer a I'une des mer une alimentation. Doit 6tre suivie de NEG, autres Alimentations. La deuxieme fonction est le POS, TRACK, ou LOGIC. Cette commande ne choix de I'alimentation. Ne peut 6tre utilisee peul etre ulilisee lorsque les voyants NOT lorsque les voyants NOT ENTERED ou ERROR ENTERED ou ERROR clignotent. clignotent.

@ VOLTAGE (Enfonce) affiche les trois limites de tension ; N'affiche que I'Alimentation selectionnee en mode (libere) affiche la limite de la tension ou du courant Entree de tension. auquel travaille chaque alimentation (precedente selection). @ CURRENT (Enfonce) affiche les trois limites de courant ; N'affiche que I'alimentation selectionnee en mode (libere) affiche la limite de la tension ou du courant Entree de courant. auquel travaille chaque alimentation (precedente selection). @ ENTER Non operant. Tout changement de tension ou de courant (sauf par les boutons INCREMENT) doit etre effectue avec ce bouton poussoir. Enfoncer les boutons correspondant a la tension ou au courant desires, puis le bouton ENTER pour entrer la valeur selec- tionnee. Le clignotement du voyant NOT ENTERED indique que cette valeur n'a pu 6tre entree. Lors- qu'on programme un courant (Alimentations Posi- tive ou Negative), cette valeur est automatique- ment arrondie a I'increment (50 mA) le plus proche.

0 a 9 et sequence Les boutons 0, 4, 4, et 7 permettent la selection Clavier numerique permettant d'entrer les tensions des alimentations ou du mode Commande ou les courants. Unique des deux Aiimentations (Track) apres que le bouton SUPPLY SELECT ait ete enfonce.

French 2-4 ADD NOV 1985 Instructions d'utilisation - PS 50 10

FONCTIONS EN FACE AVANT ET AFFICHAGES CORRESPONDANTS

Boutons enfonces

(Mise en service)

Mode Utilisation 04- Tout est eclaire I

SUPPLY Pour .entrer un parametre dans I'une ou I'autre SELECT Alimentation

4- Tout est sombre r-, 1

NEG POS TRACK LOGIC

I'alimentation

Pour entrer I'autre parame-

CURRENT VOLTAGE 4 Pardefaut Mode Entree

Voyants VOLTS ou AMPS dignotants ou allurnis (de facon constante). ~liumis: I'alimentation est dans les limites requises. Clignotants : I'alimentation est hors-gamme.

I : 1 4-, Les chiffres sdectionnks sont lumineux. Le voyant -T- NOT ENTERED clignote.

Le voyant NOT ENTERED ne clignote plus. L'alimen- +/ tation prend la valeur du nouveau parametre.

(--- Eclairage de tout les afficheurs.

t Mode Utilisation

Fig. 2.3. Sequence d'evenements utilisee pour entrer un parametre dans une alimentation

ADD NOV 1985 French 2-5 Instructions d'utilisation - PS 5010

Mode Utilisation (suite) Mode Entree (suite) INCREMENT Non operant Augmente ou diminue le courant ou la tension (programme(e)) du plus petit increment possible. Une pression continue sur ces boutons augmente ou diminue automatiquement la tension a une vitesse croissante jusqu'aux limites de I'alimenta- tion. Ceci est une fonction automatique du mode Entree. Cette commande n'est pas operante lorsque les voyants NOT ENTERED ou ERROR sont allumes. En mode Track, les deux alimentations incrementent le chiffre de poids faible. L'incremen- tation se poursuit jusqu'a ce que I'une ou I'autre alimentation atteigne la valeur maximale ou minimale autorisee.

~fficha~ede I'Ali- lndique normalement la valeur de I'alimentation Seul la valeur entree est eclairee. Les autres mentation Negative negative. Pas d'affichage lorsque I'alimentation valeurs affichees (assombries) sont les memes n'est ni en mode Courant Constant ni en mode qu'en mode Utilisation. Tension Constante. Ceci peut provenir d'une surtension issue d'une source externe.

Affichage de I'Ali- lndique normalement la valeur de I'Alimentation Seule la derniere valeur entree est eclairee. Les mentation Positive Positive. Pas d'affichage lorsque I'alimentation autres valeurs affichees (assombries) sont les n'est ni en mode Courant Constant ni en mode m6mes qu'en mode Utilisation. Tension Constante. Ceci peut provenir d'une surtension issue d'une source externe.

Affichage de I'Ali- lndique normalement la valeur de I'Alimentation Seule la derniere valeur entree est eclairee. Les mentation Logique Logique. Pas d'affichage lorsque I'alimentation autres valeurs (assombries) sont les m6mes qu'en n'est ni en mode Courant Constant ni en mode mode Utilisation. Tension Constante. Ceci se produit dans le cas d'une limitation de courant par retournement, ou d'une surtension issue d'une source externe.

@ AMPS Allume, indique que le parametre affiche est en Allume, indique que le parametre affiche est en Amperes. Clignote lorsque I'alimentation n'est Amperes. Clignote lorsque la valeur affichee n'est pas en mode Courant Constant (bouton pas la valeur actuelle de la sortie. Par exemple, enfonce). cette DEL clignote lorsqu'on programme un cou- rant a la place d'une tension.

@ VOLTS Allume, indique que le parametre affiche est Allume, indique que le parametre affiche est une une tension. Clignote lorsque I'alimentation tension. Clignote lorsque la valeur affichee n'est n'est pas en mode Tension Constante (bouton pas la valeur actuelle de la sortie. Par exemple, enfonce) cette DEL clignote lorsqu'on programme une ten- sion a la place d'un courant. Cette commande n'est pas operante lorsque les voyants NOT ENTERED ou ERROR clignotent.

Allume lorsque I'instrument est dans I'etat Commande a Distance (programmable par le contr6leur) par I'intermediaire du Bus GPIB. Ceci ne s'applique pas aux modes Entree ou Utilisation.

ADDRESS lndique que I'instrument est designe par le contr6leur comme Emetteur ou comme Recepteur par I'intermediaire du Bus GPIB.

@ ERROR Allume lorsqu'on tente d'entrer par le clavier numerique une valeur hors gamme

@ NOTENTERED lndique qile la (oil les) valeur(s) intensifieek) n'est pas entree

@ NEGATIVE Borne de sortie de I'Alimentation Negative.

French 2-6 ADD NOV 1985 Instructions d'utilisation - PS 501 0

Mode Utilisation (suite) @ Borne commune de sortie des Alimentations Flottantes. @ POSITIVE - borne de sortie de IJAlimentationPositive. @ LOGIC (GROUND) - connecteur de masse de IIAlimentation Logique @ Borne de sortie de I'Alimentation Logique. @ Connecteur de masse @ Tirette de d6verrouillage du tiroir.

CONDITIONS D'UTILISATION

Commutation automatique Les alimentations flottantes sont limitees automatiquement. Impedance L'alimentation fonctionne normalemerit en mode Tension de charge Constante ou en mode Courant Constant. En mode Tension Constante, une diminution de I'impedance de charge accroit le courant en sortie jusqu'a ce que la limite de courant pro- grammee soit atteinte. Au dela, I'Alimentation passe en mode Courant Constant ; si I'impedance diminue encore, le courant de sortie demeure constant et la tension de sortie decroit.

L'inverse se produit, dans le cas d'un accroissement de I'impedance de charge. L'alimentation fournit un courant constant jusqu'a ce que la tension atteigne la limite de tension commutation programmee. Au deli, I'Alimentation passe en mode Tension Constante. Se referer a la Figure 2.4.

Limitation de courant par retournement (alimentation logique) Le reguiateur de I'Alimentation Logique utilise une limitation de courant par retournement. La limite de courant est fonction de la tension de sortie. La plage de tension de sortie de I'Ali- mentation Logique est de 4,5 V a 5,5 V. Tant que la tension de sortie demeure dans la plage specifiee, I'alimentation fonc- tionne en mode Tension Constante, Courant Constant avec Fig. 2.4. Droites de charge correspondant a differentes impedances de charge. commutation automatique du mode de regulation. Pour les tensions inferieures a 4 V, la limite de courant maximale devient une fonction lineaire proportionnelle a la tension de de I'Alimentation Logique, le courant et la tension ne sont pas sortie. La limite de courant est ramenee a environ 1 A avec une asservis mutuellement. Ceci se traduit par une absence d'affi- tension de sortie nulle (court circuit). En mode de retournement chage en face avant. Se reporter a la figure 2.5.

ADD NOV 1985 French 2-7 Instructions d'utilisation - PS 50 1 0

Mode Plage Tension d'utilisation Constante f maximale 5.5 v Alimentation Alimentation / 4'5 1' CourantMode yNLigne de "OUT Constant retournement - -f- - + normale Mode Limitation fl par retournement

'OUT

La plage d'utilisation specifiee est ombree

Fig. 2.5. Caracteristiques de sortie de I'Alimentation Logique.

Alimentations connectees en sbrie Fig. 2.6 Alimentations connectees en serie. Les sorties de deux PS 5010 ou plus peuvent gtre reliees en serie, comme indique figure 2.6, pour donner une tension de sortie egale a la somme des tensions de sortie de chaque ali- Les deux alimentations doivent 6tre prograrnmees a la meme mentation. Chaque alimentation peut 6tre programmee indivi- tension. En cours de fonctionnement, I'affichage de I'une des duellement pour I'obtention de la tension desiree. tensions peut disparaitre, indiquant qu'elle se trouve hors de la plage de regulation. Ceci se produit dans le cas d'une surten- sion issue de I'autre alimentation. Si le courant dans la charge augmente encore, I'une des alimentations passe en mode de NOTE Courant Constant, et I'autre en mode Terlsion Constante.

Le PS 50 7 0 possede des diodes connectees aux bornes de sortie pour proteger les alimentations (connectees en Inversion d'une tension dans la charge serie) d'une inversion de polarite dans Ie cas d'un court Dans le cas d'une inversion de polarite a la sortie d'une ali- circuit de la charge, ou de la non mise en service de l'une mentation, une diode de protection protege I'alimentation en des alimenta tions. lirnitant I'excursion de tension inverse a la chute de tension de la diode. Ceci peut se produire lors de la connexion en serie de deux alimentations, dont I'une des deux etant en limitation de courant. La diode protege d'une part les transistors de sortie Alimentations connectees en parallele d'une dissipation excessive, et d'autre part les condensateurs de sortie d'une inversion de polarite. Les sorties de deux PS 5010 ou plus peuvent 6tre con- nectees en parallele, comme indique figure 2.7, pour obtenir ATTENTION un courant de sortie egal a la somme des courants de sortie de chaque alimentation. Chaque alimentation peut &re pro- Pour prevenir une deterioration de l'instrument, le cou- grammee individuellement pour I'obtention du courant desire rant doit 6tre lirnitee a 3 A ou moins lors d'une in version en sortie. de polarite.

lnversion d'un courant dans la charge NOTE Dans certaines applications utilisant une alimentation pola- Dans la PS 50 10, l'Alinientations Positive est connectee risee et des circuits numeriques, la charge peut agir comme interieurement en serie a I'Alimenta tion Negative. Par une source de courant durant une partie du cycle d'utilisation. consequent, elles ne peuvent itre connectees exterieure- Le circuit de sortie d'une alimentation regulee en serie etant men? en parallele pour obtenir un courant de sortie egal uni-directionnel, le courant ne doit pas prendre la direction a la somme des courants de chaque alimentation. opposee a moins d'emprunter un trajet non desire. Les diodes

French 2-8 ADD NOV 1985 Instructions d'utilisation - PS 50 1 0

Surtension

ATTENTION

Alimentation Alimentation Ne pas appliguer sur les bornes de sortie une tension su- perieure a la limite maximale de I'Alimentation .

- COM + - COM + Un composant defectueux peut entrainer des tensions de sortie des Alimentations Flottantes excedant la plage normale. Une protection externe est indispensable pour eviter de dete- riorer la charge.

L'alimentation logique est protegee contre les surtensions par une detection de seuil par thyristor connecte a I'entree de I'alimentation. La tension est environ de 6,2 V. Dans le cas d'une defaillance interne de I'alimentation ou de I'application d'une tension externe depassant cette limite, le thyristor, s'amorce, ecroulant les tensions du ch5ssis. Ce qui ouvre les relais de sortie, protegeant la charge et evitant une destruction de I'alimentation.

Fig. 2.7. Alimentations connectees en parallele.

Connexion de la charge et de I'instrurnent de test (internes) d'inversion de courant ne sont conductrices que si Des tensions erronees sont frequemment dues aux conne- les sorties du PS 50-10 sont inversees. En connectant a celles- xions incorrectes de la charge et de l'instrument de test a la ci une resistance shunt (Rs) comme indique a la figure 2.8, on sortie d'une alimentation. Des lignes de regulation sont reliees inverse la direction du courant, de sorte que I'alimentation interieurement aux bornes de la face avant. Se referer a la puisse toujours fournir du courant. figure 2.9. Ceci assure une regulation de charge au niveau de chaque borne. L'impedance des conducteurs provoque une chute de tension aux bornes de la charge. Le test de la sortie des alimentations ou la verification de leurs performances doit s'effectuer aux bornes de sortie.

4

Charge Alimentation active

- + Panneau O O--7 Ligne de avant contrile de regulation Connexion de I'instrument - de test Rs Connexion de la charge

Prises bananes (Ref. Tektronix 012-0031-00 ou 012-0039-00)

Fig. 2.8. Inversion de courant par une resistance (shunt) en parallele avec la Fig. 2.9. Connexion de la charge et de I'instrument de contr8le pour minimiser charge active. les erreurs de lecture de tension.

ADD NOV 1985 French 2-9 Instructions d'utilisation - PS 50 1 0

Si plusieurs charges sont alimentees par une alimentation, S'il est necessaire de couper la sortie d'une alimentation chacune d'elle doit avoir sa propre paire de conducteurs, utilisant une regulation a distance, I'interruption doit affecter a connect& comme indique figure 2.1 0. Ordinairement, la la fois les conducteurs de sortie et les fils de regulation. ll est degradation de la regulation provoquee par une chute de ten- desirable d'ouvrir en premier les fils de regulation puis de les sion dans les conducteurs &.sortie est minime. Sinon, le con- fermer. Ceci s'effectue a I'interieur de I'appareil par I'interme- trble de regulation (sense) doit 6tre effectue a distance par l'in- diaire du bouton OUTPUT ON-OFF. terface arriere.

Regulation a distance Sorties de I'interface arrikre Par regulation a distance, on entend un retour de tension a Les sorties de I'Alimentation Logique et des Alimentations partir du point de connexion de la charge, et non a partir des Flottantes et les lignes de regulation associees sont disponi- connecteurs de sortie. Ceci ameliore la regulation de charge, bles sur I'interface arriere. La sortie de I'Alimentation Logique en permettant a I'Alimentation de compenser la chute de ten- s'effectue simultanement en face avant et sur I'interface sion dans les conducteurs d'alimentation. La regulation a dis- arriere. Les lignes de regulation sont reliees aux bornes de la tance ne porte que sur la boucle de tension : elle est sans effet face avant par des resistances 1 K . Cette impedance est suffi- sur le mode Courant Constant. Le parcours de retour de ten- samment elevee pour ne pas perturber une regulation de ten- sion etant exterieur a I'alimentation, des precautions doivent sion sur une charge tres eloignee. Les trois sorties des Alimen- Btre observees pour eviter d'introduire des tensips erronees. tations Flottantes, et les trois lignes de regulation associees du bruit, ou une instabilite dans !a boucle de tension. Se referer sont reliees a la face avant ou a I'interface arriere par I'interme- a la figure 2.1 1. diaire du commutateur S1500 qui est accessible du panneau arriere. Lorsqu'on utilise les sorties de I'interface. il est Les conducteurs alimentant la charge doivent 6tre suffisam- necessaire d'effectuer une regulation de tension a distance. ment epais pour minimiser la chute de tension. Chaque fil de regulation est relie par une diode a sa sortie respective. Ceci En augmentant la longueur des conducteurs de sortie, on previent toute reponse incontrblee si les fils de regulation sont ajoute une inductance serie a la sortie. Ceci augmente l'impe- deconnectes par inadvertance. Ces diodes limitent la perte de dance reseau qui diminue la reponse transitoire de la charge. tension devant 6tre corrigee par I'alimentation. Les caracteris- Cet effet peut 6tre minimise en connectant au point de charge tiques de regulation de la charge specifiees pour le PS 5010 un condensateur de bonne tenue en haute frequence. Une sont valables pour une chute de tension combinee de 500 mV capacite elevee ameliore la reponse transitoire en mode Ten- maximum dans les deux conducteurs de charge. Le courant sion Constante, mais la reduit grandement en mode Courant passant dans les fils de regulation est faible, mais non ne- Constant. Du fait que ce condensateur fournit temporairement gligeable. Ce courant peut produire une chute de tension dans des courants importants dans une impedance de charge de- le fil de regulation pouvant introduire une erreur. Une autre croissant rapidement, les composants delicats de la charge condition de regulation de charge est I'impedance de 400 m risquent d'ktre endommages avant que I'alimentation ait le maximum pour les deux conducteurs de regulation (sense). temps de les limiter. Les fils de regulation doivent &re blindes pour eviter tout bruit ou ondulation (a la frequence du reseau) pouvant 6tre am- plifies dans la boucle de tension d'ou leur apparition en sortie. La gaine ne doit 6tre reliee qu'a la masse du chissis du cbte de I'alimentation.

Alimentation Supply

Boucles de masse de I'Alimentation Logique. Le connecteur commun de I'alimentation logique est relie in- terieurement a la masse du chsssis. Si ce connecteur est egalement relie a la terre au niveau de la charge, il en resulte une boucle de masse. Si cette situation ne peut Btre evitee, il est recommande d'utiliser pour I'alimentation logique un conducteur de masse aussi epais que possible. Ainsi, les cou- rants de retour suivront principalement ce conducteur, plutbt que des parcours non desires.

Charge 1 Charge 2 Charge 3

Elevation des Alimentations Flottantes TF3391-10 Les Alimentations Flottantes peuvent 6tre utilisees avec Fig. 2.10. Connexions de piusieurs charges. n'importe laquelle des trois bornes de sortie reliee soit a la

French 2-10 ADD NOV 1985 Instructions d'utilisation - PS 50 10

Interface arriere Regulation a dela PS5010 1 distance positive

+ 10pF 50 v Capacite aluminium

Regulation a I distance negative 1

Lblimentation logique est protegee contre les surtensions par une detection de seuilpar thyristor connecte a I'entree de 121;- mentation. La tens1011est environ de 6,2 V. Dans le cas d'une defaillance interne de I'Alin~entationou de l'application d'une tension externe r/kpnssi)nt cettc lin~ite,IP tl?yristor s'an?orce, ecroulant les tensions du chassis. Ce (pi ouvre les relais de sortie, protegeant la charge et evitant une destrucfior? de /'Alimentation.

Fig. 2-1 1. Exemple d'utilisation de regulation a distance

masse, soit connectee a une source de tension elevee. La ten- Lorsque cette alimentation flotte sur une tension alternative sion maximale admissible sur chacune des bornes ~desortie elevee, il existe une capacite inherente par rapport a la masse est de 150V crktes par rapport a la masse. Par exemple, si les du ch5ssis. Celle-ci est repartie sur toutes les bornes de sortie, alimentations sont utilisees a f 30 V, la borne COMMON peut et a une valeur d'environ 0,015 pF. flotter a n'importe quelle tension entre plus et moins 120V continus ou cr8te alternative par rapport 5 la masse du chissis (terre). La tension maxirnsle acirnrssible sur chacune dcs sorties ou bornes de regulation de I'interface arriere est de 60 V con- tlnus ou 42 V crete alternative par rapport a la masse.

ATTENTION

Lorsque l'une des bornes de sortie des Alimentations Flottantes est reliee a un potentiel eleve par rapport a la masse, court-circuiter cette borne revient a appliquer cette tension elevee a toute lblimentation. Si ce poten- tie1 est de polarite opposee ou excede la tension de sortie maximale de l'alimentation, il peut en rksulter une deterioration severe du PS 5010.

ADD NOV 1985 French 2-1 1

Abschnitt 2 - PS 5010 BEDIENUNGSANLEITUNG

Vorbereitende Hinweise Die nachstehenden Anweisungen werden in Bild 2-1 dargestellt. Setzen Sie das Chassis der PS 5010 an die Die PS 5010 kommt kalibriert und betriebsbereit zum oberen und unteren Fuhrungsschienen der ausgewahl- Versand. Die PS 5010 arbeitet in einem zwei Fach breiten ten Abteile der Versorgungseinheit. Drucken Sie die Abteil einer Versorgungseinheit der Serie TM 5000. Ab PS 5010 mit leichtem Druck ein, bis die ruckseitige Werk ist die PS 5010 auf die GPlB Adresse 22 eingestellt Steckverbindung einrastet. Verbinden Sie das Netzka- mit EOI als Mitteilungs-Endezeichen. Die Adresse kann be1 der Versorgungseinheit mit der Steckdose und durch Drucken des Knopfes INST ID auf der Frontplatte schalten Sie den POWER-Schalter ein. uberprijft werden. 1st das Endezeichen LF E01 einge- stellt, erscheint in der Darstellung hinter der Adresse ein Dezimalpunkt. Wenn andere Werte benotigt werden, konnen diese durch qualifiziertes Servicepersonal Versandhinweise anhand des Abschnittes Wartung in diesem Handbuch eingestellt werden. Wenn das Gerat fur Servicearbeiten oder zur Repara- tur an ein Tektronix Service-Center eingeschickt werden muB, befestigen Sie daran einen Zettel mit folgenden Angaben: Name und Anschrift des Besitzers, Name einer VORSICHT Kontaktperson, vollstandige Seriennummer und eine D Beschreibung der gewunschten Servicearbeiten. Um eine Beschadigung der PS 5070 zu vermeiden, muR die Versorgungseinheit vor €in- oder Ausbau Bewahren Sie die Originalverpackung des Gerates des Einschubes abgeschaltet werden. Bei Ein- oder auf. Wenn diese nicht mehr zur Verfugung steht, verpak- Ausbau darf keine Gewalt angewendet werden. ken Sie das Gerat wie folgt:

Bild 2-1. Ein- und Ausbau.

ADD NOV 1985 Bedienungsanleitung - PS 5010

1. Nehrnen Sie einen Karton aus Wellpappe, dessen Tabelle 2-2 lnnenabrnessungen wenigstens 15 cm groRer sind FEHLER-CODES AUF DER FRONTPLAITE als die auBeren Abrnessungen des Gerates. Verwenden Sie einen Karton rnit einer Pruffestikeit Fehler Code von mindestens 90 kg. --- Systernfehler 3Q2 Mathematischer Eingabe-Fehler 303 2. Wickeln Sie das Gerat in eine schutzende Plastik- System RAM Fehler 340 folie. System RAM Fehler (nicht gravierend) 341 COOO ROM Plazierungsfehler 372 3. Polstern Sie die Zwischenraurne zwischen Gerat DOOO ROM Plazierungsfehler 373 und Karton rnit Papierschnitzeln oder Schaurn- EOOO ROM Plazierungsfehler 374 stoff fest aus. FOOO ROM Plazierungsfehler 375 COOO ROM Prufsummenfehler 392 DOOO ROM Prufsummenfehler 393 4. VerschlieBen Sie den Karton rnit Klebeband oder EOOO ROM Prufsummenfehler 394 Industrie-Heftklamrnern. FOOO ROM Prufsumrnenfehler 395 Betriebsart Signaturanalyse 52 1 Betriebsart Kalibrierung CAL

Einschaltbedingungen (Selbst-Test) Erscheint wahrend des Betriebs oder beirn Einschal- ten einer dieser Codes, schalten Sie das GerBt aus und wieder ein. Wiederholt sich die Fehleranzeige, sollte ein Beim Einschalten fuhrt der Mikroprozessor der qualifizierter Service-Techniker anhand des Vorganges PS 5010 eine Diagnose-Routine durch, urn die Funktion Fehlersuche irn Wartungsteil dieses Handbuches vor- des ROM und des Ram zu prufen. Wird kein interner Feh- gehen. ler entdeckt, schaltet das Gerat auf Local State (LOCS) und die in Tabelle 2-1 angegebenen Einstellungen. Die SRQ Leitung am GPlB wird auch gesetzt. ANMERKUNG Der IEEE Standard 488-1978 gibt an, daR in einem kompletten System am GPlB wenigstens eines mehr als die Halfte aller Gerate des Systems einge- schaltet sein miissen. Das Einschalten eines Gera- tes wahrend das System arbeitet, kann zu fehlerhaf- ter Betriebsweise fijhren.

Tabelle 2-1 Zum Herausnehmen der PS 5010 aus der Versor- EINSCHALT-EINSTELLUNGEN gungseinheit, ziehen Sie den Entriegelungshebel an der linken, unteren Ecke der Frontplatte. Beirn Einschalten und wenn der Befehl lNlT ausqefuhrt wird, schaltet das Gerat auf nachstehende Bedienungselemente, Anschlusse und Anzeigen

------. --. .- . - - - -- Alle Bedienungselemente, Anschlusse und Anzeigen Funktion Zustand (rnit Ausnahrne der ruckseitigen Schnittstellen-steck- Positive Versorgungsspannung 0.0 Volt verbindung und dem Ausgangs-Wahlschalter) die fur Positiver Versorgungsstrorn 0.4 Ampere den Betrieb der PS 5010 benotigt werden, sind auf der Negative Versorgungsspannung 0.0 Volt Frontplatte angeordnet. Die nachstehenden Hinweise Negativer Versorgungsstrom 0.4 Ampere geben, zusarnrnen rnit Bild 2-2, eine Beschreibung der Logik Versorgungsspannung 5.0 Volt Bedienungselemente, Anschlusse und Anzeigen auf der Logik Versorgungsstrom 1.0 Ampere Frontplatte. Erdfreier Versorgungsausgang OFF Die PS 5010 arbeitet uber die Frontplatte in zwei Logik Versorgungsausgang OFF Betriebsarten, Eingabe und Betrieb. In der Betriebsart Unterbrechung der Positivregelung OFF Eingabe konnen die Grenzwerte von Strom und Span- Unterbrechung der Negativregelung OFF nung gepruft und verandert werden. Bei Betrieb konnen Unterbrechung der diese Werte gepruft, aber nicht verandert werden. logischen Regelung OFF Betrieb ist die norrnale Funktions-Betriebsart und alle Bedienungsruf ON Anzeigen sind in dieser Betriebsart erleuchtet. Alle Benutzer-Anfrage OFF ~nderungender Versorgungs-Parameter erfolgen in der 1 Device Trigger OFF Betriebsart Eingabe.

ADD NOV 1985 Bedienungsanleitung - PS 5010

Bild 2-2. Bedienungselemente und Anschlusse auf der Frontplatte.

ADO NOV 1985 Bedienungsanleitung - PS 5010

Dabei ist die Anzeige fur die Eingabe-Versorgung hell Im Betrieb werden die dargestellten Parameter auto- und die anderen Anzeigen dunkel. Bild 2-3 zeigt eine matisch umgeschaltet, wenn sich die Betriebsart Rege- grafische Darstellung der Betriebsart Eingabe. lung andert (in der Betriebsart konstante Spannung stellt die Anzeige Volt dar und in der Betriebsart konstan- Wenn die VOLTS oder AMPS LED standig hell ist, gibt ter Strom Ampere). Die Anzeige wird dunkel (VOLTS und der Parameter-Wert in der Anzeige den tatsachlichen AMPS LED aus), wenn die Spannungsversorgung weder Ausgangswert der Versorgung wieder. Eine flackernde in der Betriebsart konstante Spannung, noch in der VOLTS oder AMPS LED 7eigt an, daR das dargestellte Betriebsart konstanter Strom arbeitet. Das kommt vor, Parameter nicht den genauen Wert des Ausgangs wie- wenn die logische Spannungsversorgung zuruckregelt, dergibt, weil die Spannungsversorgung nicht in der oder wenn eine der Versorgungen durch eine externe Betriebsart Regelung arbeitet. Quelle in eine ljberspannung gerat. Betrieb Eingabe @ OUTPUT Schaltet den Ausgang ein oder aus. Schaltet den Ausgang ein oder aus. Die LED im Druckknopf ist hell bei Aus- Die LED im Druckknopf ist hell bei Aus- gang ein. Arbeitet bei allen Tastenfolgen. gang ein. Arbeitet bei allen Tastenfolgen. Stellt, wenn eingedruckt, die Primaradresse Stellt, wenn eingedruckt, die Primaradresse des Gerates dar. Macht SRQ geltend, wenn des Gerates dar. Macht SRQ geltend, wenn USER REQUEST freigegeben ist. Arbeitet USER REQUEST freigegeben ist. Arbeitet bei allen Tastenfolgen. bei allen Tastenfolgen. @ CLEAR Loscht den Tastenbefehl Die Anzeige der Spannungsversorgung in SUPPLY SELECT. der Betriebsart Eingabe geht auf die vorherige Eingabe zuruck, wenn die Lampchen ERROR oder NOT ENTERED flackern. Diese Taste bietet die einzige Moglichkeit das Tastenfeld fur andere Funktionen freizugeben, wenn die Anzeige ERROR flackert. Diese Taste schaltet die Frontplatte auf Betrieb, wenn kein Lampchen flackert. @ SUPPLY SELECT Prucken dieses Knopfes schaltet eine Schaltet die Betriebsart Eingabe der Spannungsversorgung auf die Betriebsart S pannungsversorg ung auf irgendeine Eingabe. Darauf mu8 entweder NEG, POS, andere Spannungsversorgung. Der TRACK oder LOGIC folgen. Diese Taste darauffolgende Tasten befehl betrifft die arbeitet nicht, wenn die Anzeigen NOT gewahlte Spannungsversorgung. Diese ENTERED oder ERROR flackern. Taste arbeitet nicht, wenn die Anzeigen NOT ENTERED oder ERROR flackern. @ VOLTAGE Bei Drucken dieses Knopfes werden die Schaltet nur die Anzeige der gewahlten Spannungsgrenzwerte aller drei Spannungs- Spannungsversorgung auf die Betriebsart versorgungen dargestellt. Wird der Knopf Eingabe. losgelassen, geht die Anzeige auf die Strom oder Spannungswerte zuruck mit denen jede Versorgung jeweils arbeitet. @ CURRENT Bei Drucken dieses Knopfes werden die Schaltet nur die Anzeige der gewahlten Stromgrenzwerte aller drei Spannungs- Spannungsversorgung auf die Betriebsart versorgungen dargestellt. Wird der Knopf Eingabe Strom. losgelassen, geht die Anzeige auf die Strom- oder Spannungswerte zuruck mit denen jede Versorgung jeweils arbeitet. @ ENTER Keine Funktion Eine ~nderungder Spannung oder des Stromes (auRer uber die Druckknopfe INCREMENT) muR mit diesem Knopf beendet werden. Drucken Sie die gewunschten Spannungs- oder Strom- Druckknopfe und dann den Knopf ENTER, um den gewahlten Wert einzugeben. Nicht- Eingabe wird durch Flackern des Lampchens NOT ENTERED angezeigt. Bei der Eingabe von Strom, in die negativen oder positiven Versorgungen erfolgt eine automatische Abrundung, wenn die Strom- eingabe nicht in 50 mA Schritten erfolgt,

ADD NOV 1985 Bedienungsanleitung - PS 501 0

DISPLAYS AND DESCRIPTIONS

Buttons Pushed

(Power on)

Operating mode 4..All bright

To enter either SUPPLY parameter in SELECT different supply. '-1

NEG POS TRACK LOGIC

4 Selected supply \\ / display bright To enter the #--other parameter ----\ in same supply. \

CURRENT VOLTAGE 4- Default Entry mode

VOLTS or AMPS lights flashing or steady. If steady supply is at limit, if flashing no.

4-, Digits selected are bright. NOT ENTERED I light flashes.

NOT ENTERED light quits flashing. Supply goes to new param- eter value.

I CLEAR I C-- All displays bright.

Operating mode 339 I-03

Bild 2-3. Eingabevorgang eines Parameters in eine Spannungsversorgung.

ADD NOV 1985 Bedienungsanleitung - PS 5010

@ 0 bis 9 und Die Knopfe O,1, 4 und 7 konnen fur die Numerische Tasten fur die Eingabe von Periode Wahl der Spannungsversorgung oder der Spannungen und Stromen. Betriebsart Tracking nur nach Drucken von SUPPLY SELECT verwendet werden. @- INCREMENT Keine Funktion. Erhoht oder vermindert Strom oder Spannung (je nach Programmierung) in den kleinstmoglichen Stufen. Bei Fest- halten dieser Tasten wird die Spannung automatisch bis zu den Grenzwerten der Spannungsversorgung erhoht. Das ist eine automatische Eingabefunktion. Dieser Knopf arbeitet nicht, wenn die Lampchen NOT ENTERED oder ERROR flackern. In der Betriebsart Track werden beide Spannungs- versorgungen um die niedrigstwertige Zahl der hochsten Anzeige erhoht. Die Erhohung geht weiter, bis die Versorgungen ihren minimal oder maximal zulassigen Wert erreicht haben. @ Anzeige negative Zeigt normalerweise den Ausgangswerl an. Eine helle Anzeige gibt den eingegebenen Versorgung Eine leere Anzeige kommt vor, wenn die Wert an. Die verbleibende dunklere Anzeige Spannungsversorgung nicht in einer der funktioniert wie bei Betrieb. Betriebsarten Konstantspannung oder Konstantstrom ist. Dies kann durch [Jber- spannung aus einer externen Quelle verursacht werden. @ Anzeige positive Zeigt normalerweise den Ausgangswert an. Eine helle Anzeige gibt den eingegebenen \/ersorgung Eine leere Anzeige kommt vor, wenn die Wert an. Die verbleibende dunklere Spannungsversorgung nicht in einer der Anzeige funktioniert wie bei Betrieb. Betriebsarten Konstantspannung oder Konstantstrom ist. Dies kann durch ~ber- spannung aus einer externen Quelle verursacht werden. @ Anzeige logische Zeigt normalerweise den Ausgangswert an. Eine helle Anzeige gibt den eingegebenen Versorgung Eine leere Anzeige kommt vor, wenn die Wert an. Die verbleibende dunklere Anzeige Spannungsversorgung nicht in einer der funktioniert wie bei Betrieb. Betriebsarten Konstantspannung oder Konstantstrom ist. Dies tritt auf, wenn der Ausgang ruckstrombegrenzt ist oder durch eine externe Quelle in eine ~ber- spannung getrieben wird. @ AMPS Zeigt an, daO die dargestellten Parameter Zeigt an, daB die dargestellten Parameter Ampere sind. Die AMPS LED flackert, wenn Ampere sind. Eine flackernde LED zeigt an, die Spannungsversorgung bei Drucken des daB der dargestellte Wert nicht der derzei- Stromknopfes nicht im Konstantstrom- tige Ausgangswert ist. Die LED wird z. B. Betrieb ist. flackern, wenn die Ampere einerversorgung eingegeben werden, die sich in der Spannungsbegrenzung befindet. @ VOLTS Zeigt an, daB die dargestellten Parameter Zeigt an, dat3 die dargestellten Parameter Volt sind. Die VOLTS LED flackert, wenn die Volt sind. Eine flackernde LED zeigt an, daR Spannungsversorgung bei Drucken des der dargestellte Wert nicht der derzeitige Stromknopfes nicht im Konstantspannungs- Ausgangswert ist. Die LED wird z.B. Betrieb ist. flackern, wenn die Spannung einer Versor- gung eingegeben wird, die sich in der Strombegrenzung befindet. Dieser Knopf arbeitet nicht, wenn die Lampchen NOT ENTERED oder ERROR flackern. @ REMOTE Erleuchtet wenn das Gerat fernbedient uber den GPlB arbeitet (vom Controller programm ierbar). @ ADDRESS Zeigt an, daO das Gerat als Sprecher oder Horer durch einen Controller uber den GPlB adressiert wird.

ADD NOV 1985 Bedienungsanleitung - PS 5010

@ ERROR Leuchtet auf, wenn der Versuch gemacht wird, iiber das numerische Tastenfeld einen Wert auRerhalb des Bereichs einzugeben. @ NOT ENTERED Zeigt an, daO der hellgetastete Wert der Darstellung nicht eingegeben ist. NEGATIVE Negativer Ausgang der Spannungsversorgung. MasseanschluO bei schwebender Spannungsversorgung. Positiver Ausgang der Spannungsversorgung. LOGIC ErdanschluB der Logik Spannungsversorgung (Chassis). Positiver Ausgang der logischen Spannungsversorgung.

Automatische Begrenzungsumschaltung Die erdfreien Spannungsversorgungen haben auto- Decreasing matische Begerenzungsumschaltung. Unter normalen Load Bedingungen arbeitet die Spannungsversorgung in einer von zwei Betriebsarten: Konstantspannung oder Konstantstrom. Im Konstantspannungs-Betrieb erhoht ein Absinken des Lastwiderstandes den Ausgangs- strom, bis der programmierte Stromgrenzwert erreicht ist. Bei weiterer Reduzierung des Lastwiderstandes schaltet das Gerat auf den Konstantstrom-Betrieb um. Fallt der Lastwiderstand weiter ab, bleibt der Ausgangs- Crossover strom konstant und die Ausgangsspannung sinkt ab. Point Umgekehrt ist es bei steigendem Lastwiderstand. Die Spannungsversorgung liefert konstanten Strom, bis die Spannung ihren programmierten Grenzwert erreicht hat. Bei weiterem Ansteigen des Lastwiderstandes schaltet Current das Gerat auf Konstantspannungs-Betrieb um. Siehe / ode I Bild 2-4.

KurzschluBstrom-Ruckregelungder Logik Spannungsversorgung Bild 2-4. Lastlinien fur individuelle Lastwiderstande. Der Regler der Logik Spannungsversorgung sorgt fur e'ine Ruckregelung des KurzschluOstroms. Das bezieht maximale Stromgrenzwert eine linear proportionale sich auf den Stromgrenzwert, der eine Funktion der Aus- Funktion der Ausgangsspannung. Der Stromgrenzwert gangsspannung ist. Der spezifizierte Bereich der Aus- wird auf etwa 1 A, bei Null Ausgangsspannung, zurikk- gangsspannung ist 45 bis 53 Volt. geregelt (KurzschluO). Bei Ruckregelung der Logik Solange die Ausgangsspannung in diesem Bereich Spannungsversorgung ist weder die Stromschleife bleibt, arbeitet das Gerat mit konstanter Spannung, kon- noch die Spannungsschleife ausgeglichen. Dies wird stantem Strom mit automatischer Begrenzungsum- auf der Frontplatte dargestellt (bei Betrieb dunkel). schaltung. Bei Spannungen unter etwa 4 V, wird der Siehe Bild 2-5.

ADD NOV 1985 Bedienungsanleitung - PS 5010

Constant Maximum Voltage Operating J Mode f Range / Power Power Supply Supply Constant 4 - - Foldback + + Line Mode

Specified operating region is shaded. 3391-05

Bild 2-5. Grafik der Ausgangscharakteristika einer logischen Spannungsversorgung.

Bild 2-6. In Reihe geschaltete Spannungsversorgungen. In Reihe geschaltete Spannungsversorgungen Die Ausgange von zwei oder mehreren PS 5010 kon- Beide Spannungsversorgungen sollten fur die nen, wie in Bild 2-6 gezeigt, in Reihe geschaltet werden. gleiche Spannung programmiert werden. Bei Betrieb Dadurch erhalt man eine Ausgangsspannung, die der kann die Anzeige einer Spannungsversorgung dunkel Summe der Ausgangsspannungen aller Spannungsver- werden. Dadurch wird angezeigt, daB sie auBerhalb des sorgungen entspricht. Um die gewunschte Ausgangs- Regelbereichs ist. Das kommt vor, wenn die eine Span- spannung zu erhalten, muO jede Spannungsversorgung nungsversorgung durch die andere in eine [Jberspan- individuell programmiert werden. nung gebracht wird. Wenn der Laststrom hoch genug ansteigt, schaltet eine Spannungsversorgung in den Konstantstrom-Betrieb und die andere auf Konstant- ANMERKUNG spannung. Die Ausgange der PS 5010 sind mit Dioden ver- sehen, die in Reihe geschaltete Spannungsversor- Polaritatswechsel der Lastspannung gungen vor Polaritatsumkehr bei KurzschluB der Last, oder wenn eine Spannungsversorgung nicht Wenn die Polaritat am Ausgang einer Stromversor- eingeschaltet ist, schijtzen. gung umgekehrt wird, legt eine Schutzdiode am Aus- gang eine Vorspannung an, die die Umkehrung auf den Spannungsabfall der Diode begrenzt. Dies kann vorkom- Parallel geschaltete Spannungsversorgungen men, wenn eine Stromversorgung mit einer anderen in Reihe geschaltet ist und eine der beiden Stromversor- Die Ausgange von zwei oder mehreren PS 5010 kon- gungen in Strombegrenzung arbeitet. Die Diode schutzt nen, wie in Bild 2-7 gezeigt, parallel geschaltet werden. den Ausgangstransistor vor ljberlastung und den Aus- Dadurch erhalt man einen Ausgangsstrom, der der gangskondensator vor Polaritatsum kehr. Summe der Ausgangsstrome aller Spannungsversor- gungen entspricht. Um den gewunschten Ausgangs- strom zu erhalten, mu8 jede Spannungsversorgung indi- viduell programmiert werden. Um eine Beschadigung des Gerates zu vermeiden, muB der Strom bei Polaritatsumkehrung auf 3 A ANMERKUNG oder weniger begrenzt werden.

Die + und -Spannungsversorgungen sind intern in Polaritatswechsel des Laststromes Reihe geschaltet. Deshalb konnen die + und - Spannungsversorgungen nicht extern parallel Bei manchen Grundanwendungen und in digitalen geschaltet werden, wenn man einen Strom errei- Schaltkreis-Anwendungen kann sich die Last wie eine chen will, der der Summe der Ausgangsstrome aller Stromquelle fur einen Teil des Betriebsablaufs verhalten. Spannungsversorgungen entspricht. Da der Ausgangs-Schaltkreis einer seriengeregelten

ADD NOV 1985 ljberspannung

VORSICHT

Power Power Legen Sie keine externe Spannung an, die groBer ist Supply Supply als die als Maximum angegebene Ausgangs- spannung der Spannungsversorgung an den Ausgangsanschlussen. 1- COM + - COM + Ein Bauteileausfall in der PS 5010 kann zu schweben- den Ausgangsspannungen fuhren, die den normalen Bereich ubersteigen. Wenn kein externer Schutz vor- gesehen ist, kann dadurch die Last beschadigt werden. Die Ausgangsanschlusse der Spannungsversorgung sind durch eine Schutzschaltung vor ljberspannung geschutzt, die bei etwa 6,2 Vauslost. Wenn durch einen internen Fehler, oder durch eine angelegte Spannung diese Grenze uberschritten wird, lost die Schutzschal- tung aus und schaltet die Versorgung vom Grundgerat ab. Dadurch ijffnen sich die Ausgangsrelais und schut- Zen so die Last und die Spannungsversorgung vor Bild 2-7. Parallel geschaltete Spannungsversorgungen. Beschadigung. Stromversorgung in einer Richtung verlauft, wird der Strom nicht in die entgegengesetzte Richtung gehen, es Anschlufi der Last und von Mefigeraten sei denn uber unerwiinschte Pfade. Die internen Umkehrstrom-Dioden leiten nur, wenn sich die Eine haufige Quelle von Spannungsfehlern ist das AnschluOspannung des PS 5010 umkehrt. Der AnschluO falsche AnschlieBen von Lasten und von MeOgeraten an eines KurzschluO-Widerstandes (R,), wie in Bild 2-8 dar- den Ausgang einer Spannungsversorgung. Wenn die gestellt, bietet einen externen Umkehr-Strompfad, Anschlusse auf der Frontplatte benutzt werden, sind die SodaO die Spannungsversorgung immer Strom abgibt. Fuhlerleitungen intern angeschlossen. Siehe Bild 2-9. Dadurch wird die Lastregelung am AnschluR aufrechter- halten. Jeder Leistungswiderstand fuhrt zu einem Span- nungsabfall an der Last. Das Messen der Ausgangslei- stung oder die ijberprufung der Spezifikationen muO am AusgangsanschluO erfolgen. Wenn ein Ausgang zur Stromversorgung mehrerer Lasten verwendet wird, mu8

Power Active 1Supply Load

Monitor .Connection To load Power

Banana leads such as Tektronix Part No. 0 12-003 1 -00 or 0 1 2-0039-00

- -- - Bild 2-8. Ruckstrom-KurzschluOwiderstand(Rs) mit Bild 2-9. Richtiger AnschluO von Last- und MeBgerate- aktiver Last. leitungen zur Vermeidung von Spannungsfehlern.

ADD NOV 1985 Bedienungsanleitung - PS 5010 jede Last mit einem eigenen Leitungspaar, wie in Bild verhalten stark reduziert. Da dieser Kondensator zeit- 2-10 gezeigt, angeschlossen werden. Die durch den weilig grof3e Strome in einen schnell abfallenden Lastwi- Spannungsabfall in den Ausgangsleitungen verursachte derstand gibt, kdnnen empfindliche Komponenten der Regelspannungsanderung der Last ist gewohnlich Last durch diesen Strom beschadigt werden, bevor die unbedeutend. Wenn nicht, kann die Fern-Abtastung Spannungsversorgung Zeit gefunden hat den Strom zu uber die ruckseitige Schnittstelle verwendet werden. begrenzen. Soll der Ausgang einer Spannungsversorgung bei Fern-Abtastung geschaltet werden, muB der Schalter Ruckseitige Schnittstellen-Ausgange sowohl die Ausgangsleitungen als auch die Fuhlerleitun- gen unterbrechen. Es ist wunschenswert, daO die Fuh- Die Ausgange der Logik Spannungsversorgung und lerleitungen als erste geoffnet und als letzte geschlos- der erdfreien Spannungsversorgung, sowie die dazuge- sen werden. Bei Benutzung des Druckknopfes OUTPUT hdrenden Fuhlerleitungen stehen an der ruckseitigen ON-OFF wird dies intern durchgefuhrt. Schnittstelle zur Verfugung. Der Logik-Ausgang steht gleichzeitig auf der Frontplatte und an der ruckseitigen Fern-Abtastung Schnittstelle zur Verfugung. Die Fuhlerleitungen sind uber 1 kQ Widerstande rnit den Anschlussen auf der Fern-Abtastung bedeutet Erfassung der Spannungs- Frontplatte verbunden. Dieser Widerstand ist groB ruckkopplung am Lastpunkt, statt an den Ausgangsan- genug, soda8 die Leitungen leicht auf das Potential der schlussen. Dadurch wird die Spannungsstabilitat an der Last gebracht werden kdnnen. Die drei erdfreien Aus- Last verbessert, weil sie es der Spannungsversorgung gange und die dazugehorenden Fuhlerleitungen werden ermoglicht, den Spannungsabfall in den Leitungen zu mit dem Schalter S1500, der an der Ruckseite des Gera- kompensieren. Die Fern-Abtastung beeinfluBt nur die tes liegt, auf die Frontplatte oder die ruckseitige Schnitt- Spannungsschleife; auf den Konstantstrom-Betrieb hat stelle geschaltet. Werden die ruckseitigen Schnittstel- sie keinen EinfluR. Da die Anwendung der Fern-Abta- len-Ausgange benutzt, muO Fern-Abtastung verwendet stung den Ruckkopplungspfad auRerhalb der Span- werden. nungsversorgung legt mu8 Vorsorge getroffen werden, daB keine Spannungsfehler, Rauschen oder Instabilitat Bei Verlangerung der Ausgangsleitungen entsteht am in die Spannungsschleife gelangen kann. Siehe Bild Ausgang eine Serieninduktivitat. Dadurch wird die 2-11. Wechselspannungsimpedanz erhoht, welche das Ein- Die Leitungen zur Last sollten so stark sein, daO sie schwingverhalten der Last herabsetzt. Dieser Effekt den Spannungsverlust moglichst niedrig halten. Jede kann durch einen Kondensator rnit guten HF-Eigen- Fuhlerleitung ist uber eine Diode an ihren Ausgang ange- schaften direkt am Lastpunkt auf ein Minimum reduziert klemmt. Dadurch werden unkontrollierte Regulier- werden. GroBere Kondensatonverte verbessern das Ein- schwingungen verhindert, wenn die Fuhlerleitungen aus schwingverhalten im Konstantspannungs-Betrieb, im Versehen nicht angeschlossen worden sind. Diese Dio- Konstantstrom-Betrieb wird dagegen das Einschwing- den begrenzen den Leitungsabfall der Last den die Spannungsversorgung ausgleichen kann. Die Lastregu- lierung ist fur die PS 5010 spezifiziert rnit 500 mV maxi- maler Spannungsabfall kombiniert in beiden Lastleitun- gen. Obwohl der durch die Fuhlerleitungen flieBende Strom klein ist, ist er nicht ganz unbedeutend. Dieser Strom erzeugt einen Spannungsabfall in der Fuhlerlei- tung, der zu Fehlern fuhren kann. Auch hier ist als Bedie- Power nung fur die Lastregulierung eine maximale lmpedanz der kombinierten Fuhlerleitungen von 400 mQ spezi- fiziert. Um Rauschen und ljbertragung der ~etzfrequenz,die in der Spannungsschleife verstarkt und im Ausgang erscheinen konnte, zu vermeiden, sollten die Fuhlerlei- tungen abgeschirmt werden. Die Abschirmung sollte nur an der Seite der Spannungsversorgung mit dem Chassis verbunden sein.

Erdschleifen bei Logik Spannungsversorgungen Der Null-Ausgang der Spannungsversorgung ist in- tern mit dem Chassis verbunden. Wenn dieser AnschluO Load Load Load 1 2 3 auch mit der Erdung am Lastpunkt verbunden ist, ent- steht eine Erdschleife. Kann diese Situation nicht ver- mieden werden wird empfohlen, fur die Erdungsleitung der Logik Spannungsversorgung einen moglichst guten Leiter zu verwenden. Dadurch wird sichergestellt, daO Bild 2-10. AnschluO mehrerer Lasten. Rikkstrome zuerst uber diesen Leiter flieOen statt uber unerwunschte Pfade.

ADD NOV 1985 Bedienungsanieitung- PS 5010

PS 5010 rear interface I + Sense

+ 10pF 50 v Aluminum It needed

Observe sense lead polarrty when connectrng leads to load Also see n7aterial under headmg Floating Linlrtatlons rn this sect~on Connectron informatron can be found in Rear Inter- tacr paif of Maintenance section (Sectlon 6) and In the PO WPI n~odi~It=11?at)iia1

Bild 2-11. Typische Anwendung mit Fefn-Abtastung.

Erdfreie Anschlusse Wenn diese Spannungsversorgung auf einem erd-

schwebenden Potential gearbeitet, betriigt die maximal zulassige Spannung gegen Erde an jedem Frontplatten- ausgang 150 V,. Wenn, z. B., die Spannungsversorgun- gen mit +3O V betrieben werden, kann der Null-AnschluB auf jedes Potential zwischen Plus und Minus 120 V Gleichspannung oder Spitze Wechselspannung gegen Erde gelegt werden. Die maximal zulassige Spannung gegen Erde an jedem ruckseitigen Schnittstellen-, oder Fuhler-AnschluB, betrtigt 60 V Gleichspannung oder 42 V, Wechselspannung.

Wird irgendeiner der Ausgangsanschliisse erdfrei gemacht, wird durch die Verbindung eines der freien Anschliisse mit Erde die game Spannungs- versorgung auf das erdfreie Potential angehoben. Hat das erdfreie Potential entgegengesetzte Polari- tat, oder iibersteigt es die angegebenen Hochst- werte, kann die PS 5010 schwer beschadigt werden.

ADD NOV 1985

Section 3-PS 5010

PROGRAMMING

Introduction This section of the manual provides information for pro- gramming the PS 5010 by remote control via the digital in- VNEG VNEG? terface. In this manual the digital interface is called the IEEE- INEG INEG? 488 General Purpose Interface Bus (GPIB). The following VPOS VPOS? information assumes the reader is knowledgeable in GPlB IPOS IPOS? communications and has some exposure to programming controllers. Communication via the GPlB is specified and VTRA described in the IEEE Standard 488-1978, Standard Digital ITRA Interface for Programmable lnstrumentationl. TM 5000 in- VLOG VLOG? struments are designed to communicate with any GPIB- ILOG ILOG? compatible controller that sends and receives ASCII messages (commands) over the GPIB. These commands GENERAL program the instrument or request information from the r instrument. f FSOUT ON DT SET FSOUT OFF DT OFF FSOUT? DT? LSOUT ON ERR? Commands for TM 5000 programmable instruments are LSOUT OFF INIT LSOUT? LRI ON designed for compatabilty among instrument types. The OUT ON LRI OFF same command is used in different instruments to control LRI? NRI ON similar functions. In addition, commands are specified in NRI OFF mnemonics related to the functions they implement. For ex- NRI? ample, the command INIT initializes instrument settings to PRI ON PRI OFF their power-up states. For further ease of programming, USER ON PR I? command mnemonics match those on the front panel. USER OFF REG? USER? PQS ON R2S OFF RQS? Instrument commands are presented in three formats: SET? TEST 1 A front panel illustration - showing command rela- tionships to front panel operation. See Fig. 3-1. Fig. 3-1. Bus commands and relationships to the front panel. Functional Command List - A list divided into func- tional groups with brief descriptions.

Detailed Command List - An alphabetical listing of commands with complete descriptions. The GPIB primary address for this instrument may be internally changed by qualified service personnel. The 'Published by the Institute of Electrical and Electronics Engi- PS 5010 is shipped with the address set to decimal 22. The neers, Inc., 345 East 47th Street, New York, NY, 10017 message terminator may also be internally selected by quali- fied service personnel. Message terminators are discussed in Messages and Communication Protocol (in this section). TM 5000 instruments are shipped with this terminator set to TM 5000 programmable instruments connect to the EOI ONLY. Refer qualified service personnel to the Mainte- GPlB through a TM 5000 power module. Refer to the Oper- nance section of this manual for locations and setting infor- ating Instructions section of this manual for information on mation. Pressing the INST ID button causes the instrument installing the instrument in the power module. Also review to display its selected GPlB primary address; the far right this section to become familiar with front-panel and internal- decimal point lights if the selected message terminator is ly selectable instrument functions. LFIEOI. COMMANDS

The instrument is controlled by the front panel or via OUTPUT?-Returns FSOUT and LSOUT ON or OFF. commands received from the controller. These commands FSOUTPUT ON-Connects the floating supplies to the are of three types: output terminals. FSOUTPUT OFF-Disconnects the floating supplies from Setting commands control instrument settings - the output terminals. Query-output commands ask for data - FSOUTPUT?-Returns FSOUT ON or OFF. Operational commands cause a particular action - LSOUTPUT ON-Connects the logic supply to the output terminals. LSOUTPUT OFF-Disconnects the logic supply from the The instrument responds to and executes all commands output terminals. when in the remote state. When in the local state, setting LSOUTPUT?-Returns LSOUT ON or OFF. and operational commands generate errors since instru- ment function are under front panel control; only query-out- put commands are executed. lnstrument Status Commands Each command begins with a header - a word that de- REGULATION?-Returns regulation status of all supplies. scribes the function implemented. Many commands require LRI ON-Enables logic supply regulation interrupt. an argument following the header - a word or number LRI OFF-Disables logic supply regulation interrupt. which specifies the desired state for the function. LRI?-Returns LRI ON or LRI OFF. NRI ON-Enables negative supply regulation interrupt. NRI OFF-Disables negative supply regulation interrupt. FUNCTIONAL COMMAND LIST NRI?-Returns NRI ON or NRI OFF. PRI ON-Enables positive supply regulation interrupt. PRI OFF-Disables positive supply regulation interrupt. lnstrument Commands PRI?-Returns PRI ON or PRI OFF. RQS ON-Enables generation of service requests. ILOGIC-Sets logic supply current limit. RQS OFF-Disables generation of service requests. ILOGIC?-Returns logic supply current limit. RQS?-Returns RQS ON or OFF. VLOGIC-Sets logic supply voltage limit. USEREQ ON-Enables SRQ when ID button is pushed. VLOGIC?-Returns logic supply voltage limit. USEREQ OFF-Disables SRQ when ID button is pushed. INEGATIVE-Sets negative supply current limit. USEREQ?-Returns USER ON or OFF. [NEGATIVE?-Returns negative current limit. VNEGATIVE-Sets negative voltage limit. VNEGATIVE?-Returns negative voltage limit. IPOSITIVE-Sets positive current limit. System Commands IPBSITlVE?-Returns positive current limit. VPOSITIVE-Sets positive voltage limit. DT SET-Updates hardware after . VPOSITIVE?-Returns positive voltage limit. DT OFF-Updates hardware without message. ITRACK-Sets positive and negative current limits. DT?-Returns DT SET or OFF. VTRACK-Sets positive and negative voltage limits. ERROR?-Returns error code. ID?-Returns instrument identification and firmware version. InputlOutput Commands INIT-Initializes instrument settings. OUT ON-Connects supplies to output terminals. SET?-Returns instrument settings. OUT OFF-Disconnects supplies from output terminals. TEST-Returns 0 or ROM error code. DETAILED COMMAND LIST

I DT (device trigger) ERROR?

Type: Type: Setting or query Query

Setting syntax: Query syntax: DT SET ERR: DT OFF

Query ERROR? response: Examples: ERR 103; DT SET ERR 204; DT OFF

Discussion: Query syntax: This command returns an error code for the most recent DT? error reported via serial poll. When the error status reporting is disabled (RQS OFF) this command returns the highest priority condition pending. The condition is cleared and not Query response: reported again. DT SET; DT OFF;

Discussion: This command causes the instrument to wait for the (group execute trigger) interface message before updating the hardware to new settings. The OFF argument permits hardware updating without the message.

ERROR? FSOUTPUT

Type: Type: Setting or query Query

Setting syntax: Query syntax:

FSOUT ON ID? . FSOUT OFF

Query response: Examples: ID TEKIPS50101V79.1 ,FXX; FSOUT ON FSOUTPUT OFF Discussion: XX indicates the firmware version number. Query syntax: FSOUT?

Query response: FSOUT ON; FSOUT OFF;

Discussion: This command connects or disconnects both floating supplies to or from their respective output terminals. Some protective components remain connected to the output ter- minals. Refer to schematics 11 and 12 for components that remain connected.

FSOUTPUT ID? INEGATIVE

Type: Type: Setting or query Setting or query

Setting syntax: Setting syntax: ILOG INEG

Examples: Examples: ILOG 2.8 INEG 1.45 ILOG .1 INEG 1 ILOGIC 2 INEGATIVE .3

Query syntax: Query syntax: INEG? ILOG?

Query response examples: Query response examples: INEG 1.1 ; INEG .750;

Discussion: Discussion: This command sets the negative supply current limit to This command sets the logic supply current limit to the the absolute value specified. The units for the setting and value specified. The units are amperes for both the setting query versions are amperes. The range is 0.050 A to and query versions. The range is 0.10 A to 3.0 A and the 0.750 A (1.6 A at 15 V and below) in the high power com- resolution is 100 mA. partment and 0.050 A to 0.40 A (0.75 A at 15 V and below) in the standard compartment. The resolution is 0.050 A.

INEGATIVE Type: Type: Operational Setting or query

Operational syntax: Setting syntax: INIY IPOS

Discussion: Examples: This command changes instrument settings to the pow- IPOS .45 er-on state. These settings are shown in Table 3-3 in this IPOS 1 section. IPOSlTlVE 0.3

Query syntax: IPOS?

Query response examples: IPOS 1.1; IPOS .750;

Discussion: This command sets the positive supply current limit to the value specified. Units for the setting and query versions are in amperes. The range is 0.05 A to 0.750 A (1.6 A at 15 V and below) in the high power compartment and 0.05 A to 0.40 A (0.75 A at 15 V and below) in the standard com- partment. The resolution is 0.05 A. LLSET

' Type: Type: Setting Setting or query

Setting syntax: Setting syntax: JTRA LLSET

Examples: Query syntax: ITRA 0.45 LLSET? ITRA 1.0 ITRACK .3 Query response:

Discussion: LLSET ; This command sets the magnitude of both floating sup- plies to the absolute value specified. Units are amperes. The Discussion: range is 0.05 A to 0.750 A (1.6 A at 15 V and below) in the high power compartment and 0.05 A to 0.40 A (0.75 A at The setting command changes all instrument settings to 15 V and below) in the standard compartment. The resolu- the states as specified in the binary block argument. Use tion is 0.05 A. this command for rapid transfer of settings. The binary block is generated by the instrument and is not intended to be generated or modified by the user. The query returns all instrument settings in low level (binary) format.

The binary block format consists of the percent (O/O) sign (decimal 37) followed by a two byte binary count, the data bytes and finally the checksum. The two byte binary count (integer, most significant bit first) specifies the number of data bytes plus the checksum byte. The checksum is the 2's complement of the modulo 256 sum of the preceding binary data bytes and the binary count bytes. The checksum does

not include the O/O sign.

LLSET LSOUTPUT

Type: Type: Setting or query Setting or query

Setting syntax: Setting syntax: LRI ON LSOUT ON LRI OFF LSOUT OFF

Examples: Examples: LRI ON LSOUT ON LRI OFF LSOUT OFF

Query syntax: Query syntax: LRI? LSOUT?

Query response: Query response: LRI ON; LSOUT ON; LRI OFF; GOUT OFF;

Discussion: Discussion: This command enables the logic supply regulation inter- This command connects or disconnects the logic supply rupt. SRQ is asserted when the logic supply changes be- to its positive output terminal. Some protective components tween any two of the three regulated modes. These modes remain connected to the output terminals. Refer to sche- are constant voltage, constant current and unregulated. The matic 8 for components that remain connected. device dependent serial poll status byte indicates which supply caused the SRQ and the mode changed to. See Ta- ble 3-1.

The status message returned (with RQS asserted), as a result of enabling the LRI interrupt, does not necessarily show the instruments present status. It shows the status which was latched at the time the interrupt occurred. Use the command REG? to determine present status.

LSOUTPUT NRI OUTPUT

Type: Type: Setting or query Setting or query

Setting syntax: Setting syntax: NRI ON OUT ON NRI OFF OUT OFF

Examples: Examples: NRI ON OUT ON NRI OFF OUTPUT OFF

Query syntax: Query syntax: NR I? OUT?

Query response: Query response examples: NRI ON; NRI OFF; FSOUT ON; LSOUT OFF; FSOUT OFF; LSOUT ON;

Discussion: Discussion: This command enables the negative supply regulation in- terrupt. SRQ is asserted when the negative supply changes This command connects or disconnects all supplies to or between any two of the three modes. These modes are con- from their respective output terminals. Some protective stant voltage, constant current and unregulated. The device components remain connected to the output terminals. Re- dependent serial poll status byte indicates the supply fer to schematics 8, 11, and 12 for components that remain causing the SRQ and the mode changed to. See Table 3-1. connected.

The status message returned (with RQS asserted), as a result of enab!ing the NRI interrupt, does not necessarily show the instruments present status. Instead, it shows the status which was latched at the time the interrupt occurred. Use the command REG? to determine present status.

NRI OUTPUT PRI REGULATION?

Type: Type: Setting or query Query

Setting syntax: Query syntax: PRI ON REG? PRI OFF REGULATION?

Examples: Query response: PRI ON REG , , PRI OFF

Discussion: Query syntax: This command provides a means of determining the reg- PRI? ulation status of the three supplies. The three numbers re- turned apply to the negative, positive, and logic supplies in that order. The numbers returned mean: (1) supply is in con- Query response: stant voltage mode, (2) supply is in constant current mode, (3) supply is unregulated. PRI ON; PRI OFF;

Discussion: This command enables the positive supply regulation in- terrupt. SRQ is asserted when the positive supply changes between any two of the three modes. These modes are con- stant voltage, constant current and unregulated. The device dependent serial poll status byte indicates the supply causing the SRQ and the mode changed to. See Table 3-1.

The status message returned (with RQS asserted), as a result of enabling the PRI interrupt, does not necessarily show the instruments present status. Instead, it shows the status which was latched at the time the interrupt occurred. Use the command REG? to determine present status.

PRI REGULATION? RQS SET?

Type: Type: I Setting or query Query I

Setting syntax: Query syntax: SET? RQS ON RQS OFF Query response example: Examples: VNEG 0.O;INEG 0.4;VPOS 0.O;IPOS 0.4;VLOG 5.0; ILOG 1.O; FSOUT 0FF;LS OUT 0FF;NRI 0FF;PRI OFF; RQS ON LRI OFF; DT 0FF;USER 0FF;RQS ON; RQS OFF

Discussion: Query syntax: 1 Returns values for all instrument states as shown in RQS? example.

Query response: RQS ON; RQS OFF;

Discussion: This command enables the instrument to generate ser- vice requests. The OFF version of the command disables all service requests.

RQS SET? TEST USEREQ

Type: f ype: Output Setting or query

Output syntax: Setting syntax: . TEST USER ON USER OFF USEREQ ON Discussion: USEREQ OFF This command returns 0 or the error code corresponding to the ROM in which the checksum error was found. See Query syntax: Table 3-2. USER? USEREQ?

Query response: USER ON; USER OFF;

Discussion: Enables SRQ when INST ID front panel button is pressed.

TEST VLOGIC VNEGATIVE

Type: Type: Setting or query Setting or query

Setting syntax: Setting syntax: VLOG VNEG 26.7 VLOGIC VNEGATIVE -3.5

Examples: Query syntax: VLOG 5 VNEG? VLOGIC 4.97 VNEGATIVE?

Query syntax: Query response example: VLOG? VNEG 23.2; VLOGIC? VNEG 1 .O;

Query response example: Discussion: VLOGIC 5.1 ; This command sets the negative floating supply voltage limit to the value specified. The units are volts for both the setting and query versions. The range is 0 to -32 V and the Discussion: resolution is 0.01 0 V to 10 V and 0.1 0 V above 10.0 V. This command sets the logic supply voltage limit to the value specified. The units are volts for both the setting and query versions. The range is 4.5 V to 5.5 V and the resolu- tion is 0.01 0 V.

REV OCT 1986 VLOGIC VNEGATIVE VPOSITIVE VTRACK

Type: Type: Setting or query Setting

Setting syntax: Setting syntax: VPOS VTRA VPOSITIVE VTRACK

Query syntax: Examples: VPOS? VTRA 25.3 VPOSITIVE? VTRA 5.02 VTRACK 2

Query response example: Discussion: VPOS 1.o; VPQS 29.7; This command sets the voltage magnitude of both float- ing supplies to the absolute value specified. Units are volts. The range is 0 V to 32 V and the resolution is 0.01 V to 10 V Discussion: and 0.1 0 V above 10.0 V. This command sets the positive floating supply voltage limit to the value specified. The units are volts for both the setting and query versions. The range is 0 V to $32 V and the resolution is 0.01 V to 10 V and 0.1 0 V above 10.0 V.

VPOSITIVE VTWACK REV OCT 1986 MESSAGES AND COMMUNICATION PROTOCOL

Command Separator If extra formatting characters SP, CR, and LF (the LF cannot be used for format in the LFIEOI terminator mode) A message consists of one command or a series of com- are added between the header delimiter and the argument, mands, followed by a message terminator. Messages con- they are ignored by the instrument. sisting of multiple commands must have the commands separated by semicolons. A semicolon at the end of a mes- Example 1: RQSs,ON; sage is optional. For example, each line below is a message. Example 2: ROSS, ,, ON; Example 3: ROSS, ,, ,, ,, ,, ON lN IT TEST; 1NlT;RQS 0N;USER OFF;ID?;SET? TEST; In general, these formatting characters are ignored after any delimiter and the beginning and end of a message.

Message Terminator Messages may be terminated with EOI or the ASCll line feed (LF) character. Some controllers assert EOI concur- rently with the last data byte; others use only the LF charac- In the command list, some headers and arguments are ter as a terminator. The instrument can be internally set to listed in two forms, a full-length version and an abbreviated accept either terminator. With EOI ONLY selected as the version. The instrument accepts any header or argument terminator, the instrument interprets a data byte received containing at least the characters listed in the short form; with €01 asserted as the end of the input message; it also any characters added to the abbreviated version must be asserts EOI concurrently with the last byte of the output those given in the full-length version. For documentation of message. With the LFIEOI setting, the instrument interprets programs, the user may add alpha characters to the full- the LF character without EOI asserted (or any data byte length version. Alpha characters may also be added to que- received with EOI asserted) as the end of an input message; ry header, provided the question mark is at the end. it transmits carriage return (CR) followed by line feed (the LF with EOI asserted) to terminate output messages. Refer USER? service personnel to the Maintenance section of the manual USERE? for information on setting the message terminator. TM 5000 USEREQ? instruments are shipped with EOI ONLY selected. USEREQUEST?

Multiple arguments are separated by a comma; however, Formatting A Message the instrument will also accept a space or spaces as a delimiter. Commands sent to TM 5000 instruments must have the proper format (syntax) to be understood; however, this for- mat is flexible in that many variations are acceptable. The following describes this format and the acceptable variations.

The instruments expect all commands to be encoded in NOTE ASCII; however, they accept both upper and lower case In the last example, the space is treated as a format ASCll characters. All data output is in upper case. See Fig. character because it follows the comma (the argument 3-2. delimiter).

As previously discussed, a command consists of a head- Number Formats er followed, if necessary, by arguments. A command with arguments must have a header delimiter which is the space The instrument accepts the following kinds of numbers character SP between the header and the argument. The for any of the numeric arguments. space character ,+,, carriage return ,,, and line feed ,, are shown as subscripts in the following examples. Signed or unsigned integers (including +O and -0). Unsigned integers are interpreted as positive. RQSs,ON Examples: +1, 2, -1, -10. ASCll & IEEE 488 (GPIB] CODE CHART

8 (81 18 (24) 28 (40) 38 (56) 48 172) 58 (88) 68 (104) 78 (120) 11 TCT 31 EMSPD51) 71 111 131 151 171 100: HT 9 I Y i Y 9 (9) 19 (25) 29 141) 39 (57) 49 (731 59 (89) 69 (1051 79 (1211 12 32 52 7 2 112 132 152 172 10 10 LF SUB * J z i z A 110) 1A (261 2A (421 3A (58) 4A (741 5A (90) 6A (106) 7A (122) 13 33 53 113 153 73 I 0 1 1 VT ESC + 9 K 13, [ k I B (111 18 (27) 28 (431 38 (59) 48 (75) 58 (91) 68 (107) 78 (123) 14 34 54 114 134 \ 154 1100 FF Fs 9 74< L I I C (12)lC (28)2c (44)3C (60)4C (761% (92)6C (10817C (1241 15 35 5 5 7 5 115 155 '75 1 1101 CR GS - - M I rn 0 (13) 10 (29) 20 (45) 30 (61) 40 177) 50 (93) 60 (109) 70 (125) 16 36 56 116 l3 156 n 176 cv 111s so RS 76 > N E (141 1E (30) 2E (46) 3E (62) 4E 178) 5E 1941 6E (110) 7E (126) 17 37 57 77 7 UNL 117 137 UNT 157 RUBOUT 1111 SI us 0 - 0 ~~(DEL) f (15) IF (31) 2F lr7\ ?F (63) 4F (791 5F (95) 6f (111) 7F (127) --

--LI I ADDRESSED COMMANDS --- SECONDARY TALK ADDRESSES ADDRESSES I I OR COMMANDS UNIVERSAL COMMANDS I* I LISTEN ADDRESSES

KEY TO CHART

octa~-FrGPlB code -- ASCII character

hex- 15 (21I-, decimal

Fig. 3-2. ASCll and IEEE 488 (GPIB) Code Chart. Signed or unsigned decimal numbers. Unsigned When the instrument processes an operational command decimal numbers are interpreted to be positive. in a message, it executes any preceding setting commands Examples: -3.2, +5.0, .2. before executing the operational command.

Floating point numbers expressed in scientific notation. Examples: + 1.OE-2, 1.47E1, 1.E-2, 0.01 E+O. Multiple Messages The lnput Buffer has finite capacity and a single message may be long enough to fill it. In this case, a portion of the Rounding of Numeric Arguments message is processed before the instrument accepts addi- tional input. During command processing the instrument The instrument rounds numeric arguments to the nearest holds off additional data (by asserting NRFD) until space is unit of resolution and then checks for out-of-range available in the buffer. conditions.

When space is available, the instrument can accept a Message Protocol second message before the first has been processed. How- As the instrument receives a message it is stored in the ever, it holds off additional messages with NRFD until it lnput Buffer, processed, and executed. Processing a mes- completes processing the first. sage consists of decoding commands, detecting delimiters, and checking syntax. For setting commands, the instrument then stores the indicated changes in the Pending Settings After the instrument executes a query-output command Buffer. If an error is detected during processing the instru- in a message, it holds the response in its Output Buffer until ment asserts SRQ, ignores the remainder of the message, the controller makes the instrument a talker. If the instru- and resets the Pending Settings Buffer. Resetting the Pend- ment receives a new message before all of the output from ing Settings Buffer avoids undesirable states which could the previous message is read it clears the Output Buffer occur if some setting commands are executed while others before executing the new message. This prevents the con- in the same message are not. troller from getting unwanted data from old messages.

Executing a message consists of performing the actions One other situation may cause the instrument to delete specified by its command(s). For setting commands, this in- output. The execution of a long message might cause both volves updating the instrument settings and recording these the lnput and Output Buffers to become full. When this oc- updates in the Current Settings Buffer. The setting com- curs, the instrument cannot finish executing the message mands are executed in groups - that is, a series of setting because it is waiting for the controller to read the data it has commands is processed and recorded in the Pending generated; but the controller cannot read the data because Settings Buffer before execution takes place. This allows it is waiting to finish sending its message. Because the in- the user to specify a new instrument state without having to struments lnput Buffer is full and it is holding off the rest of consider whether a particular sequence would be valid. Ex- the controllers message with NRFD, the system is hung up ecution of the settings occurs when the instrument pro- with the controller and instrument waiting for each other. cesses the message terminator, a query-output command, When the instrument detects this condition, it generates an or an operational command in a message. The normal ex- error, asserts SRQ and deletes the data in the Output Buff- ecution of settings is modified by the DT SETTINGS er. This action allows the controller to transmit the rest of command. the message and informs the controller that the message was executed and that the output was deleted.

When the instrument processes a query-output com- mand in a message, it executes any preceding setting com- A TM 5000 instrument can be made a talker without hav- mands to update the state of the instrument. It then ing received a message which specifies what it should out- executes the query-output command by retrieving the ap- put. In this case, acquisition instruments (counters and propriate data and putting it in the Output Buffer. Then, pro- multimeters) return a measurement if one is ready. If no cessing and execution continue for the remainder of the measurement is ready, they return a single byte message message. The data are sent to the controller when the in- with all bits equal to 1 (with message terminator); other strument is made a talker. TM 5000 instruments will return only this message. INSTRUMENT RESPONSE TO IEEE-488 INTERFACE MESSAGES

Interface messages and their effects on the instruments DCLDevice Clear interface functions are defined in IEEE Standard 488-1978. The Device Clear message reinitializes communication Abbreviations from the standard are used in this discussion between the instrument and controller. In response to BCb, which describe the effects of interface messages on instru- the instrument clears any input and output messages and ment operation. any unexecuted settings in the Pending Settings Buffer. Also cleared are any errors or events waiting to be reported, except the power-on event. If the SRQ line is asserted for Bus interface control messages are sent as low level any reason other than power-on when DCL is received, the commands through the use of WBYTE controller com- SRQ is unasserted. mands. For the following commands A = 32 plus the instru- ment address and B = 64 plus the instrument address.

SDC-Selected Device Clear Listen WBYTE @ A: This message performs the same function as DCL; how- Unlisten WBYTE @ 63: ever, only instruments that are listen addressed respond to Talk WBYTE @ B: SDC. Untalk WBYTE @ 95: Untalk-unlisten WBYTE @ 63, 95: Device clear (DCL) WBYTE @ 20 GET-Group Execute Trigger Selective device clear (SDC) WBYTE @ A, 4: Go to local (GTL) WBYTE @ A, 1: The instrument responds to GET only if it is listen ad- Remote with lockout WBYTE @ A, 17, 63: dressed and the instruments device trigger function has Local lockout of all instruments WBYTE @ 17: been enabled by the Device Trigger command (DT). The Group execute trigger (GET) WBYTE @ A, 8: GET message is ignored and an SRQ generated if the DT function is disabled (DT OFF), the instrument is in the local state, or if a message is being processed when GET is These commands are for the TEKTRONIX 4050-Series received. controllers and representative for other controllers.

SPE-Serial Poll Enable SPD-Serial Poll Disable The SPE message enables the instrument to output When the UNL command is received, the instruments lis- serial poll status bytes when it is talk addressed. The SPD tener function goes to its idle state (unaddressed). In the idle message switches the instrument back to its normal oper- state, the instrument will not accept instrument commands ation of sending the data from the Output Buffer. from the GPIB.

The talker function goes to its idle state when the instru- MLA-My Listen Address ment receives the UNT command. In this state, the instru- MTA-My Talk Address ment cannot output data via the GPIB. The primary listen and talk addresses are established by the instruments GPIB address (internally set). The current setting of the GPIB address is displayed on the front panel The ADDRESSED light is off when both the talker and when the ID button is pressed. When the instrument is ad- listener functions are idle. If the instrument is either talk ad- dressed to talk or listen, the front panel ADDRESSED indi- dressed or listen addressed, the light is on. cator is illuminated.

IFClnterface Clear LLO-Local Lockout This uniline message has the same affect as both the UNT and UNL messages. The front panel ADDRESSED In response to LLO, the instrument goes to a lockout light is off. state-from LOCS to LWLS or from REMS to RWLS. REN-Remote Enable The instrument maintains a record of its settings in the Current Settings Buffer and new settings from the front If REN is true, the instrument goes to a remote state panel or the controller update these recorded settings. In (from LOCS to REMS or from LWLS to RWLS) when its ' addition, the front panel is updated to reflect setting listen address is received. REN false causes a transition changes due to commands. lnstrument settings are unaf- from any state to LOCS; the instrument stays in LOCS as fected by transitions between the four remote-local states. long as REN is false. The REMOTE indicator is illuminated when the instrument is in REMS or RWLS. A REN transition may occur after message processing has begun. In this case execution of the message being processed is not affected by a transition. Local State (LOCS) In LOCS, instrument settings are controlled by the opera- GTL-Go To Local tor via front panel pushbuttons. When in LOCS, only bus commands that do not change instrument settings are ex- Only instruments that are listen addressed respond to ecuted (query-output commands); all other bus commands GTL by going to a local state. Remote-to-local transitions (setting and operational) generate an error since their func- caused by GTL do not affect the execution of the message tions are under front panel control. being processed when GTL was received.

Remote-Local Operation Local With Lockout State (LWLS) The preceding discussion of interface messages de- scribes the state transitions caused by GTL and REN. Most The instrument operates the same as it does in LOCS, front panel controls cause a transition from REMS to LOCS except that rtl will not inhibit a transition to remote. by asserting a message called return-to-local (rtl). This tran- sition may occur during message execution; but in contrast to GTL and REN transitions, a transition initiated by rtl does Remote State (REMS) affect message execution. In this case, the instrument gen- erates an error if there are any unexecuted setting or oper- In this state, the instrument executes all instrument com- ational commands. Front panel controls that only change mands. For commands having front panel indicators, the the display (like ID) do not affect the remote-local states - front panel is updated when the commands are executed. only front panel controls that change settings assert rtl. The rtl message remains asserted while multiple keystroke settings are entered; and it is unasserted after the execution of the settings. Since rtl prevents transitions to REMS, the Remote With Lockout State (RWLS) instrument unasserts rtl if a multiple button sequence is not completed in a reasonable length of time (approximately 5 Instrument operation is identical to REMS operation ex- to 10 seconds). cept that the rtl message is ignored. Programming-PS 5010 STATUS AND ERROR REPORTING

Through the Service Request function (defined in the IEEE-488 Standard), the instrument may alert the controller that it needs service. This service request is also a means of indicating that an event (a change in status or an error) has If 0, STB indicates event class occurred. To service a request the controller performs a \-- If 1, STB indicates device status Serial Poll; in response the instrument returns a Status Byte \ \ I if requesting service (STB) which indicates whether it was requesting service or \ \-- not. The STB can also provide a limited amount of informa- \ 1 indicates an abnormal event tion about the request. The format of the information en- ,- coded in the STB is given in Fig. 3-3. When data bit 8 is set, the STB conveys Device Status information which is indicat- ed by bits 1 through 4.

DECIMAL Because the STB conveys limited information about an event, the events are divided into classes; the Status Byte reports the class. The classes of events are defined as follows: COMMAND lndicates the instrument has received a ERROR command which it cannot understand. ma1 conditions errors and system EXECUf ION lndicates that the instrument has re- ERROR ceived a command that it cannot ex- ecute. This is caused by arguments out of range or settings that conflict. INTERNAL lndicates that the instrument has de- ERROR tected a hardware condition or firmware problem that prevents operation. SYSTEM Events that are common to instru- EVENTS ments in a system (e.g., Power on, User Request, etc.). Fig. 3-3. Definition of status bytes. EXECUTION The instrument is operating but the WARNING user should be aware of potential problems. DEVICE Device dependent events. Status Byte. After determining that the instrument request- STATUS ed service (by examining the STB) the controller may re- quest the additional information by sending an error query The instrument can provide additional information about (ERR?). In response, the instrument returns a code which many of the events, particularly the errors reported in the defines the event. These codes are described in Table 3-1.

REV APR 1982 Table 3-1 ERROR QUERY AND STATUS INFORMATION

Abnormal Conditions - -- Bus response Response to Event to ERR? serial polla Command Errors Command header error Header delimiter error Command argument error Argument delimiter error Missing argument Invalid message unit delimiter Binary block checksum error binary block byte counter error Execution Errors Command not executable in local mode Returned to local, new settings pending lost I10 buffers full, output dumped Settings conflicts Argument out of range Group execute trigger ignored Internal Errors System error 302 99 or 115 Math pack error 303 99or 115

Normal Conditions System Events Power on User request - Device Dependent Events Negative supply goes to constant voltage mode Negative supply goes to constant current mode Negative supply goes to unregulated mode Positive supply goes to constant voltage mode Positive supply goes to constant current mode Positive supply goes to unregulated mode Logic supply goes to constant voltage mode Logic supply goes to constant current mode Logic supply goes to unregulated mode aIf the message processor is busy, the instrument returns the higher decimal number. Table 3-2 With RQS OFF the controller may perform a Serial Poll, FRONT PANEL ERROR CODES but the Status Byte only contains Device Dependent Status information. With RQS ON, the STB contains the class of the event and a subsequent error query returns additional Displayed Abnormal Events information about the previous event reported in the STB. 302 System error 303 Math pack error 340 System RAM error Power Up (Initial) Conditions 341 System RAM error (low nibble) 372 COO0 ROM placement error During power up, the PS 5010 microprocessor performs 373 DO00 ROM placement error a diagnostic routine (self test) to check the functionality of 374 EOOO ROM placement error the ROM and RAM. If no error is found, the instrument en- ters the Local State (LOCS) with the default settings as 375 FOOO ROM placement error listed in Table 3-3. The SRQ line on the GPlB is also COO0 ROM checksum error 392 asserted. 393 DO00 ROM checksum error Table 3-3 394 EOOO ROM checksum error 395 FOOO ROM checksum error POWER ON SETTINGS 52 1 Signature analysis mode The instrument goes to the following settings at power on If there is more than one event to be reported, the instru- and when the INlT command is executed. Characters in par- ment continues to assert SRQ until it reports all events. enthesis are not entered as part of the argument. Each event is automatically cleared when it is reported via Serial Poll. The Device Clear (DCL) interface message may Header I Argument be used to clear all events except Power on. - - VPQSitive 0.0 (V) IPOSitive 0.4 (A) Commands are provided to control the reporting of some VNEGative 0.0 (V) individual events and to disable all service requests. For ex- INEGative 0.4 (A) ample, the User Request command (USEREQ) provides in- VLOGic 5.0 (V) dividual control over the reporting of the user request event l LOGic 1.o (A) which occurs when the front panel ID button is pushed. The FSOUTput OFF Request for Service command (RQS) controls whether the LSOUTput OFF instrument reports any events with SRQ. PRI OFF NR I OFF RQS OFF inhibits all SRQs so in this mode the ERR? LR I OFF query allows the controller to find out about events without RQS ON first performing a Serial Poll. With RQS OFF, the controller USEReq OFF may send the ERR? query at any time and the instrument DT OFF returns an event waiting to be reported. The controller can clear all events by sending the error query until a zero (0) code is returned, or clear all events except Power-on If an internal error is found, an error code is displayed in through the DCL interface message. the front-panel readout. See Table 3-2 for error codes.

REV SEP 1981 APPLICATIONS

Talker Listener Program For 4050 Series Rem PS5010 TALKER/LISTENER PROGRAM Controllers Rem PRIMARY ADDRESS = 22 Init all This sample program allows sending the listed com- On srq then gosub srqhdl mands and receiving the data generated. Enable srq Dim respons$ to 200 Input prompt "ENTER MESSAGE(S): ":message$ Print #22 :message$ Rem CHECK FOR QUERIES 100 REfi PS5010 lhLKEK/LXSTENER PROGRAPI If podmessage$, "? ",1 ) then goto 260 110 REfl PSSO1U PRIflARY AOQHESS = 22 Rem CHECK FOR 'TEST' COMMAND 120 INIT If pos(message$ ,"TESTn, 1 ) then goto 260 130 ON SHQ THEN 240 Goto 160 140 Din h$<200> Rem INPUT FROM DEVICE Rem LLSET? sends non-printable ASCII data 150 PRINT "ENTER fiESSAGE(S)r "; Rem in binary block format 160 INPUT C1 170 m1N.r ~22:~s Input #22:respons$ Print "RESPONSE: ";respons$ 103 REM CHECN FOR C-UERIES Goto 160 170 IF POS(C$ "'i'" t 1 )'(I THE14 150 200 REfl INPUT FROn DEVICE Rem SERIAL POLL ROUTINE 210 INPUT @22:A$ Srqhdl: poll stb,pri 220 PRINT n$ Print "STATUS BYTE: ";stb 2x1 GO 'ro 150 Resume 240 REA SERIAL. POLL ROUTINE End 25Q POL1 X 1 Y i 22 2h0 PRINT "STATUS RYTE: "tY 27(1 RETURN

4050 Series Talker Listener Program Description This program must be typed into the 4050 series control- ler before the PS 501 0 is powered up. The PS 501 0 asserts SRQ on power up. The program will clear the SRQ by Sample Program polling the instrument before proceeding. The program starts with two remark statements, one titling the program This program illustrates how the PS 501 0 can be used to and the other listing the instruments factory set primary ad- learn front panel settings. The program varies these settings dress, 22. Line 130 allows a transfer to line 240. Upon an by a selected percentage using only the INST ID button, SRQ interrupt, lines 250 and 260 clear the serial poll and which operates as a user interrupt. print a status byte. The condition that generated the SRQ can be determined by reviewing Table 3-1. Statement 140 dimensions A character string (A$). The default length for Line 110 tells the controller the location of the poll A$ in the 4050 series is 72 characters (1 line). Line 150 routine. prompts the user for a message (command or query). The message entered is assigned to C$. C$ is sent to the Line 150 tells the PS 5010 that the INST ID button is to PS 5010 by the print statement at line 170. If the message be used as a user interrupt. is a settings command, the front panel displays change to reflect the value sent. Statement 180 is a remark statement. Lines 290 and 300 are examples of commands assigning Statement 190 checks C$ for a question mark. If a question instrument settings to variables. mark is included in C$, the message contained a query. The program moves on to statement 200, 210 and 220 which Line 390 shows the use of an arithmetic variable as a will input the response to the query from the PS 5010 and command argument. print it on the computer screen. Lines 450 through 530 are the SRQ service routine to do a poll, print out the POLL status and the error query Talker Listener Program For the 4041 Controller response. This sample program allows sending the listed com- Line 470 checks if the SRQ was generated by the INST mands and receiving the data generated. ID button. If so, control returns to the main program.

REV JAN 1983 FILE # 12

100 REM High level learn and tolerance change Program 110 ON SRQ THEN 450 120 DELETE F$vCvDvFvPvSvT 130 REM Default address for the PSSOlO 140 P=22 150 PRINT @P:'USER ON' 160 PAGE 170 BRINY 180 PRINT ' This ~rosfram allows uou to manuellw set UP the PSSOiO 190 PRINT ' front panel and then chan~ethe flostirtd SUPP~Vvoltages' 200 PRINT ' hr plus and minus a selectable ~ercentagev br using them 310 PRINT ' INST ID button as a user interru~t." 220 PRINT 230 PRINT ' Enter percent tolerance chanse~then RETURN. 'i 240 INPUT T 250 PRINT 260 PRINT ' Set UP front panel fm initial settin~sv then press ' 270 PRINT ' PS5010 INST ID button." 280 WAIT 290 FRINP @P:'VNEG?iVPOS?' 300 INPUT @PtAvH 310 LET F=ltT/lOO 320 F'RINT 330 PRINT ' F'lt~s ' ;Ti ' percent tolerance. ' 340 PRINT @Pt8VNEG 'iA*Fi8iVFOS 'iB*F 350 WAIT 360 LET F=l--T/lOO 370 F'RINT 380 PRINT ' Minus VT;' percent tolerance/ 390 PRINT @Yt'VNEG 'iA*Fi'iVPOS 'iB*F 400 WAIT 410 PRINT 420 PRINT ' Returned to initial settinsfst ' 430 PRINT @F:'VNEG 'iAi8iVPOS 'iE 440 GO TO 220 450 REM SRQ Service routine 460 POLL L'1,SiF' 470 IF S=67 OR S=83 THEN 540 480 PRINT 490 PRINT 'SRQ serviced @ address 'iP 500 PRINT ' POLL status returned: ' iS 510 F'RINT @F':'ERR?im r.JAO3 INPUT @F:F$ 530 PRINT ' Error Querr response: 'if$ 540 RETURN The POLL Statement and Clearing SRQ lowing line reads the binary block into the computer mem- ory. The last statement recovers the low level settings from The POLL statement causes the BASIC interpreter in the the and sends them back to the 4050 series controllers to serially poll each peripheral device PS 5010. For a definition of the binary block argument see on the General Purpose Interface Bus (GPIB) and determine the description for the LLSET command in this section. Fur- which device is requesting service. When the device is ther discussion of RBYTE and WBYTE may be found else- found, the device sends its status byte to the BASlC where in this section and in the computer programming interpreter over the GPIB. manual. Program Delays The POLL statement is normally executed in response to a service request from a peripheral device on the GPIB. Two The PS 5010 delays status reporting, via SRQ after numeric variables are specified as parameters in the POLL changes in voltage, current or output, to allow instrument statement followed by a series of 110 addresses. The BASlC stabilization. If interrupts to detect changes in status are interpreter polls the first I10 address in the list, then the desired, a 100 ms delay must be inserted in the program second I10 address, then the third, and so on, until the de- after each change to insure the PS 5010 has sufficient time vice requesting service is found. It is imperative that the 110 to report. address of the device requesting service is in the list, or program execution is halted. Information Available Additional assistance in developing specific application The PS 5010 asserts SRQ during power up or power oriented software is available in the following Tektronix down. The power up SRQ must be cleared before manuals. continuing. 070-3985-00-GPIB Programming Guide. This man- ual is specifically written for applications of this in- POLL A,B;22 strument in IEEE-488 systems. It contains programming instructions, tips and some specific ex- ample programs. This statement shows a method of clearing the service ' request. The variables A and B in this example may be any 070-2270-00-4051 GPIB Hardware Support Man- undefined variables. Following the variables is the semicolon ual. This manual gives an indepth discussion of delimiter and the alpha character defined in the first line as IEEE-488 bus operation, explanations of bus timing the instruments primary address. The devices position in the details and early bus interface circuitry. list is assigned to the first variable specified in the POLL statement. The status word from the device is then sent 070-2058-01-Programming In BASIC over the GPIB and assigned to the second variable specified in the POLL statement. 070-2059-01-Graphic Programming In BASIC 062-5971-01 -4050-Series programming aids, TI Using Low Level Settings (includes software) 062-5972-01-4050-Series programming aids, T2 P=22 (includes software) DIM A(26) PRINT @P:"LLSET?" 070-2380-01-4907 File Manager Operators manual WBYTE @64+P: RBYTE A 070-2128-00-4924 Users manual WBYTE @32+ P:A 070-1940-01 -4050 Series Graphic System Opera- tors manual The above program lines retrieve the PS 501 0 settings in low level binary format and return them at a later time. 070-2056-01-4050 Series Graphic System Refer- Transferring settings in a low level binary format requires ence manual considerably less bus time. The first statement assigns the PS 501 0 factory set address to the undefined variable P. (10) 070-3918-00-4041 Operators manual The next dimensions A to 26 characters. The low level settings query command is then sent to the PS 5010. The (11 ) 061 -2546-00-4041 Programming Reference fourth statement makes the PS 5010 a talker and the fol- manual

REV SEP 1981

Chapitre 3 - PS 5010

PROGRAMMATION

Introduction

Ce chapitre est relatif a la programmation a distance du PS VNEG VNEG? 5010, par I'intermediaire d'un Bus d'lnterface General (GPIB) INEG INEG? IEEE-488. Les informations qui suivent s'adressent a un lecteur deja familiarise avec les communications sur le GPlB et la pro- VPOS VPOS? grammation des contr6leurs. Le protocole des messages IPOS IPOS? transmis sur le GPIB est specifie et decrit dans les norrnes IEEE 488- 1978, "Interface Numerique Standard pour Instruments VTRA ITRA Pr~grammables"~.Les instruments de la sbrie TM 5000 sont conps pour communiquer avec tout contrBleur compatible VLOG VLOG? GPlB transmettant et recevant des messages ASCII (com- ILOG ILOG? mandes) sur le bus GPIB. Ces messages sont constitues de commandes de programmation de I'instrument ou de demandes d'informations. GENERAL / FSOUT ON DT SET Les commandes des instruments programmables de la serie FSOUT OFF DT OFF TM 5000 sont compatibles avec d'autres types d'instruments. FSOUT? DT? LSOUT ON ERR? La m6me commande peut 6tre utilisee par differents instru- LSOUT OFF INIT ments pour le contr6le de fonctions similaires. En outre, LSOUT? LRI ON chaque commande se presente sous forme d'un mnemonique OUT ON LRI OFF decrivant sa fonction. Par exemple, la commande INIT reinitial- LRI? NRI ON ise les reglages d'un instrument en restaurant les conditions NRI OFF de mise en service. De plus, les mnemoniques de commande NRI? coihcident avec les appellations en face avant (programmation PRI ON simplifiee). PRI OFF USER ON PRI? USER OFF REG? Les commandes de I'instrument sont presentees dans ce USER? RQS ON manuel sous trois RQS OFF formes : RQS? SET? Une illustration de la face avant - et les commandes TEST ayant trait aux differents modes d'utilisation (v. fig. 3.1 1. Une liste de commandes fonctionnelles - reparties par groupes. Chaque fonction est decrite brievement. Fig. 3.1. Commandes du bus et relations avec la face avant. " Une liste de commandes detaillee - liste alphabetique des commandes. Chacune d'elle est suivie de sa descrip- tion complete.

'institute of Electrical md Electronics Engineers. New York.

Cadresse primaire du PS 501 0 (18) peut 6tre modifiee par un personnel de maintenance qualifie, ainsi que le caractere de Les instruments programmables de la serie TM 5000 sont Fin de Message (v. dans ce m6me chapitre le paragraphe connectes au GPIB par I'intennediaire d'un module d'alimenta- Messages et Protocole de Communication). Ce caractere est tion TM 5003 ou TM 5006. Des informations sur I'installation regle sur €01 ONLY (a la livraison). Pour toute information sur de I'instrument dans le module d'alimentation, ainsi que la de- une localisation ou un reglage interne, se referer au chapitre scription des diverses fonctions en face avant et des fonctions Maintenance. Une pression sur le bouton INST ID entraine I'af- selectionnables (internes) sont donnees au chapitre Instruc- fichage de I'adresse primaire ; le point decimal droit s'allume tions d'utilisation. si le caractere de fin de message selectionne est LF/EOI.

ADD NOV 1985 French 3-1 Programmation - PS 50 1 0

Cinstrument est contrdle soit par la face avant, soit par les OUTPUT? - renvoie les reponses FSOUT et LSOUT ON ou OFF commandes recues (envoyees par le contr6leur). FSOUTPUT ON - connecte les Alimentations Flottantes aux Ces commandes sont de trois types : bornes de sortie FSOUTPUT OFF - deconnecte les Alimentations Flottantes Commandes de reglage - permettent de regler I'instrument des bornes de sortie Demandes d8informations- requierent des donnees FSOUTPUT? - renvoie FSOUT ON ou OFF Commandes d'utilisation - provoquent une operation LSOUTPUT ON - connecte I'Alimentation Logique aux bornes specifique. de sortie LSOUTPUT OFF - deconnecte I'Alimentation Logique des Le PS 5010 repond a et execute toute commande lorsqu'il bornes de sortie est dans le mode Commande a Distance. En mode Local, les LSOUTPUT? - renvoie LSOUT ON ou OFF fonctions du PS 5010 etant sous le contrdle de la face avant, toute commande de reglage et de fonction transmise par le contrdleur donne lieu a un message d'erreur. Comrnandes d'6tat de I'instrument Seules les demandes d'in formations sont executees. REGULATION? - renvoie I'etat de regulation de toutes les Ali- mentations Chaque commande debute par un mnemonique - mot decri- LRI ON - valide I'interruption de regulation de I'Alimentation vant la fonction executee. De nombreuses commandes Logique necessitent un argument a la suite du prefixe, pour decrire LRI OFF - inhibe I'interruption de regulation de I'Alimentation I'etat desire de la fonction concernee. Logique LRI? - renvoie LRI ON ou LRI OFF NRI ON - valide I'interruption de regulation de I'Alimentation LlSTE DES CBMMANDES Negative NRI OFF - inhibe I'interruption de regulation de I'Alimentation DE FONCTIONS Negative NRI? - renvoie la reponse NRI ON ou NRI OFF PRI ON - valide I'interruption de regulation de I'Alimentation Cornrnandes de I'instrurnent Positive PRI OFF - inhibe I'interruption de regulation de I'Alimentation ILOGIC - determine la limite de courant de I'Alimentation Positive Logique. PRI? - renvoie la reponse PRI ON ou PRI OFF ILOGIC? - renvoie la limite de courant de I'Alimentation RQS ON - valide la generation de Demandes de Service Logique RQS OFF - inhibe la generation de Demandes de Service VLOGIC - determine la limite de tension de I'Alimentation RQS? - renvoie RQS ON ou RQS OFF Logique USEREQ ON - valide la ligne SRQ lorsque le bouton ID est VLOGIC? - renvoie la limite de tension de I'Alirncntntion elif once Logique USEREQ OFF - inhibe la ligne SRQ lorsque le bouton ID est INEGATIVE - determine la limite de courant de I'Alimentation enf once Negative USEREQ? - renvoie la reponse USER ON ou USER OFF INEGATIVE? - renvoie la limite de courant de I'Alimentation Negative VNEGATIVE - determine la limite de tension negative Commandes du systhe VNEGATIVE? - renvoie la limite de tension negative IPOSITIVE - determine la limite de courant positive DT SET - reinitialise les reglages de I'instrument apres la com- IPOSITIVE? - renvoie la lirnite de courant positive mande VPOSITIVE - determine la limite de tension negative DT OFF - reinitialise les reglages de I'instrument sans la com- VPOSITIVE? - renvoie la limite de tension positive mande < GET> ITRACK - renvoie les limites de courant positive et negative DT? - renvoie la reponse DT SET ou OFF VTRACK - renvoie les limites de tension positive et negative ERROR? - renvoie un code d'erreur ID? - requiert I'identification de I'instrument et la version logl- Cornmandes d1entree/sortie cielle INIT - initialise les reglages de I'instrument OUT ON - connecte les alirnentations aux bornes de sortie SET? - renvoie les reglages de I'instrument OUT OFF - deconnecte les alimentations des bornes de sortie TEST - rerlvoie 0 ou un code d'erreur de la ROM.

French 3-2 ADD NOV 1985 Programmation - PS 50 10 LISTE DES COMMANDES DETAILLEES

DT (DEVICE TRIGGER) ERROR? (L'instrument est dbclenche par le contr6leur) (Erreur)

Type : Type : Reglage ou interrogation Interrogation

Syntaxe de reglage : Syntaxe : DT SET ERR: DT OFF Reponse : Exemples : ERR 103; DT SET ERR 104; DT OFF Explication : Syntaxe d'interrogation : Cinterrogation ERROR renvoie un code d'erreur correspon- DT? dant a la plus recente erreur obtenue par un Appel Selectif en Serie. Lorsque le compte rendu d'erreur est inhibe (RQS OFF), Reponses : cette commande renvoie I'etat correspondant a la plus haute priorite en attente dans I'instrument. Cet etat est annule et DT SET; n'est pas renvoye. DT OFF;

Explication : DT commande au PS 5010 d'attendre le message de I'inter- face < GET> (Declenchement simultane de tous les instru- ments) avant de remettre a jour ses reglages L'argument OFF permet d'effectuer d'autres reglages sans utiliser le message

ADD NOV 9985 ERROR? French 3-3 Programmation - PS 50 1 0

FSOUTPUT ID? (Sortie des Alimentations Flottantes) (Identification)

Type : Type : Reglage ou interrogation Interrogation

Syntaxe de reglage Syntaxe d'interrogation : FSOUT ON ID? FSOUT OFF Reponse a I'interrogation : Exemples : ID TEKlPS50 10,Wg.l ,FXX; FSOUT ON FSOUTPUT OFF Explication : XX indique le numero de la version logicielle. Syntaxe d'interrogation : FSOUT?

Reponse : FSOUT ON; FSOUT OFF;

Explication : Cette commande connecte (ou deconnecte) les deux Ali- mentations Flottantes a leurs bornes de sortie respectives. Ouelques composants de protection sont connectes en permanence aux bornes de sortie (voir schemas 1 1 et 12).

French 3-4 FSOUTPUT ADD NOV 1985 Programmation - PS 50 10

ILOGlC INEGATIVE (Limite de courant de I'Alimentation Logique) (Lirnite de courant de I'Alimentation Negative)

Type : Type : Reglage ou interrogation Reglage ou interrogation

Syntaxe de reglage : Syntaxe de reglage : ILOG < nombre > INEG < nombre >

Exemples : Exemples : ILOG 2.8 INEG 1.45 ILOG. 1 INEG 1 INEGATIVE ILOGIC 2 .3

Syntaxe d'interrogation : Syntaxe d'interrogation : ILOG? INEG?

Exemples de reponses a I'interrogation : Exemples de reponses a l'interrogation : INEG 1.1; INEG .750;

Explication : Explication : Cette commande regle la limite de courant de I'Alimentation Cette commande regle la limite de courant de I'Alimentation Logique a la valeur specifiee. Les unites sont des amperes Negative a la valeur specifiee. Les unites sont des amperes pour les versions Reglage et Interrogation. La plage va de 0.10 pour les versions Reglage et Interrogation. La plage va de A - 3,O A, et la resolution est 100 mA. 0,050 A ;j 0,750 A (1,6 A jusqu'i 15 V) dans le compartiment haute puissance, et de 0,050 A a 0.40 A (0.75 A jusqu'a 15 V) dans les autres compartiments. La resolution est 50 mA.

ADD NOV 1985 French 3-5 Prograrnmatios - PS 50 10

lNlT IPOSiTlVE (Initialisation) (birnite de courant de I'Alimentation Positive)

Type : Type : Commande d'utilisation Reglage ou interrogation

Syntaxe d'utilisation : Syntaxe de reglage : INIT IPOS < nornbre >

Explication : Exemples : Cette commande restaure les reglages initiaux (a la mise en IPOS.45 service). Ces reglages sont indiques au tableau 3.3 de ce cha- IPOS 1 pitre. IPOSlTlVE 0.3

Syntaxe d'interrogation : IPOS?

Exemples de rkponses a I'interrogation : IPOS 1.1; IPOS.7 50;

Explication : Cette commande regle a la valeur specifiee la limite de cou- rant de I'Alimentation Positive. Les unites sont des amperes (Reglage et Interrogation). La plage va de 0,05 A a 0,750 A (1,6 A jusqu'a 1 ,5 V) dans le compartirnent haute puissance et de 0,05 A a 0,40 A (0,75 A jusqu'a 15 V) dans les autres com- partiments. La resolution est 50 rnA.

French 3-6 ADD NOV 1985 Programmation - PS 50 10

ITRACK LLSET (RBglage du courant (Transfert des reglages de I'instrument) des deux Alimentations Flottantes)

Type : Type : Reglage Reglage ou interrogation

Syntaxe de reglage : Syntaxe de reglage : ITRA < nombre > LLSET < bloc binaire >

Exemples : Syntaxe d'interrogation : ITRA 0,45 LLSET? ITRA 1,O ITRACK .3 Reponse a I'interrogation : LLSET ; Explication :

Cette commande regle a la valeur specifiee la plage de cou- Explication : rant des deux Alimentations Flottantes. Les unites sont des amperes. La plage de reglage va de 0,05 A a 0,750 A (1,6 A La commande de reglage modifie tous les reglages de jusqu'a 15 V) dans le compartiment haute puissance et de I'instrument, selon les etats indiques dans I'argument . Utiliser cette commande pour transferer rapidement partiments. La resolution est de 50 mA. des reglages. Le bloc binaire est genere par I'instrument et n'est pas concu pour i3re genere ou modifie par l'utilisateur. L'interrogation renvoie tous les reglages de I'instrument dans le format bas niveau (binaire).

Le bloc binaire est compose du signe Pourcentage P% - nombre decimal 37) suivi d'un compte de deux octets binaire. Ce compte binaire (entier, bit de poids fort en premier) specifie le nombre d'octets de donnees plus I'octet checksum. Le checksum est le complement 'a 2 de la somme modulo 256 des precedents octets de donnees binaires et des octets du compte binaire. Le checksum n'inclue pas le symbole %.

ADD NOV 1985 LLSET French 3-7 Programmation - PS 50 10

LRI LSOUTPUP (Interruption de regulation (Sortie des Alimentations) de I'Alimentation Logique)

Type : Type : Reglage ou interrogation Reglage ou interrogation

Syntaxe de reglage : Syntaxe de reglage : LRI ON LSOUT ON LRI OFF LSOUT OFF

Syntaxe d'interrogation : Exemples : LRI? LSOUT ON LSOUTPUT OFF Reponses a I'interrogation : Syntaxe d'interrogation : LRI ON; LRI OFF; LSOUT?

Explication : Exemples de reponses a I'interrogation : Cette commande valide I'interruption de regulation de I'Ali- LSOUT ON; mentation Logique. La ligne SRQ est validee lorsque I'Alimen- LSOUT OFF; tation Logique passe dans I'un des deux autres modes. Les trois modes sont : Tension Constante, Courant Constant, et Explication : Pas de Regulation. Le Mot d'Etat de I'instrument (reponse a un appel sklectif en serie du contrbleur) indique quelle Alimenta- Cette commande connecte toutes les alimentations a leurs tion a genere la demande de service, et le nouveau mode bornes de sortie respectives, ou les deconnecte. Certains choisi. Se referer au tableau 3. I. composants de protection sont connectes en permanence (voir schemas 8). Le message d'etat renvoye (la ligne RQS etant validee) en reponse a la validation de I'interruption (LRI) n'indique pas forcement I'etat actuel des instruments, mais plut6t I'etat in- terrompu. Pour determiner I'etat actuel utiliser la commande REG?.

French 3-8 LRI LSOUTPUT ADD NOV 1985 Programmation - PS 5010

NRI OUTPUT (Interruption de regulation (Sortie) de I'Alimentation Negative)

Type : Type : Reglage ou interrogation Reglage ou interrogation

Syntaxe de reglage : Syntaxe de reglage : NRI ON OUT ON NRI OFF . OUT OFF

Syntaxe d'interrogation : Exemples : NRI ? OUT ON OUTPUT OFF Reponses a I'interrogation : Syntaxe d'interrogation : NRI ON; NRI OFF; OUT?

Explication : Exemples de reponses a I'interrogation : Cette commande valide I'interruption de regulation de I'Ali- FSOUT ON; LSOUT OFF; mentation Negative. La ligne SRQ est validee lorsque I'Alimen- FSOUT OFF; LSOUT ON; tation Negative passe dans I'un des deux autres modes. Les trois modes sont : Tension Constante, Courant Constant, et Explication : Pas de Regulation. Le Mot d'Etat de I'instrument (reponse a un Cette commande connecte toutes les alimentations a leurs appel selectif en serie du contrbleur) indique quelle Aliments- tion a genere la demande de service, et le nouveau mode bornes de sortie respectives, ou les deconnecte. Certains choisi. Se refkrer a11 tableau 3.1 composants de protection sont connectes en permanence (VOI~s~lik~nas 8, 1 1, el 12). Le message d'etat renvoye (la ligne RQS etant validee) en reponse a la validation de I'interruption (NRI) n'indique pas forcement I'etat actuel des instruments, mais plutrjt I'etat in- terrompu. Pour determiner I'etat actuel utiliser la commande REG?.

ADD NOV 1985 NRI OUTPUT French 3-9 Programmation - PS 50 10

PRI REGULATION? (Interruption de regulation de I'Alimentation Positive)

Type : Type : Reglage ou interrogation Interrogation

Syntaxe de reglage : Syntaxe d'interrogation : PRI ON REG? PRI OFF REGULATION?

Exemples : Reponse aux interrogations :

PRI ON REG < nombre > , < nombre > , < nombre > PRI OFF Explication : Syntaxe d'interrogation : Cette commande permet de determiner le mode de regula- tion des trois Alimentations. Les trois nombres renvoyes sont relatifs aux Alimentations Negative, Positive, et Logique (dans Reponse a l'interrogation : l'ordre indique). Ces nombres signifient : (1) L'Alimentation est en mode Tension Constante, (2) I'Ali- PRI ON; mentation est en mode Courant Constant, (3) I'Alimentation PRI OFF; n'est pas regulee.

Explication : Cette commande valide I'interruption de regulation de I'Ali- mentation Positive. La ligne SRQ est validee lorsque I'Alimen- tation Positive passe dans I'un des deux autres modes. Les trois modes sont : Tension Constante, Courant Constant, et Pas de Regulation. Le Mot dlEtat de I'instrument (en reponse a un appel selectif en serie du contr6leur) indique de quelle Ali- mentation est issue la demande de service et le mode choisi. Se referer au tableau 3.1.

Le message d'etat renvoye (la ligne RQS etant validee). en reponse a la validatiorl dc I'i~llerri~ptiorl(PRI). ~l'indiqircpas forcement I'etat actuel des instruments, mais plut6t I'etat in- terrompu. Pour determiner I'etat actuel, utiliser la commande REG?.

French 3-10 PRI REGULATION? ADD NOV 1985 Programmation - PS 50 10

RQS (REQUEST FOR SERVICE) SET? (Demande de service) (Reglages)

Type : Type : Reglage ou interrogation Interrogation

Syntaxe de reglage : Syntaxe : RQS ON SET? RQS OFF Reponse : Exemples : VNEG O.O;INEG C.4;VPOS 0.O;IPOS 0.4;VLOG 5.0; RQS ON ILOG 1 .O;FSOUT 0FF;LS OUT 0FF;NRI 0FF;PRI OFF; RQS OFF LRI 0FF;DT 0FF;USER 0FF;RQS ON;

Syntaxe d'interrogation : Explication : RQS? L'interrogation SET? renvoie tous les reglages actuels de I'instrument. Reponses : RQS ON; RQS OFF:

Explication :

Cette commande valide 13 qkneration de demandes de ser- vice par I'instrument. RQS OFF inhibe toutes ies demandes de service.

ADD NOV 1985 RQS SET ? French 3-1 1 Proyrammation - PS 501 0

TEST USEREQ (USER REQUEST) (Demande de service de I'utilisateur)

Type : Type : Sortie Reglage ou interrogation

Syntaxe de sortie : Syntaxe de reglage : TEST USER ON USER OFF Explication : USEREQ ON USEREQ OFF Cette commande renvoie 0 ou le code d'erreur correspon- dant a la ROM dans laquelle a ete detecte le checksum Syntaxe d'interrogation : errone. Se referer au tableau 3.2. USER? USEREQ?

Reponse aux interrogations : USER ON; USER OFF;

Explication : Valide la ligne SRQ lorsque le bouton INST ID (face avant) est enfonce.

French 3-12 TEST USEREQ ADD NOV 1985 Programmation - PS 50 1 0

VLOGIC VNEGATiVE (Limite de tension de 18Alimentation Logique) (Lirnite de tension de I'Alirnentation Negative)

Type :

Reglage ou interrogation Reglage ou interrogation

Syntaxe de reglage : Syntaxe de reglage :

VLOG VNEG 26.7 VLOGIC < nombre > VNEGATIVE -3.5

Exemples : Syntaxe d'interrogation :

VLOG 5 VNEG? VLOGIC 4.37 VNEGATIVE?

Syntaxe d'interrogation : Exernple de reponse a I'interrogation :

VLOG? VNEG 23.2; VLOGIC? VNEG 1 .O;

Exemple de reponse a I'interrogation : Explication :

VLOGIC 5.1 ; Cette commande regle a la valeur specifiee la limite de ten- sion de I'Alimentation Negative. Les unites sont les Volts Explication : (Reglage et Interrogation). La plage de reglage va de 0 a '32 V et la resolution est 10mV jusqu'a 10 V (0,10 V au dessus de Cette commande regle a la valeur specifiee la limite de ten- 10,l V). sion de I'Alimentation Logique. Les unites sont les Volts (Reglage et Interrogation). La plage de reglage va de 4.5 V a 5.5 V el la resolutior~esl de 10 I~V.

ADD NOV 1985 VLOGIC VNEGATIVE French 3-13 Programmation - PS 5010

VPOSlf lVE VTRAC K (Limite de tension de (Rbglage de tension 18Alimentation Positive flottante) des Alimentations Positive et Negative)

Type : Type :

Reglage ou interrogation Reglage

Syntaxe de reglage : Syntaxe de reglage : VPOS < nombre > VTRA < nombre > VPQSlTlVE < nombre > VTRACK < nombre >

Syntaxe d'interrogation : Exemples :

VPOS! VTRA 25.3 VPOSITIVE? VTRA 5.02 VTRACK 2 Exemple de reponse a I'interrogation : Explication : VPOS I .o; VPOS 29.7; Cette commande regle a la valeur absolue specifiee la plage de tension des deux Alimentations Flottantes. Les unites sont Explication : les Volts. La plage de reglage va de 0 V a 32 V et la resolution est 10mV jusqu'a 10\/ (0.10 V au dessus de 1 0,O V). Cette commande regle a la valeur specifiee la limite de ten- sion de I'Alimentation Positive flottante. Les unites sont les Volts (Reglage et Interrogation). La plage de reglage va de 0 V a + 32 V, et la resolution est 10 mV jusqu'a 10 V (0,10 V au dessus de 10.1 V).

French 3-14 VPOSITIVE VTRACK ADD NOV 1985 Programmation - PS 50 1 0 MESSAGES ET PROTOCOLE DE COMMUNICATION

Delimiteur de commande Si les caracteres SP, CR, et LF (LF ne pouvant 6tre utilise comme caractere de saut de ligne lorsque la fin de message Un message consiste en une commande ou une serie de LFIEOI est selectionnee) sont ajoutes entre le delimiteur du commandes, suivies d'une fin de message. Dans le cas de prefixe et I'argument, ils sont ignores par I'instrument. messages constitues de plusieurs commandes, celles-ci doi- vent iitre separees par des points virgules. Un point virgule Exemple 1 : RQSspON; n'est pas obligatoire en fin de message. Chacune des lignes ci- Exemple 2: ROSS, ,,ON; dessous est un message : Exemple 3: RQS,, ,, ,, ,, spON INlT TEST;INIT;RQS 0N;USER OFF;ID?;SET? TEST; En general, ces caracteres sont ignores apres un delimiteur et au debut et a la fin d'un message :

Fin de message Les messages peuvent 6tre termines par EOI ou le caractere ASCII de saut de ligne (LF). Certains contr6leurs valident la Dans la liste des commandes, certains prefixes et arguments ligne EOI concurremment avec la transmission du dernier octet sont presentes sous une forme complete et sous une forme de donnees ; d'autres n'utilisent que le caractere LF comme abregee. L'instrument accepte tout prefixe ou argument fin de message. Cun ou I'autre peuvent iitre selectionnes a I'in- contenant au moins les caracteres de la forme abregee. Les terieur du PS 5010. Si EOI ONLY est selectionne, I'instrument caracteres ajoutes a celle-ci doivent Btre ceux de la forme interprete comme fin du message entre tout octet de donnees complete. Pour documenter ses programmes, I'utilisateur peut recu. De miime, il valide la ligne EOI concurremment avec la ajouter des caracteres alphanumeriques a un mot complet. transmission du dernier octet du message sorti. Si LFIEOI est Des caracteres alphanumeriques peuvent Bgalement 6tre selectionne, I'instrument interprete comme fin du message ajoutes a une interrogation, a condition d'6tre places avant le entre le caractere LF si la ligne EOI est inhibee (ou tout octet de point d'interrogation. donnees requ lorsque la ligne EOI est validee). II transmet un retour chariot (CR) suivi d'un saut de ligne (LF avec la ligne EOI USER? validee) pour mettre fin aux messages en sortie. Lire le chapitre USERE? Maintenance avant la selection rnanuelle interne (personnel USEREQ? qualifie) du caractere de fin de message. Les instruments de la USEREQUEST? serie TM 5000 sont livres avec la fin de message EOI ONLY selectionnee.

De nombreux arguments sont separes par une virgule ; tou- tefois, I'instrument acceptera comme delimiteur un (ou des) espace(s). Formattage d'un message Pour iitre comprises, les commandes transmises aux instru- ments de la serie TM 5000 doivent avoir le format (ou syn- taxe) approprie. Toutefois, ce format est tres souple et peut subir de nombreuses variations. Une description de ce format et des variations admises est donnee ci-apres. NOTE

Dans l'exemple qui precede, l'espace est considere Toutes les commandes doivent etre en code ASCII. Toute- comme un caractere du fait qu'il suit la virgule ldelimi- fois, les minuscules et majuscules sont acceptees. Toute teur de l'argument). donnee sortie doit etre en majuscules (voir figure 3.2).

Formats numeriques Comme explique precedemment, une commande consiste en un prefixe suivi, si necessaire, par des arguments. Une com- L'instrument accepte les nombres suivants comme argu- mande suivie d'arguments doit posseder un delimiteur, le ments numeriques : caractere SP, entre le prefixe et I'argument. Dans les exemples qui suivent, le caractere "Espace" ,,,le Retour Chariot ,,,et le Nombres entiers avec ou sans signe (y compris +O et saut de ligne ,, sont places en dessous de la ligne : -0). Les nombres entiers sans signes sont interpretes comme des nombres positifs. Exemples : + 1, 2, -1, -1 0.

ADD NOV 1985 French 3-15 Programmation - PS 50 10

TABLE DE CONVERSION ASCll ET IEEE 488 (GPIB)

------

Commandes adressees I Adresses Adresse "transmettre" Secondaires ou commandes. Commandes universelles Adresse "recevoir"

KEY TO CHART GPIB code

ASCll character

Fig. 3.2. Table de conversion ASCll et IEEE 488 (GPIB)

French 3-16 ADD NOV 1985

Programmation - PS 50 10 REPONSE DE L'INSTRUMENT AUX MESSAGES DE L'INTERFACE IEEE-488

Les messages de I'interface et leurs effets sur les fonctions DCL - Device Clear (Initialisation de I'instrument) de I'interface de I'instrument sont definis dans les normes IEEE Ce message reinitialise les communications entre I'instru- 488-1 978. Ce paragraphe, qui en decrit les effets sur le fonc- ment et le contrbleur. En rdponse a ce message, I'instrument tionnement de I'appareil, utilise des abreviations de ces annule tout message en entree et en sortie et toute commande normes. de reglage dans la memoire tampon Reglages en Attente. II en est de meme pour toute erreur ou tout evenement non encore Les messages du Bus interface sont envoyes sous forme de transmis, a I'exception de la mise en service. Si la ligne SRQ commandes en langage non evolue par I'intermediaire des est a I'etat bas (validee) pour une autre raison que la mise en csmmandes WBYTE du contrbleur. Dans les commandes qui service, elle passe a I'etat haut a la reception du message DCL. suivent A = 32 plus I'adresse de I'instrument et B = 64 plus I'adresse de I'instrument. SDC Selected Device Clear (Initialisation particu- Listen (Recevoir) WBYTE @ A: - Unlisten (Ne pas recevoir) WBYTE @ 63: liere de I'instrument) Talk (Emettre) WBYTE @ B: Ce message execute la meme fonction que DCL ; toutefois, Untalk (Ne pas emettre) WBYTE @ 95: seuls les instruments adresses comme recepteurs (Listen) Unlisten-untalk WBYTE @ 63,95: repondent a ce message. (Ne pas recevoirlemettre) Device clear (DCL) WBYTE @ 20: (Initialisation de I'instrument) GET Group Execute Trigger (Declenchement simul- Selective device clear (SDC) WBYTE @ A, 4: - (Initialisation particuliere de tan6 de tous les instruments par le contriileur) I'instrument) Cinstrument n'execute cette commande que s'il est adresse Go to local (GTL) WBYTE @ A. 1: comme Recepteur (Listen) et si la fonction Device Trigger (Retour en mode local) (declenchement de I'instrument par le contr6leur) a ete validee Remote with lockout WBYTE @ A,97,63: par la commande Device Trigger (DT). Le message GET est (Contrble a distance avec ignore et une demande de service est generee si la fonction blocage) DT est inhibee (DT OFF), si I'instrument est en mode Local, ou Local lockout WBYTE 17: @ si un message est en cours de trartement a la reception de (Blocage du contr6le local) GET. Group Execute Trigger (GET)WBYTE @ A, 8: (Declenchement groupe) SPE Serial Poll Enable (Validation d'un appel sblec- Ces commandes sont utilisees par les contr6leurs de la serie - 4050 Tektronix. Des commandes similaires sont utilisees par tif en sbrie) les autres contrbleurs. SPD - Serial Poll Disable (Inhibition d'un appel selec- tif en serie) Le message SPE valide la generation par I'instrument de mots d'etat en reponse a un appel selectif en skrie, lorsqu'il est adresse comme Emetteur (Talk). Le message SPD ramene UNL - Unlisten - N'est pas Recepteur I'instrument en mode d'utilisation normal (transmission de UNT - Untalk - N'est pas Emetteur donnees issues de la Memoire Tampon de Sortie). La commande UNL fait passer la fonction Recepteur a I'etat inactif (non adresse) ; I'instrument n'accepte pas de com- mande du GPIB. MLA - My Listen Address (Mon adresse en tant que Recepteur) La commande UNT fait passer la fonction Emetteur a I'etat MTA - My Talk Address (Mon adresse en tant qu'E- inactif ; I'instrument ne peut transmettre de donnees sur le metteur) GPIB. Les adresses primaires "Talk" et "Listen" sont determinees Le voyant ADDRESSED est eteint lorsque ces deux fonc- par I'adresse des instruments sur le GPIB (selectionnee a I'in- tions soilt a I'etat inactif. II est allume si I'instrument est terieur). Cadresse GPIB actuelle est affichee en face avant adresse soit en tant qulEmetteur, soit en tant que Recepteur. lorsque le bouton ID est enfonce. Lorsque I'instrument est designe comme Emetteur ou Recepteur, le voyant ADDRESSED s'allume.

IFC - Interface Clear (Initialisation de I'interface) LLO - Local Lockout (Ne fonctionne pas en mode Local) Ce message a ligne unique a le m6me effet que les messages UNT et UNL. Le voyant ADDRESSED (face avant) En reponse a LLO, l'intrument passe a I'etat "bloque" - de est eteint. LOCS a LWLS ou de REMS a RWLS.

French 3-18 ADD NOV 1985 Programmation - PS 50 I Q

REN - Remote Enable (Validation de I'etat Contrde a L'instrument conserve une copie de ses reglages dans la distance) memoire tampon Reglages Actuels ; ceux-ci sont remis a jour par tous nouveaux reglages issus de la face avant ou du Si la ligne REN est a I'etat bas (valideel, I'instrument passe contr6leur. De plus, la face avant est remise a jour pour refleter en mode ContrGle a distance (de LOCS a REMS ou de LWLS a les nouveaux reglages introduits par les commandes. Les re- RWLS) une fois reque son adresse Listen. Si la ligne REN est a glages de I'instrument ne sont pas affectes par les quatre I'etat haut (inhibee), I'instrument passe en mode Local (LOCS), modes de transition contr6le a distance-contr6le local. L'indi- et y reste tant que la ligne REN est a I'etat haut. cateur REMOTE s'allume lorsque I'instrument est dans I'etat REMS ou RWLS. Cette transition REN peut se produire apres le debut du traitement d'un message. Dans ce cas, I'execution de celui-ci n'est pas affectee par une transition.

Local State (LOCS) - (Etat Local) Les reglages de I'instrument sont contrdles en face avant par I'operateur. Seules les commandes du bus n'agissant pas sur les reglages sont executees (interrogations) ; toutes les G'bL - GO TO Local (Contde Local) autres commandes du bus lde r6glage et d'utilisationl generent une erreur du fait que leurs fonctions sont contr6lees Seuls les instruments adresses comme recepteurs repon- en face avant. dent a cette commande en passant en mode Local. Les transi- tions ContrGle a Distance-ContrBle Local provoquees par cette commande n'affectent pas I'execution du message en cours de traitement (quand GTL est requ).

Local With Lockout State (LWLS) - (Etat Local avec blocage) L'instrumcnt opkrc dc! In mdme facon qu'en mode LOCS, excepte que le message rtl n'inhibe pas le passage en Com- mande a Distance. Remote (ContrBle a Distance) - Local operation (Con- trBle Local) Les lignes qui precedent decrivent les transitions d'un etat a I'autre provoquees par les messages GTL et REN. La plupart des commandes en face avant provoquent une transition de REMS a LOCS en validant le message "Retour en mode Local" Remote State (REMS) - (Etat Commande a Distance) lrtl). Cette transition peut se produire durant I'execution d'un Cinstrument execute toutes ses commandes. Les indica- message ; mais par opposition aux transitions GTL et REN, elle teurs correspondants en face avant sont remis a jour a I'execu- en affecte I'execution. Dans ce cas, I'instrument genere une tion de ces commandes. erreur s'il subsiste des commandes de reglage ou d'utilisation non executees. Les commandes en face avant n'affectant que I'affichage (telles ID) n'ont pas d'incidence sur les etats "A Distance-local" - seules les commandes agissant sur les re- glages (a I'exception des commandes de declenchement) generent le message rtl. Celui-ci est valide par I'entree de plu- sieurs commandes au clavier, et est inhibe apres le traitement Remote With Lockout State (RWLS) - (Etat Com- de ces commandes. Le "retour en mode local" prevenant mande a Distance avec blocage) toute transition "Local-a Distance", I'instrument inhibe ce message si une sequence de commandes n'est pas executee L'instrument fonctionne de la miime faqon que dans I'etat dans un delai raisonnabie (5 a 10 secondes environ). REMS, mais le message rtlest ignore.

ADD NOV 1985 French 3-19 Programmation - PS 50 10 INDICATIONS D'ETATS ET ERREURS

En utilisant la fonction Demande de Service (definie dans les Tableau 3.3 normes IEEE-4881, I'instrument peut adresser une demande DEFINITION DES BlTS DU MOT D'ETAT de service au contrbleur. Cette demande de service permet egalement de signaler qu'un evenement (changement d'etat 0 : Ie ST0 indique le type d'wlnement. ou erreur) est survenu. En reponse a urle demande de service, \- - 1 : Ie ST0 indique 1'6tat d'un instrument. le contrbleur effectue un Appel Selectif en Serie. Chaque \ instrument renvoie alors un Mot d'Etat (STB) indiquant s'il est, 1 \-- 1 pour une demande de service. 1 ou non, a I'origine de la demande de service. Ce Mot d'Etat i \ - 1 pour un ivlnement anormal. peut egalement contenir une information (succincte) sur la 1 t2che requise. Le format de cette information est indique i \ \ \- 1 si le processeur de messages est occup6. figure 3.3. Lorsque le bit de donnee 8 est present, le STB \ ', \\ contient une information sur I'etat de I'instrument qui est four- \ \- ,- ,- \- Definit un \ , evenement nie par les bits 1 a 4. !\\.\\\\ ' BITS DE DONNEES \ DECIMAL Parce que le STB convoie une information limitee concer- \\\"\\I nant un evenement, les evenements sont divises en deux types : le Mot d'Etat definit le type. Les types d'evenements se defi- nissent de la faqon suivante :

ERREUR DE COMMANDE lndique 'que I'instrument a rep une cornmande qu'il ne peut compreridre. ERREUR D'EXECUTION lndique 'que I'instrument a rep une cornmande qu'il ne peut executer. Ceci peut provenir d'arguments errones, ou de reglages; contradictoires. ERREUR INTERNE lndique que I'instrument a detecte une condition (ma- terielle ou logicielle) emp6- chant urle operation. EVENEMENTS DU SYSTEME Evenements communs a tous les eleiments d'un systeme Fig 3.3. Definition des Mots d'Etat. (Mise en Service, Requete Utili- sateur, etc..).

AVERTISSEMENT EN COURSL'instrurnent fonctionne mais D'EXECUTION I'utilisateur doit prendre conscience de problemes potentiels.

WERTISSEMENT INTERNE lndique que I'instrument a detecte un probleme. I1 reste operationnel, mais le probleme doit &re resolu (ex. : valeur non etalonnee). evenements, particulierement les erreurs signalees dans le ETAT DE L'INSTRUMENT Evenements relatifs a un instru- Mot d'Etat. Apres avoir determine d'ou est issue la demande ment particulier. de service (en examinant le STB), le contr6leur peut requerir ces informations en transmettant I'interrogation ERR?. En Par une demande de service, un instrument a la possibilite reponse. I'instrument renvoie un code definissant I'evenement de fournir des informations supplementaires sur de nombreux (v. tableau 3.1 1.

French 3-20 ADD NOV 1985 Programmation - PS 501 0

Tableau 3.1. CODES D'ERREURS UTlLlSES SUR LE BUS ET REPONSE A L'APPEL SELECTIF EN SERlE

Conditions anormales

Description Reponse a I'interrogation ERR ? Reponse a un appel selectif en seriea

Erreurs de commande Prefixe errone Delimiteur de prefixe errone Argument errone Delimiteur d'argument errone Argument non numerique (nombre requis) Argument manquant Delimiteur de I'unite du message invalide Checksum du bloc binaire errone Compteur d'octets du bloc binaire errone

Erreurs d'execution Commande non executable en mode Local Reglages perdus du fait du retour en mode local (rtl) Memoires d'E/S pleines, donnees de sortie "dechargees" Conflits de reglage Argument hors-gamme Declenchement de groupe ignore (GET)

Erreurs internes Erreur du systeme Erreur du bloc mathematique

Conditions normales

Evenements du systeme Mise en service Requste de I'utilisateur

Evenements specifiques a I'instrument CAlimentation Negative passe en mode Tension Constante CAlimentation Negative passe en mode Courant Constant L'Alimentation Negative passe en mode Non Regulee CAlimentation Positive passe en mode Tension Constante L'Alimentation Positive passe en mode Courant Constant L'Alimentation Positive passe en mode Non Regulee L'Alimentation Logique passe en mode Tension Constante L'Alimentation Logique passe en mode Courant Constant L'Alimentation Logique passe en mode Non Regulee

aSi le processeur de messages est occupe, I'instrument renvoie le nombre decimal le plus haut.

ADD NOV 1985 French 3-21 Programmation - PS 50 10

Tableau 3.2 En mode RQS OFF, le contrbleur peut executer un Appel Selectif en Serie, mais le Mot d'Etat obtenu ne contient que CODES D'ERREUR RELATIFS I'indication d'Etat propre a I'appareil. En mode RQS ON, le AU CONTROLE EN FACE WNT STB (Mot dfEtat) contient le type de I'evenement et un message d'erreur. Affichage I Evhement anormal Le systeme est defectueux Conditions initiales (i la mise en service) Le Logiciel Mathematique est errone La RAM du systeme est defectueuse A la mise en service, le microprocesseur du PS 5010 La RAM du systeme est defectueuse execute un sous-programme d'auto-test pour verifier le bon La ROM COOO est ma1 positionnee fonctionnement des memoires (ROM et RAM). S'I aucune La ROM DOOO est ma1 positionnee erreur n'est detectee, I'instrument passe en mode Local La ROM EOOO est ma1 positionnee (LOCS), avec les reglages par defaut indiques tableau 3.3. La La ROM FOOO est ma1 positionnee ligne SRQ sur le GPlB est validee. Le checksum de la ROM COOO est errone Le checksum de la ROM DOOO est errone Tableau 3.3 Le checksum de la ROM EOOO est errone Le checksum de la ROM FOOO est errone REGLAGES A LA MIS€ EN SERVICE Mode Analyse de Signature A la mise en service, et lorsque la commande INlT est Dans le cas de plusieurs evenements, I'instrument maintient executee, I'instrument presente les reglages suivants. Les la ligne SRQ a I'etat bas jusqu'a ce que tous les evenements caracteres entre parentheses ne sont pas entres dans les argu- aient ete signales au contrbleur. Une fois que celui-ci en a pris ments. connaissance (par un appel selectif en serie), chaque evene- ment est annule automatiquement. Le message de I'interface Prefixe Argument Device Clear (DC) peut Gtre utilise pour annuler tous les evene- ments, sauf la Mise en Service. VPOSitive 0.0 (V) IPBSitive 0.4 (A) Certaines commandes valident la transmission d'evene- VNEGative 0.0 (V) INEGative 0.4 (A) ments individuels au contrbleur et inhibent les demandes de ~ 5.0 (V) service. Par exemple, la commande User Request (USEREQ) VLOGic permet a I'utilisateur de communiquer I'evenement "Requgte ILOGic 1 .o (A) de I'utilisateur" a partir de la face avant (bouton ID enfonce). FSOUTput OFF La commande RQS contr6le I'utilisation de demandes de ser- LSOUTput OFF vice (SRQ) pour transmettre des evenements au contr6leur. PRI OFF NRI OFF RQS OFF inhibe toutes les demandes de service (sauf la LR I OFF Mise en Service). Daw ce mode. I'ir~lerroyaliorlERR? pcnr~cl ROS ON au contr6leur de s'informer des evenements sans executer un USEReq OFF appel selectif en serie. I1 peut emettre cette interrogation a DT OFF tout instant ; I'instrument lui transmet alors tout evenement en attente d'gtre communique. Le contr6leur peut annuler tous les evenements, soit en transrnettant I'interrogation ERR? jusqu'a ce que le code zero (0) soit renvoye, soit par I'interme- Si une erreur interne est detectee, un code d'erreur est diaire du message DCL de I'interface (Mise en Service ex- affiche en face avant. Voir les differents codes d'erreurs au ta- ceptee). bleau 3.2.

French 3-22 ADD NOV 1985 Programmation - PS 50 1 0 APPLICATIONS

Programme de transmission et de reception pour 90 REM PROGRAMME OE TRANSMISSION ET DE RECEPTION OU PS 5010 REM AORESSE PRlMAlRE OU PS 5010 = 22 contr6leurs de la serie 4050 95 I 100 OPEN #1 :"GPIB(PRI=22,EOM= < >I:" Ce programme permet I'envoi des commandes listees et la 110 OMSRQTHENGOSUB 240 reception des donnees generees. 115 ENABLE SRQ DIM AS TO (200) PRlNT "ENTRER LA (OU LES) COMMANDE(S)/INTERROGATlON REM PROGRAMME D'EMlSSlON/RECEPTlON DU PS 501 0 INPUT CS REM ADRESSE PRlMAlRE DU PS 5010 = 22 IF CS="EXUTHEN GOT0 230 lNlT ON SRQ THEN 240 PRlNT #1 :CS REM RECHERCHER LES INTERROGATIONS DIM AS (200) IF POS(CS,"?",l)=O THEN GOT0 130 PRlNT "ENTRER LE(S) MESSAGE(S1: "; REM ENTREE ISSUE DE L'INSTRUMENT INPUT CS INPUT #1 :AS PRlNT @ 22:CS REM RECHERCHER LES INTERROGATIONS PRlNT AS GOT0 130 IF POS(CS."?",l)=O THEN 150 STOP REM ENTREE ISSUE OE L'INSTRUMENT INPUT @ 22:AS POLL SB,P,S,22 PRINT VUE, MOT D'ETAT:".SB PRlNT AS "sRa RETURN GO TO 150 REM SOUS PROGRAMME O'APPEL SELECTIF EN SERlE POLL X,Y;22 PRlNT "MOT O'ETAT: ";Y RETURN

Description de ce programme Ce programme doit Qtre frappe sur un contr6leur 405X Description du programme avant la mise en service du PS 5010. A la mise en service, le Ce programme indique comment le PS 5010 est utilise pour i PS 5010 valide la ligne SRQ, En interrogeant I'instrument (appel selectif en serie), le programme va annuler la demande apprendre les regiages en face avant. I1 modifie ces r6glages de service. II demarre par deux remarques REM (Remark), I'une d'un pourcentage selectionne en utilisant seulement le bouton intitulant le programme, et I'autre validant I'adresse primaire INST ID, qui agit comme si I'utilisateur avait genere une inter- de I'instrument (selectionnee en usine) : 22. La ligne 130 ruption. permet un transfert a la ligne 240. Dans le cas d'une interrup- tion, les lignes 250 et 260 annulent I'appel selectif en serie (POLL) et impriment un Mot d'Etat. La condition a I'origine de La ligne 1 10 informe le contrdleur de I'ernplacement du la demande de service peut Qtre determinee en revenant au ta- sous-programme d'appel selectif. bleau 3.1. L'instruction 140 determine la longueur de la chaine de caracteres A (A$). La longueur par defaut de la variable A$, pour la serie 4050, est 72 caracteres (une ligne). La ligne 150 La ligne 150 avise le PS 5010 que le bouton INST ID est requiert un message de I'utilisateur (commande ou interroga- utilise comme une interruption demandee par I'utilisateur. tion). Le message entre est affecte a la variable C$. C$ est envoye au PS 5010 par I'instruction PRINT, ligne 170. Si le message est une commande de reglage, I'affichage en face Les lignes 290 et 300 sont des exemples de commandes avant reflete la valeur transmise. La ligne 180 est une re- assignant les reglages de I'instrument a des variables. marque REM. L'instruction 190 recherche un point d'interro- gation dans C$. Si C$ comprend un point d'interrogation, c'est que le message contient une interrogation. Le pro- La ligne 390 montre I'utilisation d'une variable arithmetique gramme va aux lignes 200, 210, et 220, qui entreront la comme argument de commande. reponse a I'interrogation du PS 5010 et I'imprimeront sur I'ecran du calculateur. Les lignes 450 a 530 contiennent le sous-programme de service (SRQ) permettant d'effectuer un appel selectif en serie, et d'imprimer I'etat "POLL" et la reponse a I'interro- gation. Programme de transmission et de reception pour le contrdleur 4041 La ligne 470 recherche si la demande de service a ete Ce programme permet de transmettre les commandes in- generee par le bouton INST ID. Dans ce cas, le contr6le diquees et de recevoir les donnees generees. revient au programme principal. I

ADD NOV 1985 French 3-23 Programmation - PS 50 1 0

REM Programme en langage evolue de modification de tolerance ONSRQTHEN450 DELETE FS,C,D,F,P,S,T REM Adresse par defaut du PS 5010 P=22 PRlNT @ P:"USER ON" PAGE PRINT PRlNT " Ce programme permet de regler manuellernent le PS 5010 et de" PRlNT " modifier les tensions des Alimentations Flottantes d'un % + ou -" PRlNT " en utilisant le bouton INST ID pour generer une interruption." PRINT " PRINT " Entrer le pourcentage de modification (tolerance), puis RETURN." INPUT T PRlNT PRlNT "Restaurer les reglages initiaux en face avant, puis appuyer" PRINT "sur le bouton INST ID." WIT PRlNT @ P:"VNEG?;VPOS?" INPUT @ P:A,B LET F=l +TI100 PRlNT PRINT " Plus ";Ti" tolerance en pourcentage positif." PRlNT @J P:"VNEG ";A8F;";VPOS ";B8F WIT LET F= 1 -TI100 PRINT

PRlNT " Moins ";Ti" tolerance en pourcentage negatif. PRlNT @ P:"VNEG ";A8F;";VPOS ";B8F WIT PRlNT PRlNT " Retour aux reglages initiaux." PRlNT @ P:"VNEG ";A;";VPOS ":B GO TO 220 REM Sous-progralnlne de del~~al~dedu service (SRO) POLL D,S;P IF S=67 OR S=83 THEN 540 PRlNT

PRlNT " adresse dont est issue la demande de service iSR9) ";P PRlNT "Renvoi de I'etat POLL: ";S PRlNT @ P:"ERR?;" INPUT @ P:FS PRlNT "F(eponse a I'interrogation ERR?: ";F$ RETURN

French 3-24 ADD NOV 1985 Programmation - PS 50 1 0

L'instruction POLL et I'annulation de la Demande de suivante lit le bloc binaire dans la memoire du calculateur. La Service derniere instruction rappelle I'etat des reglages (en langage non evolue) dans la memoire du calculateur, pour les renvoyer L'instruction POLL provoque I'appel selectif en serie de au PS 5010. Une definition de I'argument est chaque peripherique sur le Bus GPIB par I'interpreteur BASlC fournie dans ce chapitre a la commande LLSET. La definition pour determiner I'instrument qui a emis la demande de service. des commandes RBYTE et WBYTE peut 6tre trouvee egale- Cet instrument, une fois localise, envoie son Mot d8Etata I'in- ment dans ce chapitre et dans le manuel de programmation du terpreteur BASIC sur le GPIB. calculateur.

DOIais dans I'exbcution du programme L'instruction POLL est normalement executee en reponse a Apres toute modification de tension, de courant, ou de une demande de service issue d'un peripherique connecte sur sortie, le PS 5010 retarde par une demande de service I'envoi le GPIB. Deux variables numeriques sont specifiees comme de I'etat correspondant. pour permettre la stabilisation de parametres de I'instruction POLL, suivies d'une serie d'a- I'instrument. Un retard de 100 ms peut egalement 6tre pro- dresses dlEntreelSortie. L'interpreteur BASlC interroge la pre- gramme apres chaque changement d'etat pour laisser au PS miere adresse d'entreelsortie de la liste, puis la seconde, la 5010 le temps de transmettre cet etat. troisieme, etc ... jusqu'a ce que soit determine I'instrument qui a emis la demande de service. Cadresse d'entreelsortie de I'appareil doit 6tre incluse dans cette liste, sinon I'execution du Informations disponibles programme s'arr6te. Une aide supplementaire au developpement de logiciel spe- cifique (application particuliere) est disponible dans les manuels Tektronix suivants : (1) 070-3985-00 - GPIB Programming Guide (Guide de Le PS 5010 valide la ligne SRQ a la mise en service ou a Programmation du GPIB) - destine aux applications I'arr6t de I'instrument. La demande de service generee a la du PS 5010 - systemes compatibles IEEE-488. mise en service doit 6tre annulee avant la suite des operations. Contient des instructions de programmation, des conseils de programmation, et quelques exemples POLL A,B;22 de programmes.

(2) 070-2270-00 - 4051 GPIB Hardware Support Manual (Manuel de support materiel du GPIB utilisa- Cette instruction represente I'une des faqons d'annuler la ble avec le Calculateur Graphique 405 1). Description demande de service. Dans cet exemple, les variables A et B detaillee du fonctionnement du bus IEEE-488, des di- peuvent 6tre des variables non definies. A la suite de ces varia- verses fonctions de contrble du bus et des circuits. bles, viennent le delimiteur (point virgule), et le caractere al- phanumerique definis sur la premiere ligne de programme (3) 070-2058-01 - Programming in Basic (Programma- comme adresse primaire de I'instrument. La position (de tion en BASIC) I'instrument) dans la liste est affectee a la premiere variable specifiee dans I'instruction POLL. Le Mot d'Etat de I'appareil (4) m070-2059-01 - Graphic Programming in BASIC est alors envoye sur le Bus GPIB et affecte a la seconde varia- (Programmation graphique en BASIC) ble specifiee dans I'instruction POLL. 51100-700 4/0 - 4050 Series Programming Tips (Guide de programmation de la Serie 4050)

Transfert de I'etat des reglages en langage non evolue 070-2380-01 - 4907 File Manager Operators Manual (Manuel d'utilisation du systeme de gestion P=22 de fichiers 4907) DIM A(26) PRINT @ P:"LLSET?" 070-2 128-00 - 4924 Users manual (Manuel d'utili- WBYTE @64+P: sation du 4924) RBYTE A WBYTE @ 32+P:A 070-1 940-01 - 4050 Series Graphic System Oper- ators Manual (Manuel d'utilisation des Systemes Graphiques de la Serie 4050)

Les lignes de programme en langage non evolue ci-dessus 070-2056-01 - 4050 Series Graphic System Refer- rappelent I'etat des reglages du PS 5010, pour le renvoyer au ence manual (Manuel de reference des Systemes PS 5010 ulterieurement. Ce transfert en langage non evolue Graphiques de la Serie 4050) (format binaire) economise un temps considerable sur le bus. La premiere instruction assigne I'adresse selectionnee en 070-391 8-00 - 4041 Operators manual (Manuel usine a la variable non definie P. La suivante definit la longueur d'utilisation 4041 ) de A : 26 caracteres. La commande d'interrogation LLSET? (etat des reglages ?) est alors transmise au PS 5010. La qua- 061-2546-00 - 4041 Programming Reference trieme instruction designe le 5010 comme Emetteur et la ligne manual (Manuel de programmation du 4041).

ADD NOV 1985 French 3-25

PROGRAMMIERUNG f infuhrung Dieser Abschnitt des Handbuches informiert uber die Programmierung der PS 5010 durch'Fernsteuerung uber VNEG VNEG? die digitale Schnittstelle:Diedigitale Schnittstelle wird in INEG INEG? diesem Handbuch als IEEE-488 General Purpose VPOS VPOS? lnterface Bus (GPIB) bezeichnet. Die nachstehenden IPOS IPOS? lnformationen setzen voraus, da8 der Leser mit derGP1B- Kommunikation vertraut ist und einige Erfahrung mit der VTRA Programmierung von Controllern hat. Die Kommunika- ITRA tion uber den GPIB wird in der Norm IEEE 488-1978, ,Standard Digital lnterface for Programmable Instru- VLOG VLOG? ILOG ILOG? mentation"' beschrieben und spezifiziert. TM 5000 Gerate wurden fur die Kommunikation mit allen GPIB- GENERAL kompatiblen Controllern entwickelt, die ASCII Mitteilun- 7 gen (Befehle) iiber den GPlB senden und empfangen. / FSOUT ON DT SET Diese Befehle programmieren das Gerat oder fragen FSOUT OFF DT OFF FSOUT? DT? lnformationen vom Gerat ab. LSOUT ON ERR? LSOUT OFF INIT Die Befehle fur programmierbare Gerate der Serie LSOUT? LRI ON TM 5000 wurden fur KompatibilitAt unter den Gerate- OUT ON LRI OFF typen entwickelt. Der gleiche Befehle wird bei verschie- LRI? NRI ON denen Geraten fur die Steuerung Ahnlicher Funktionen NRI OFF verwendet. Ferner sind die Befehle in Mnemoniken NRI? spezifiziert, die sich auf die jeweilige Funktion beziehen. PRI ON PRI OFF Der Befehl INIT, z.B., stellt das Gerat auf seinen Ein- USER ON PRI? schalt-Zustand ein. Zur weiteren Erleichterung der Pro- USER OFF REG? grammierung, entsprechen die Befehls-Mnemoniken USER? RQS ON RQS OFF denen auf der Frontplatte. RQS? SET? Die Geriite-Befehle werden in drei Formaten darge- TEST stellt: - Eine Abbildung der Frontplatte-die die Beziehung Bild 3-1. Bus-Befehle und ihre Beziehung rur Frontplatte. der Befehle zu den Bedienungselementen auf der Frontplatte zeigt. Siehe Bild 3-1. Liste der funktionellen Befehle - eine Liste, die in Funktionsgruppen mit kurzen Beschreibungen aufgeteilt ist. e Detaillierte Befehlsliste - eine alphabetische Auflistung der Befehle mit vollstBndiger Beschrei- bung. Die GPlB PrimBradresse fur dieses Gerlit kann intern durch qualifiziertes Servicepersonal verlindert werden. 'verijffentlicht durch das Institute of Electrical and Bei Versand ist die PS 5010auf die Adresse mit dem Dezi- Electronics Engineers, Inc., 345 East 47th Street, New York, mal2iquivalent 22 eingestellt. Auch das Endezeichen NY, 10017 kann intern durch qualifiziertes Servicepersonal aus- gewiihlt werden. Endezeichen werden in diesem Abschnitt unter "Mitteilungen und Komrnunikation" Programmierbare Gerate der Serie TM 5000 werden beschrieben. Bei Versand von TM 5000 GerAten ist die- Ober eine Versorgungseinheit TM 500X mit dem GPlB ses Endezeichen auf EOI ONLY eingestellt. Winweise fur verbunden. Der Abschnitt Bedienungsanleitung in qualifiziertes Servicepersonal, wo und wie die Einstel- diesem Handbuch gibt Hinweise fur den Einbau des lung erfolgt, sind in diesem Handbuch im Abschnitt War- Gerates in die Versorgungseinheit. Dieser Abschnitt tung enthalten. Eindrucken des Druckknopfes INST ID macht Sie auch mit den Bedienungselementen auf der veranla6t das Gerat seine gewiihlte GPJ B Primaradresse Frontplatte und den intern wtihlbaren Geratefunktionen darzustellen; der Dezimalpunkt ganz rechts leuchtet auf, vertraut. wenn das gewahlte Endezeichen LF/EOI ist.

ADD NOV 1985 Programmierung - PS 5010 BEFEHLE

Das Gerat wird uber die Bedienungselemente auf der OUTPUT?-Abfrage nach FSOUT und LSOUT ON Frontplatte oder uber Befehle vom Controller gesteuert. oder OFF: Es gibt drei Befehlsarten: FSOUTPUT ON-Verbindet die erdfreien Spannungs- versorgungen mit den Ausgangs-Anschlussen. Einstell-Befehle - steuern die Einstellung des FSOUTPUT OFF-Trennt die erdfreien Spannungs- Geriites. versorgungen von den Ausgangs-Anschlussen. Abfrage-Befehle - fragen nach Daten. FSOUTPUT?-Abfrage nach FSOUTPUT ON oder OFF Betriebs-Befehle - veranlassen eine bestimmte LSOUTPUT ON-Verbindet die Logik Spannungs- Tiitigkeit. versorgung mit den Ausgangs-Anschlussen. 1st das GerAt auf Fernbedienung eingestellt, werden LSOUTPUT OFF-Trennt die Logik Spannungs- alle Befehle beantwortet und ausgefu hrt. lm ,,Localu Sta- versorgung von den Ausgangs-Anschlussen. tus erzeugen ,Einstellungs-" und ,,Betriebs-Befehle" LSOUTPUT?-Abfrage nach LSOUTPUT ON Fehler, da dieGeratefunktionen uberdie Bedienungsele- oder OFF! mente auf der Frontplatte gesteuert werden; nur ,,Abfra- Status-Befehle ge-Befehleu werden beantwortet. REGULATION?-Abfrage nach dern Regelungsstatus Jeder Befehl beginnt mit einem Kopfteil- einem Wort aller Versorgungen. das die jeweilige Funktion beschreibt. Viele Befehle LRI ON-Gibt die Regelungsunterbrechung der mussen durch ein Argument nach dern Kopfteil ergiinzt Logik Versorgung frei. werden, einem Wort oder einer Zahl, die die gewunschte LRI OFF-Sperrt die Regelungsunterbrechung der Funktion niiher beschreibt. Logik Versorgung. LRI?-Abfrage nach LRI ON oder LRI OFF: NRI ON-Gibt die Regelungsunterbrechung der LlSTE DER FUNKTIONS-BEFEHLE negativen Versorgung frei. NRI OFF-Sperrt die Regelungsunterbrechung der Geratebefehle negativen Versorgung. NRI?-Abfrage nach NRI ON oder NRI OFF: ILOGIC-Stellt den Strom-Grenzwert der Logik PRI ON-Gibt die Regelungsunterbrechung der Stromversorgung ein. positiven Versorgung frei. ILOGIC?-Abfrage nach dern Strom-Grenzwert der PRI OFF-Sperrt die Regelungsunterbrechung der Logik-Stromversorgung. positiven Versorgung. VLOGiC-Stellt den Spannungs-Grenzwert der PRI-Abfrage nach PRI ON oder PRI OFF. Logik Spannungsversorgung ein. RQS ON-Gibt Bedienungsanfragen frei. VLOGlC?-Abfrage nach dern Spannungs-Grenzwert RQS OFF-Sperrt Bedienungsanfragen. der Logik Spannungsversorgung. RQS?-Abfrage nach RQS ON oder RQS OFF. INEGATIVE-Stellt den Strom-Grenzwert der USEREQ ON-Gibt SRQ frei, wenn der Knopf ID negativen Stromversorgung ein. gedruckt ist. !NEGATIVE?-Abfrage nach dern Strom-Grenzwert USEREQ OFF-Sperrt SWQ, wenn der Knopf ID der negativen St romversorgung. gedruckt ist. VNEGATIVE-Stellt den Spannungs-Grenzwert der USEREQ?-Abfrage nach USEREQ ON oder negativen Spannungsversorgung ein. USEREQ OFF. VNEGATIVE?-Abfrage nach dern Spannungs- Grenzwert der negativen Spannungsversorgung. Systembefehle IPOSITIVE-Stellt den positiven Strom-Grenzwert ein. DT SET- Stellt die Hardware nach neu ein. IPOSITlVE?-Abfrage nach dern positiven DT OFF-Stellt die Hardware ohne Strom-Grenzwert. Mitteilung neu ein. VPOSITIVE-Stellt den positiven Spannungs- DT?-Abfrage nach DT SET oder DT OFF: Grenzwert ein. ERROR?-Abfrage nach dern Fehlercode. VPOSITIVE?-Abfrage nach dern positiven ID?-Abfrage nach Kennzeichnung und Firmware- Spannungs-Grenzwert. ausfuhrung des Gerates. ITRACK-Stellt positive und negative INIT-Stellt das GerAt auf die Anfangseinstellung ein. Strom-Grenzwerte ein. SET?-Abfrage nach den Geriiteeinstellungen. VTRACK-Stellt die positiven und negativen TEST-Abfrage nach den Fehlercodes 0 oder ROM. Spannungs-Grenzwerte ein. Eingang/Ausgang Befehle OUT ON-Verbindet die Spannungsversorgung mit den Ausgangs-Abschlussen. OUT OFF-Trennt die Spannungsversorgung von den Ausgangs-Anschlussen.

ADD NOV 1985 Programmierung - PS 5010 DETAILLIERTE BEFEHLSLISTE

L)T (device trigger) ERROR?

Art: Art: Einstellung oder Abfrage Abfrage

Einstell-Syntax: Abf rage-Syntax: DT SET ERR: DT OFF

Antwort auf Abfrage ERROR? Beispiele: ERR 103; DT SET ERR 204; . DT OFF

Beschreibung: Abfrage-Syntax: Dieser Befehl fragt einen Fehiercode fur den letzten, DT? uber die Serienabfrage berichteten Fehler ab. 1st der Fehler-Statusreport gesperrt, (RQS OFF), wird dieser Befehl mit der hochsten derzeitigen Prioritat beantwor- Abfrage-Antwort: tet. Der Zustand wird geldscht und nicht nochmals berichtet. DT SET; DT OFF;

Beschreibung: Dieser Befehl veranlaOt das Gerat auf die Interface- Mitteilung (group execute trigger) zu warten, bevor die Hardware neu eingestellt wird. Das Argument OFF erlaubt die Neueinstellung der Hardware ohne die Mitteilung .

ADD NOV 1985 ERROR? Programmierung - PS 5010 FSOUTPUT ID?

Art: Art: Einstellung oder Abfrage Abfrage

Einstell-Syntax: Abfrage-Syntax: FSOUT ON ID? FSOUT OFF

Abfrage-Antwort: Beispiele: ID TEK/PS5010, V79.1, FXX; FSOUT ON FSOUTPUT OFF Beschreibung: XX gibt die Ausfiihrungsnummer der Firmware an. Abf rage-Syntax: FSOUT?

Abfrage-Antwort: FSOUT ON; FSOUT OFF;

Beschreibung: Dieser Befehl trennt oder verbindet beide erdfreien Versorgungen von oder mit ihren entsprechenden Ausgangs-Anschlussen. Einige Schutzkomponenten bleiben mit den Ausgangs-Anschlussen verbunden. Die verbleibenden Schutzkomponenten finden Sie in den Schemazeichnungen 11 und 12.

FSOUTPUT ID? ADD NOV 1985 Programmierung - PS 5010 INEGATIVE

Art: Art: Einstellung oder Abfrage: Einstellung oder Abfrage:

Einstell-Syntax: Einstell-Syntax: ILOG

Beispiele: Beispiele: ILOG 2.8 INEG 1.45 ILOG .1 INEG 1 ILOGIC 2 INEGATIVE .3

Abfrage-Syntax: Abfrage-Syntax: ILOG? INEG?

Abfrage-Antwort Beispiele: Abfrage-Antwort Beispiele: INEG 1.1; INEG .750;

Beschreibung: Beschreibung: Dieser Befehl stellt den Stromgrenzwert der Logik Dieser Befehl stellt den Stromgrenzwert der negati- Versorgung auf den angegebenen Wert. Die Einheiten ven Versorgung auf den angegebenen, absoluten Wert. fur Einstellung und Abfrage sind Ampere. Der Bereich ist Die Einheiten fur Einstellung und Abfrage sind Ampere. 0,10 A bis 3,O A mit einer Aufldsung von 100 mA. Der Bereich ist 0,050 A bis 0,750 A (1,6 A bis 15 V) im Hochspannungsfach, und 0,050 A bis 0,40 A (0,75 A bis 15 V) im Normalfach. Die Aufldsung betragt 0,050 A.

ADD NOV 1985 INEGATIVE Programmierung - PS 501Q

Art: Art: Betrieb Einstellung oder Abfrage

Betsiebs-Syntax: Einstell-Syntax: lNlf IPOS

Beschreibung: Beispiele: Mit diesem Befehl werden alle Einstellungen des IPOS .45 Gerates auf den Einschalt-Status gebrachb. Diese Ein- IPOS 1 stellungen sind in Tabelle 3-3 in diesem Abschnitt dar- IPOSITIVE 0.3 gestellt.

Abfrage-Syntax: IPOS?

Abfrage-Antwort, Beispiele: IPOS 1.1; IPOS .750;

Beschreibung: Dieser Befehl stellt den Stromgrenzwert der positiven Versorgung auf den spezifizierten Wert ein. Die Einheiten fur Einstellung und Abfrage sind Ampere. Der Bereich ist 0,05 A bis 0,750 A (1,6 A bis 15 V) im Hochspannungs- fach, und 0,05 A bis 0,40 A (0,75 A bis 15 V) im Normal- fach. Die AuflOsung betragt 0,05 A.

IPOSITIVE ADD NOV 1985 Programmierung - PS 5010

art: Art: Einstellung Einstellung oder Abfrage

Einstell-Syntax: Einstell-Syntax: lTRA LLSET

Beispiele: Abfrage-Syntax: ITRA 0.45 LLSET? ITRA 1.0 ITRACK .3 Abfrage-Antwort: LLSET Beschreibung: Dieser Befehl stellt die GrdOe beider, erdfreierversor- gungen auf den spezifizierten absoluten Wert in Ampere. Beschreibung: Der Bereich ist 0.05 A bis 0.750 A (1.6 A bis 15 V) im Hoch- spannungsfach, und 0.05 A bis 0.40 A (0.75 A bis 15 V) im Dieser Befehl andert alle Gerateeinstellungen auf die Normalfach. Die Aufldsung betragt 0.05 A. im biniiren Blockargument spezifizierten Werte. Verwen- den Sie diesen Befehl fiir die schnelle ljbertragung von Einstellungen. Der binare Block wird im Gerat erzeugt und braucht nicht durch den Anwender erzeugt oder modifiziert werden. Auf Abfrage werden alle Gerateein- stellungen im binaren Format dargestellt. Das binare Blockformat besteht aus dem Prozentzei- chen (%) (Dezimalzahl 37),dem eine zweistellige Binar- zahl, die Datenbytes und am Ende die Prufsumme folgen. Die zweistellige Binarzahl (ganze Zahl, hdchstwertiges Bit an erster Stelie), gibt die Anzahl der Datenbytes plus des Prufsurnmenbytes an. Die Priifsumme ist das 2. Komplement der Modulo 256 Sumrne der vorherge- henden binaren Datenbytes und der binaren Zahlbytes. Die Priifsumrne enthalt kein Prozentzeichen %.

ADD NOV 1985 LLSET Programmierung - PS 5010

LSOUTPUT

Art: Art: Einstellung oder Abfrage Einstellung oder Abfrage

Einstell-Syntax: Einstell-Syntax: LRI ON LSOUP ON LRI OFF LSOUT OFF

Beispiele: Beispiele: LRI ON LSOUT ON LRI OFF LSOUT OFF

Abfrage-Syntax: Abfrage-Syntax: LR I? LSOUT?

Abf rage-Antwort: LRI ON; LSOUT ON; LRI OFF; LSOUT OFF;

Beschreibung: Beschreibung: Dieser Befehl gibt die Regelungsunterbrechung der Dieser Befehl verbindet oder trennt die Logik Versor- Logik Versorgung frei. SRQ wird ausgegeben, wenn die gung mit oder von ihren positiven Ausgangs-Anschlus- Logik Versorgung zwischen zwei der drei Betriebsarten sen. Einige Schutzkomponenten bleiben dabei mit den wechselt. Ausgangs-Anschliissen verbunden. Die Schemazeich- nung 8 zeigt welche das sind. Diese Betriebsarten sind Konstantspannung, Kon- stantstrom und ungeregelt. Das gerateabhangige Serienabfrage-Statusbyte zeigt an, welche Versorgung die SRQ ausgegeben hat und auf welche Betriebsart gewechselt wurde. Die Statusmitteilung die bei Freigabe der LRI Unter- brechung (mit ausgegebenem RQS) erscheint, zeigt nicht unbedingt den derzeitigen Geratestatus an. Sie zeigt den Status, der bei Eintreten der Unterbrechung gultig war. Der derzeitige Status kann mit dem Befehl REG? bestimmt werden.

LRI LSOUTPUT ADD NOV 1985 Programmierung - PS 5010

NRI OUTPUT

Art: Art: Einstellung oder Abfrage Einstellung oder Abfrage

Einsteii-Syntax: Einstell-Syntax: NRI ON OUT ON NRI OFF OUT OFF

Beispiele: Beispiele: NRI ON OUT ON NRI OFF OUTPUT OFF

Abfrage-Syntax: Abfrage-Syntax: NRI? OUT?

Abf rage-Antwort: Abfrage-Antwort, Beispiele: NRI ON; FSOUT ON; LSOUT OFF; NRI OFF; FSOUT OFF; LSOUT ON;

Beschreibung: Beschreibung: Dieser Befehl gibt die Regelungsunterbrechung der Dieser Befehl verbindet oder trennt alle Versorgungen negativen Versorgung frei. SRQ wird ausgegeben, wenn mit oder von ihren Ausgangs-Anschlijssen. Einige die negative VersOrgung zwischen zwei der drei Schutzkomponenten bleiben mit den Ausgangs- Betriebsarten wechselt. Diese Betriebsarten sind Kon- Anschlijssen verbunden. Welche das sind, zeigen die stantspannung, Konstantstrom und ungeregelt. Das Schemazeichnungen 8,11 und 12. gerateabhangige Serienabfrage-Statusbyte zeigt an, welche Versorgung die SRQ ausgegeben hat und auf welche Betriebsart gewechselt wurde. Siehe Tabelle 3-1. Die Statusmitteilung, die bei Freigabe der NRI Unter- brechung (mit ausgegebenem SRQ) erscheint, zeigt nicht unbedingt den derzeitigen Geratestatus an. Sie zeigt den Status, der bei Eintreten der Unterbrechung gultig war. Der derzeitige Status kann mit dem Befehl REG? bestimmt werden.

ADD NOV 1985 NRI OUTPUT Programmierung - PS 5010

PRI REGULATION?

Art: Art: Einstellung oder Abfrage Abfrage

Einstell-Syntax: Abfrage-Syntax: PRI ON REG? PRI OFF REGULATION?

Beispiele: Abf rage-Antwort: PRI ON REG , , PRI OFF

Beschreibung: Abf rage-Syntax: Dieser Befehl dient zur Bestimmung des Regelungs- PRI? Status der drei Versorgungen. Die drei Zahlen beziehen sich auf die negative, positive und Logik Versorgung in dieser Reihenfolge. Die Zahlen bedeuten: (1) Versor- Abf rage-Antwort: gung ist in der Betriebsart Konstantspannung, (2) Ver- sorgung ist in der Betriebsart Konstantstrom, (3) die Ver- PRI ON; sorgung ist ungeregelt. PRI OFF;

Beschreibung: Dieser Befehl gibt die Regelungsunterbrechung der positiven Versorgung frei. SRQ wird ausgegeben, wenn die positive Versorgung zwischen zwei der drei Betriebs- arten wechselt. Diese Betriebsarten sind Konstantspan- nung, Konstantstrom und ungeregelt. Das gerateabhan- gige Serienabfrage-Statusbyte zeigt an, welche Versor- gung die SRQ ausgegeben hat und auf welche Betrieb- sart gewechselt wurde. Siehe Tabelle 3-1. Die Statusmitteilung, die bei Freigabe der PRI Unter- brechung (mit ausgegebener SRQ) erscheint, zeigt nicht unbedingt den derzeitigen Geratestatus an. Sie zeigt den Status, der bei Eintreten der Unterbrechung giiltig war. Der derzeitige Status kann mit dem Befehl REG? bestimmt werden.

REGULATION? ADD NOV 1985 Programmierung - PS 5010

RQS SET?

Art: Art: Einstellung oder Abfrage A bf rage

Einsteti-Syntax: Abf rage-Syntax: RQS ON SET? RQS OFF

Abfrage-Antwort, Beispiele: Beispiele: VNEG 0.0; iNEG 0.4; VPOS 0.0; IPOS 0.4; VLOG 5.0; RQS ON ILOG 1.0; FSOUT OFF; LSOUT OFF; NRI OFF; RQS OFF PRI OFF; LRI OFF; DT OFF; USER OFF; RQS ON;

Abf rage-Syntax: Beschreibung RQS? Wie im Beispiel dargestellt, werden alle Gerateeinstel- lungen angezeigt.

Abfrage-Antwort: RQS ON; RQS OFF;

Beschreibung: Dieser Befehl gibt das Gerat fur die Ausgabe einer Bedienungsabfrage frei. Der Befehl RQS OFF sperrt alle Bedienungsabfragen.

ADD NOV 1985 RQS SET? Programmierung - BS 5010 TEST USEREQ

Art: Art: Ausgang Einstellung oder Abfrage

Ausgangs-Syntax: Einstell-Syntax: TEST USER ON USER OFF USEREQ ON Beschreibung: USEREQ OFF Mit diesem Befehl wird Q oder das ROM, in dem der Prijfsummenfehler entdeckt wurde, dargestellt. Siehe Abfrage-Syntax: Tabelle 3-2. USER? USEREQ?

Abfrage-Antwort: USER ON; USER OFF;

Beschreibung: Gibt SRQ aus, wenn der INST ID Knopf auf der Front- platte gedrikkt wird. I

TEST USEREQ ADD NOV 1985 Programmierung - PS 5010

VLOGIC VNEGATIVE

\

/ Art: Art: Einstellung oder Abfrage Einstellung oder Abfrage

Einstell-Syntax: Einstell-Syntax: VLOG VNEG 26.7 VLOGIC VNEGATIVE -3.5

Beispiele: Abfrage-Syntax: VLOG 5 VNEG? VLOGIC 4.97 VNEGATIVE?

Abfrage-Syntax: Abfrage-Antwort, Beispiele: VLOG? VNEG 23.2; VLOGIC? VN EG 1.O;

Abfrage-Antwort, Beispiel: Beschreibung: VLOGIC 5.1; Dieser Befehl stellt den negativen Spannungs-Grenz- wert der erdfreien Versorgung auf den spezifizierten Wert. Fijr Einstellung und Abfrage ist die Einheit Volt. Der Beschreibung: Bereich geht von 0 bis -32 V mit einer Aufl6sung von 0,010 V bis 10 V und 0,10 V uber 10 V. Dieser Befehl stellt den Spannungs-Grenzwert der Logik Versorgung auf den spezifizierten Wert. Fur Ein- stellung und Abfrage ist die Einheit Volt. Der Bereich geht von 4.5 V bis 5.5 V mit einer AuflOsung von 0,010 V.

ADD NOV 1985 WRACK

Art: Art: Einstellung oder Abfrage Einstellung

Einstell-Syntax: Einstell-Syntax: VPOS VTRA VPOSITIVE VTRACK

Abfaage-Syntax: Beispiele: VPOS? VTRA 25.3 VPOSITIVE? VTRA 5.02 VTRACK 2

Abfaage-Antwort, Beispiele: Beschreibung: VPOS 1.8; VPOS 29.7; Dieser Befehl stellt die Spannungshdhe beider erd- freier Versorgungen auf den spezifizierten, absoluten Wert. Die Einheit ist Volt. Der Bereich geht von 0 V bis Beschreibung: 32 V, mit einer Auflosung von 0.01 V bis 10 V und 0,10 V ijber 10 V. Dieser Befehl stellt den positiven Spannungs-Grenz- wert der erdfreien Versorgung auf den spezifizierten Wert. Die Einheit fijr Einstellung und Abfrage ist Volt. Der Bereich geht von 0 V bis +32 V mit einer Auflosung von 0,01 V bis 10 V und 0,10 V uber 10 V.

VTRACK ADD NOV 1985 Programmierung - PS 5010 MIlTEILUNGEN UND KOMMUNIKATIONS-PROTOKOLL

Befehls-Trennzeichen Werden zusiitzliche Formatierungszeichen SP, CR und LF (LF kann zur Formatierung nicht vewendet wer- Eine Mitteilung besteht aus einem oder einer Reihe den, wenn LF/EOI Endezeichen sind) zwischen Kopf- von Befehlen und einem Endezeichen. Bei Mitteilungen, teilendezeichen und Argument eingefugt, werden sie die aus mehreren Befehlen bestehen, mussen die vom Gerat ignoriert. (SP), (CR) und (LF) werden als Befehle durch Strichpunkte getrennt sein. Ein Strich- Unterzeichen in den nachstehenden Beispielen gezeigt: punkt am Ende einer Mitteilung ist zusBtzlich. So ist, z. B., jede der nachstehenden Zeilen eine Mitteilung. Beispiel 1 : RQSspON; Beispiel 2: RQSsp spON; INIT Beispiel 3: RQSsp CR LF sp spON TEST;INIT;RQS 0N;USER OFF;ID?;SET? TEST; In der Befehlsliste sind einige Kopfteile und Argu- mente in zwei Versionen aufgefuhrt, in der voll aus- Mitteilungs-Endezeichen geschriebenen Form und einer abgekurzten Form. Das Gerat nimmt alle Kopfteile und Argumente an, die zumin- dest die in der abgekurzten Form enthaltenen Zeichen Mitteilungen kOnnen mit EOI oder dern ASCII-Zeichen besitzen; jedes weitere Zeichen muB dern in der voll aus- LF beendet sein. Einige Controller machen EOI mit dern geschriebenen Form entsprechen. Zur Dokumentation letzten Daten-Byte geltend; andere verwenden nur LFals von Programmen, kOnnen der voll ausgeschriebenen Endezeichen. Das Gerat kann intern so eingestellt wer- Form Alphazeichen angehangt werden. Alphazeichen den, daB es beide Endezeichen annimmt. Wird EOI kOnnen auch einem Fragekopfteil angehangt werden, ONLY als Endezeichen gew$hlt, interpretiert das Gerat vorausgesetzt am Ende steht ein Fragezeichen. den Empfang eines Daten-Bytes mit EOI als Ende der Eingangsmitteilung; es macht dann auch EOI mit dern letzten Byte der Ausgangsmitteilung geltend. Bei der USER? LF/EOI Einstellung, interpretiert das Gerat das LF-Zei- USERE? chen ohne EOI (oder irgendein Datenbyte mit EOI) als USEREQ? Ende einer Eingangsmitteilung; es ubertragt CR (car- USEREQUEST? riage return) gefolgt von ,,line feedu (LF mit EOI, um Aus- gangsmitteilungen zu beenden. Servicepersonal findet lnformationen uber die Einstellung des Mitteilungs- Mehrfachargumente werden durch ein Komma Endezeichens im Abschnitt ,WartungU. Beim Versand getrennt; das Gerat nimmt jedoch auch einen Zwischen- sind TM 5000 Gerate auf EOI ONLY eingestellt. raum oder Zwischenraume als Trennzeichen an.

Formatierung einer Mitteilung

Um verstanden zu werden, mussen Befehle, die an TM 5000 Gerate gesandt werden, das richtige Format (Syntax) haben; dieses Format ist jedoch flexibel und es ANMERKUNG werden viele Variationen angenommen. Nachstehend wird dieses Format und die annehmbaren Variationen lm letzten Beispiel wird de-r Zwischenraum als For- beschrieben. matzeichen angesehen, da er hinter dern Komma steht (dem Argument-Trennzeichen). Die Gerate erwarten, daR alle Befehle in ASCII kodiert sind; sie nehmen jedoch groOe und kleine ASCII-Zei- chen an. Die Datenausgabe erfolgt in groOen Zeichen Zahlen-Forrnate (siehe Bild 3-2).

Wie vorher besprochen, besteht ein Befehl aus einem Das Gerat akzeptiert die nachstehenden Zahlenarten Kopfteil dem, falls erforderlich, Argumente folgen. Ein fiir jedes numerische Argument. Befehl mit Argumenten mu6 ein Kopfteil-Endezeichen haben, das aus dern Zwischenraurnzeichen SP zwi- schen Kopfteil und Argument besteht. Ganze Zahlen mit und ohne Vorzeichen (einschl. +O und -0). Ganze Zahlen ohne Vorzeichen wer- RQSspON den als positiv angesehen. Beispiele: +I ,2,-1 ,-lo.

ADD NOV 1985 Programmierung - PS 5010

ASCII & IEEE 488 (GPIB] CODE CHART 0 1 1 1 "86 B5 I0 0 1 I0 BITS NUMBERS 14 84 82 01 SYMBOLS UPPER CASE LOWER I 20 40 60 loo"@128 140 160 b 0 0 0 * NUL OLE SP 0 P 1 P 8 (0110 (16120 (32130 (48140 (64150 (80160 (96170 (912 1 GTL 21 CILLO 41 6 1 101 121 141 161 b 0 0 1 SOH I 1 A 0 a 9 1 (1) 11 (17) 21 133) 31 (49) 41 165) 51 (81) 61 (97) 71 1113 2 22 42 ,, 62 102 122 142 162 a010 STX 0~2 2 B R b r 2 (21 12 (18) 22 (34) 32 (501 42 (66)52 (82) 62 (98) 72 (114 23 63 103 123 143 163 a 0 I 1 ETX 0c3 43 # 3 c s c s 3 (3) 13 (19) 23 (351 33 (51) 43 (67) 53 (83) 63 (99) 73 (115 64 104 124 144 164 1004EOfDC24~~~CL44$4 0 T d t 4 (4) 14 (20) 24 (36) 34 (52) U (681 54 (84) 64 (1001 74 1116 5 65 105 125 145 165 a 1 0 1 ENiPC25 NA~~~45 % 5 E u e u 5 (51 15 (21) 25 (37) 35 (53) 45 (69) 55 (85) 65 (101) 75 (117 66 106 126 146 166 D 1 1 0 ACK 26SYN 46 & 6 F V f v

6 (6) 16 (21) 26 ' (38) S (54) 46 (70) 56 (861 66 (102) 76 (118 7 27 67 107 127 147 167 47 a 1 1 1 BEL ETB , 7 G W w

9 19) 19 (25) 29 (41) 39 (57) 49 (73) 59 (89) 69 (105) 79 (121 12 32 52 112 132 152 172 72 I s 1 s LF SUB * J z i z A (10) 1A (26) 2A 1421 3A 158) 4A (74) 5A (90)6A (1061 7A (122 13 X3 53 113 153 73 1 0 1 1 VT ESC + 9 K k {

0 (13) 10 (291 20 (45) 30 (61) 40 (771 50 (93) 60 (109) 70 (125 16 3 6 56 116 l3 176 1110 SO RS 76 > N " - E (141 1E (301 2E (4611 3E (621 4E (78) 5E (94) 6E (110) 7E (126 17 37 57 77 7 UNL 117 137 UNT 157 ' RUBOUT 1111 SI us 0 0 3 (DEl)

I ADDRESSED COMMANDS SECONDARY TALK ADDRESSES ADDRESSES I OR COMMANDS UNIVFRSAL'I COMMANDS I LISTEN ADDRESSES

KEY. 0 CHART

GPIB code

ASCII character

Bild 3-2. ASCII und IEEE 488 (GPIB)Code.

ADD NOV 1985 Programmierung - PS 5010

Dezimalzahlen mit und ohne Vorzeichen. Dezimal- Wenn das Gerat in einer Mitteilung einen Betriebsbe- zahlen ohne Vorzeichen werden als positiv ange- fehl bearbeitet, werden vor dem Betriebsbefehl alle vor- sehen. Beispiele: -3.2, +5.0,1.2 hergehenden Einstellbefehle ausgefuhrt.

Gleitkommazahlen in wissenschaftlicher Schreib- Mehrfach-Mitteilungen weise. Beispiele: +l.OE-2, +l.OE-2, 0.01E+O

Der Eingangs-Puffer hat eine begrenzte Kapazitat und Rundung numerischer Argumente eine einzelne Mitteilung kann so lang sein, daB er damit ausgefullt ist. In diesem Falle wird ein Teil der Mitteilung bearbeitet, bevor das Geriit weitere Daten annimmt. Das Gerat rundet numerische Argumente zur nach- W8hrend der Befehlsausfuhrung halt das Gerdt zusgtz- sten AuflBsungseinheit auf oder ab und pruft dann, ob liche Daten zuruck (durch NRFD) bis im Puffer Platz zur sie auRerhalb des Bereichs liegen. Verfugung steht.

Wenn Platzvorhanden ist, kann das Gerat vor Ausfijh- rung der ersten eine zweite Mitteilung annehmen. Es halt jedoch zusiitzliche Mitteilungen mit NRFD zuruck, bis die Wenn das Geriit eine Mitteilung erhiilt, wird sie im Ein- erste Mitteilung durchgefuhrt ist. gangs-Puffer gespeichert, bearbeitet und ausgefuhrt. Die Bearbeitung einer Mitteilung besteht aus der Deko- dierung von Befehlen, dem Erkennen von Trennzeichen Nachdem das Geriit in einer Mitteilung einen Abfrage- und dem ~berprufender Syntax. Bei Einstellbefehlen befehl ausgefuhrt hat, halt es die Antwort zuruck, bis es speichert das Gerat die angezeigten ~nderungenim Ein- vom Controller zum Sprecher (talker) gemacht wird. stell-Puffer. Wird wBhrend der Bearbeitung ein Fehler EmpfAngt das Gerilt eine neue Mitteilung bevor der entdeckt, gibt das GerAt eine Bedienungsanfrage (SRQ) gesamte Ausgang der vorherigen Mitteilung ausgelesen aus, ignoriert den Rest der Mitteilungen und stellt den ist, macht es vor der Ausfuhrung der neuen Mitteilung Einstell-Puffer zuruck. Durch Ruckstellen des Einstell- den Ausgangs-Puffer frei. Dadurch wird verhindert, daO Puffers werden unerwunschte Zustande vermieden die der Controller unerwunschte Daten aus alten Mitteilun- dadurch entstehen konnen, daR einige Einstellbefehle gen erhalt. der gleichen Mitteilung ausgefuhrt werden und andere nicht. Eine weitere Situation kann das Geriit veranlassen den Ausgang zu Idschen. Die Ausfuhrung einer langen Die Ausfuhrung einer Mitteilung besteht in der Durch- Mitteilung kann dazu fuhren, daB Eingangs- und Aus- fuhrung der Tatigkeiten, die durch ihre Befehle spezifi- gangs-Puffer voll werden. Wenn dies geschieht, kann ziert sind. Bei Einstellbefehlen bedeutet das die Neu- das Gerat die Ausfuhrung der Mitteilung nicht beenden, Einstellung der GerAteeinstellungen und die Aufnahme weil es darauf wartet, daR der Controller die erzeugten dieser neuen Einstellungen in den Einstell-Puffer. Die Daten ausliest; der Controller kann die Daten aber nicht Einstellbefehle werden in Gruppen ausgefuhrt - d. h., auslesen, weil er mit der ijbertragung seiner Mitteilung eine Reihe von Einstellbefehlen wird bearbeitet und in noch nicht zu Ende ist. Da der Eingangs-Puffer voll ist den Einstell-Puffer aufgenommen, bevor die Ausfuhrung und das Gerat den Rest der Mitteilung des Controllers erfolgt. Das erlaubt dem Anwender einen neuen Status mit NRFD zuruckhiilt, hiingt das System in der Schwebe, zu spezifizieren ohne darauf zu achten, ob eine beson- weil Controller und GerAt aufeinander warten. Erkennt dere Reihenfolge Gultigkeit hat. Die Durchfuhrung der das Gerat diesen Zustand erzeugt es eine Fehlermel- Einstellungen erfolgt, wenn das Gerat das Mitteilungs- dung, gibt ein SRQ aus und ldscht die Oaten im Aus- Endezeichen, einen Abfragebefehl oder einen Betriebs- gangs-Puffer. Das erm0glicht dem Controller den Rest befehl in einer Mitteilung bearbeitet. der Mitteilung zu ubertragen und der Controller wird informiert, daR die Mitteilung ausgefuhrt und der Aus- gang geldscht wurde. Bearbeitet das GerAt einen Abfragebefehl in einer Mit- teilung, dann werden zuerst alle vorhergehenden Ein- stellbefehle ausgefuhrt, um den Status des GerAtes auf Ein TM 5000 GerBt kann ak Sprecher (talker) adres- den neuesten Stand zu bringen. Dann wird der Abfrage- siert werden, ohne dat3 es eine Mitteilung erhalt die befehl ausgefuhrt, indem es die entsprechenden Daten angibt, was es ausgeben soll. In diesem Falle geben abruft und sie in den Ausgangs-Puffer gibt. Danach wird Erfassungsgerilte (Zahler und Vervielfacher) eine Mes- die Bearbeitung und Ausfuhrung des Rests der Mittei- sung aus, wenn sie beendet ist. 1st keine Messung fertig, lung fortgesetzt. Wenn das GerBt zum Sprecher (talker) geben sie eine Byte-Mitteilung zurijck, bei der alle Bits gemacht wird, werden die Daten an den Controller wei- gleich 1 sind (mit Endezeichen); andere TM 5000 Gerate tergegeben. geben nur diese Mitteilung zuruck.

ADD NOV 1985 Programmierung - PS 5010 GERATEREAKTIONEN AUF IEEE-488 INTERFACE MllTElLUNGEN

lnterface Mitteilungen und ihre Auswirkungen auf die DCL-Device Clear Interface-Funktionen des Gerates sind im IEEE Standard 488-1978 definiert. Abkurzungen dieser Norm werden in dieser Diskussion vewendet, in der die Auswirkungen Die Mitteilung Device Clear stellt die Kommunikation der Interface-Mitteilungen auf die Betriebsweise des zwischen Controller und Gerat wieder her. Als Antwort auf DCL I6scht das Gerat alle Eingangs- und Ausgangs- Gerates beschrieben werden. mitteilungen und jede nicht ausgefuhrte Einstellung im Einstellungs-Puffer. Ebenso werden alle auf Abruf war- Interface Steuer-Befehle werden uber den Bus unter tenden Fehler und Ereignisse geloscht, mit Ausnahme Vewendung der WBME Controller-Befehle gesendet. des Einschalt-SRQ's. Wenn aus irgendeinem anderen Bei den nachstehenden Befehlen ist A-32 plus der Grund als dem Einschaltvorgang ein SRQ ausgegeben Gerateadresse und B= 64 plus der Gerateadresse. ist, wird beim Empfang von DCL die SRQ gelbscht.

SDGSelected Device Clear Listen WBWE @ A: Unlisten WBME @ 63: Talk WBME @ B: Diese Mitteilung erfullt die gleiche Funktion wie DCL; Untalk WBME @ 95: jedoch nur Gerate die als Listener adressiert sind reagie- Untalk-unlisten WBME @ 63,95: ren auf SDC. Device clear (DCL) WBME @ 2Q Selective device clear (SDC) WBME @ A, 4: GET-Group Execute Trigger Go to local (GTL) WBME @ A, 1: Remote with lockout WBME @ A, 17,63: Local lockout of all instruments WBWE @ 17: Das Gerat spricht auf GET nur an, wenn es als Listener adressiert ist und die Gerate-Triggerfunktion durch den Group execute trigger (GET) WBME @ A, 8: Befehl Device Trigger (DT) freigegeben worden ist. Wenn die DT-Funktion gesperrt ist (DT OFF), das Gerat auf Diese Befehle gelten fur Controller der TEKTRONIX Frontplattenbedienung eingestellt ist, oder beim Serie 4050 und reprasentativ fur andere Controller. Empfang von GET eine Mitteilung ausfijhrt, wird die Mit- teilung GET ignoriert und ein SRQ erzeugt.

SPE-Serial Poll Enable SPD-Serial Poll Disable

Wird der Befehl UNLempfangen, geht die Horer-(liste- Die Mitteilung SPE gibt das Gerat fur die Ausgabe des ner) Funktion des Gerates in ihren Ruhezustand (nicht Serial Poll Status Bytes frei, wenn es alsTalkeradressiert adressiert). Im Ruhezustand nimmt das Gerat keine ist. Durch die Mitteilung SPD wird das Gerat auf seinen Befehle vom GPlB an. normalen Betrieb, die Sendung von Daten aus dem Aus- gangs-Puffer, zuruckgeschaltet. Die Sprecher-(talker) Funktion geht in ihren Ruhezu- stand, wenn das Gerat den Befehl UNT empfangt. In die- MU-My Listen Address sem Zustand kann das Gerat uber den GPlB keine Daten MTA-My Talk Address ausgeben. Die primaren Listen- und Talkadressen werden durch Wenn Talker- und Listener-Funktion im Ruhezustand die GPlB Adresse des Gerates erstellt (intern einge- sind, ist das Lampchen ,,ADDRESSEDuaus. 1st das Gerat stellt). Die jeweilige Einstellung der GPlB Adresse wird entwederialk-oder Listen-adressiert, ist das Lampchen auf der Frontplatte dargestellt, wenn der Knopf ID an. gedruckt wird. -

IfC-Interface Clear LLO-Local Lockout

Diese einzeilige Mitteilung hat die gleiche Auswirkung LLO wird von dem GerBt mit einem Umschaltvorgang wie die UNL- und UNT-Mitteilungen. Das Lampchen beantwortet - von LOCS auf LWLS oder von REMS auf ,,ADDRESSEDu auf der Frontplatte ist aus. RWLS.

ADD NOV 1985 Programmierung - PS 5010

REN-Remote Enable Das Gerat behalt eine Auflistung seiner Einstellungen im Einstell-Puffer, die durch neue Einstellungen von der Wenn REN aktiviert ist und das Gerat hat seine Listen- Frontplatte oder dem Controller auf den neuesten Stand Adresse empfangen, schaltet es auf einen Fernbedie- gebracht wird. ZusBtzlich wird die Frontplatte auf den nungsstatus um (von LOCS auf REMS oder von LWLS neuesten Stand gebracht, um die durch Befehle herbei- auf RWLS). 1st REN nicht aktiv, also falsch, wird aus gefuhrten ~nderungenanzuzeigen. Das Anzeige&mp- jedem Status eine Umschaltung auf LOCS veranlaBt; das chen REMOTE leuchtet, wenn das Gerat im Status REMS Geriit bleibt so lange in LOCS wie REN falsch ist. oder RWLS ist. Eine REN-Umschaltung kann nach dem Beginn einer Local State (LOCS) Mitteilungsbearbeitung vorkommen. In diesem Falle wird die Ausfuhrung der in Bearbeitung befindlichen Mittei- In LOCS werden die Einstellungen des Gerates durch lung durch eine Umschaltung nicht beeinfluBt. die Bedienungsperson uber die Bedienungselemente auf der Frontplatte gesteuert. In diesem Status werden GTL-Go To Local nur Bus-Befehle ausgefuhrt, die die Einstellungen des Nur listen-adressierte GerBte antworten auf GTL GerBtes nicht verBndern (Abfragebefehle); alle anderen durch Umschalten auf Eigenbedienung.Umschaltungen Bus-Befehle (Einstellung oder Betrieb) erzeugen einen von Fern-auf-Eigenbedienung durch GTL beeinflussen Fehler, da ihre Funktionen uber die Frontplatte gesteuert nicht die Ausfuhrung von Mitteilungen, die beim Emp- werden. fang von GTL bearbeitet werden. Local With Lockout State (LWLS) Remote-Local Operation Das Gerat arbeitet in gleicher Weise wie bei LOCS mit Die vorstehende Diskussion der Interface-Mitteilun- der Ausnahme, daO rtl keine Umschaltung auf Fernbe- gen beschreibt die Status-Umschaltungen durch GTL dienung beinhaltet. und REN. Die meisten Bedienungselemente auf der Remote State (REMS) Frontplatte verursachen eine Umschaltung von REMS auf LOCS durch eine Mitteilung, die return-to-local (rtl) In diesem Status fuhrt das Gerat alle Geratebefehle genannt wird. Diese Umschaltung kann wilhrend der Mit- aus. Bei Befehlen die Anzeigen auf der Frontplatte teilungs-Ausfuhrung vorkommen; aber im Gegensatz zu haben, werden die Anzeigen bei der Befehlsausfiihrung GTL- und REN-Umschaltungen, wird durch eine auf den neuesten Stand gebracht. Umschaltung die durch rtl veranlaBt wurde die Mittei- Remote With Lockout State (RWLS) lungs-Ausfuhrung beeinflufit. In diesem Fall erzeugt das Gerat einen Fehler, wenn es irgendwelche nicht aus- Die Arbeitsweise des Gerates entspricht der bei gefuhrten Einstell- oder Betriebsbefehle gibt. Bedie- REMS mit der Ausnahme, daB die rtl Mitteilung ignoriert nungselemente auf der Frontplatte die nur die Darstel- wird. lung Bndern (wie ID) beeinflussen die Fern-Eigenbedie- nungszustande nicht - nur Bedienungselemente die Einstellungen Bndern, kdnnen rtl geltend machen. Die rtl Mitteilung bleibt wiihrend mehrfacher Tasteneingaben gultig; sie wird ungultig, wenn die ~nderungder Bedie- nungselemente auf der Frontplatte durchgefuhrt ist. Da rtl die Umschaltung auf REMS verhindert, macht das Gerat rtl ungultig, wenn eine mehrfache Knopfdruck- folge nicht in einer angemessenen Zeitspanne beendet ist (etwa 5 bis 10 Sekunden).

ADD NOV 1985 Programmierung - PS 5010 STATUS UND FEHLERANZEIGE

Burch die Bedienungsabfrage (die in der Norm Tabelle 3-3 1EEE-488 definiert ist), kann das Gerat dem Controller DEFINITION DER STATUS BITS mitteilen, daB es Service benotigt. Die Bedienungsab- frage dient auch der Anzeige, daO ein Ereignis (Statusan- derung oder ein Fehler) aufgetreten ist. Zur Bedienung If 0, STB indicates event class einer solchen Abfrage fuhrt der Controller eine Serien- \- - If 1, STB indicates device status abfrage durch; darauf antwortet das Gertit mit einem \ Statusbyte (STB) das anzeigt, ob es nach Bedienung \ \-- 1 if requesting service gerufen hat oder nicht. Das STB kann auch eine \ \ \ - 1 indicates an abnormal event begrenzte Menge an Information enthalten. Das Format \\' dieser lnformation wird in Bild 3-3 dargestellt. Wenn das \ \ \- 1 if message processor Datenbit 8 eingestellt ist, transportiert das STB Informa- \- \-,-Define Events tion uber den Geratestatus, die durch die Bits l bis 4 \ : ,- angezeigt wird. !\\ ' \ DAT,A ?IT? \ \ DECIMAL \\I I1 Da das STB begrenzte lnformationen uber ein Ereig- ti\\\\',', nis trtigt, sind die Ereignisse in Klassen unterteilt; das Status Byte Not Statusbyte zeigt die Klasse an. Die Ereignisklassen sind (Example) 8 7 6 5 4 3 2 1 busy BUSY wie folgt definiert: Power on OlOXOOO1 65 81 COMMAND Das Gerat hat einen Befehl empfan- f ERROR gen, den es nicht verstehen kann. Normal and abnor- Voltage, command ma1 conditions (6Ctfierrors and system EXECUTION Das Gerat hat einen Befehl empfan- ERROR gen den es nicht ausfuhren kann. Verursacht durch Argumente auOer- Negative supply Current and ex- status halb des Bereichs, oder wider- spruchliche Befehle Positive supply Unregulated inter- INTERNAL Zeigt an, daB das Geriit ein Hardwa- status ERROR re- oder Firmwareproblem entdeckt l1 lo hat, das den Betrieb verhindert. Logic supply status SYSTEM Ereignisse die in allen Gertiten in l1l1 3391-31 EVENTS einem System gleich sind (z.B., Power On, User Request usw.) Bild 3-3. Definition der Statusbyte Bits. EXECUTION Das Gerat arbeitet, aber der Anwen- WARNING der sollte auf potentielle Probleme achten. Nach der Feststellung, daB das Gerat nach Service gefragt hat (durch Prufung des STB), kann dercontroller DEVlCE Gerateabghangige Ereignisse. durch Ausgabe einer Fehlerabfrage (ERR?) weitere STATUS lnformationen abfragen. Das Geriit antwortet mit einem Code, der das Ereignis definiert. Dieser Code wird in Das Gerat kann zusatzliche lnformationen iiber viele Tabelle 3-1 beschrieben. Ereignisse liefern, besonders uber die im Statusbyte berichteten Fehler.

ADD NOV 1985 Programmierung - PS 5010

Tabelle 3-1 FEHLER-ABFRAGE UND STATUSINFORMATION Unnormale Zustande - Ereignis Bus Antwort Antwort auf auf ERR? ~erienabfragea Befehls-Fehler Befehl Kopfteil-Fehler 101 97 oder 113 Kopfteil-Endezeichen Fehler 3 02 97 oder 113 Befehl-Argument Fehler 103 97 oder 113 Argument-Endezeichen Fehler 104 97 oder 113 Fehlendes Argument 106 97 oder 113 Ungultiges Mitteilungs-Endezeichen 107 97 oder 113 Prufsummenfehler irn Binarblock 108 97 oder 113 Byte-Zahlfehler im Binarblock 109 97 oder 113 Ausfuhrungs-Fehler Befehl bei Eigenbedienung nicht ausfuhrbar 201 98 oder 114 Durch rtl Verlust der neuen Einstellungen 2Q2 98 oder 114 Eingang/Ausgangspuffer voll, Ausgang entleert 203 98 oder 114 Widerspruchliche Einstellungen 204 98 oder 114 Argument aut3erhalb des Bereichs 205 98 oder 114 Gruppentriggerung ignoriert 206 98 oder 114 Interne Fehler System-Fehler 302 99 oder 115 Fehler im Rechenwerk 303 99 oder 115

Normaie Zustande System Ereignisse Einschaltvorgang 65 oder 81 Anwender Abfrage 67 oder 83 Gerateabhangige Ereignisse Die negative Versorgung schaltet auf Konstantspannung 197 oder 213 Die negative Versorgung schaltet auf Konstantstrom 198 oder 21 4 Die negative Versorgung schaltet auf ungeregelt 199 oder 21 5 Die positive Versorgung schaltet auf Konstantspannung 201 oder 21 7 Die positive Versorgung schaltet auf Konstantstrom 202 oder 21 8 Die positive Versorgung schaltet auf ungeregelt 203 oder 21 9 Die Logik Versorgung schaltet auf Konstantspannung 205 oder 221 Die Logik Versorgung schaltet auf Konstantstrom 206 oder 222 Die Logik Versorgung schaltet auf 207 oder 223 a~enndie Mitteilung hearbeitet wird, antwortet das Gerat mit der hoheren Dezimalzahl.

ADD NOV 1985 Programmierung - PS 5010

Tabelle 3-2 Mit RQS OFF kann der Controller eine Serienabfrage durchfuhren, aber das Statusbyte enth2ilt nur gerateab- FEHLER-CODES AUF DER FRONTPLAITE hangige Statusinformation. Bei RQS ON enthalt das STB Darstellung Unnormale Ereignisse die Ereignisklasse und einen darauf folgenden Fehler im STB. 302 System-Fehler 303 Fehler im Rechenwerk Einschalt- (Anfangs-) Bedingungen 340 System RAM Fehler 341 System RAM Fehler Wahrend des Einschaltvorganges fuhrt der Mikropro- 372 COOO ROM Plazierungsfehler zessor der PS 5010 eine Diagnoseroutine (Selbsttest) 373 DOOO ROM Plazierungsfehler durch, um die Funktion von ROM und RAM zu prufen. 374 EOOQ ROM Plazierungsfehler Wird kein Fehler entdeckt, schaltet das Gerat auf Eigen- 375 FOOO ROM Plazierungsfehler bedienung (LOCS) und die in Tabelle 3-3 aufgelisteten 392 COOO ROM Prufsummenfehler Einstellungen. Die SRQ Leitung am GPIB wird ebenfalls 393 DOOO ROM Prufsummenfehler aktiviert. 394 EOOO ROM Prufsummenfehler 395 FOOO ROM Prufsummenfehler 521 Betriebsart Sig naturanalyse Tabelle 3-3 EINSCHALT-EINSTELLUNGEN Wenn mehr als ein Ereignis zu berichten ist, gibt das Gerat weiter SRQ aus, bis alle Ereignisse berichtet sind. Beim Einschalten und wenn der Befehl INIT aus- Nachdem es berichtet ist, wird jedes Ereignis uber die gefuhrt wird, geht das Gerat auf die nachstehenden Ein- Serienabfrage automatisch geldscht. Die Interface-Mit- stellungen. Die in Klammern gesetzten Parameter wer- teilung Device Clear (DCL) kann zum Ldschen aller den nicht als Teil des Argumentes eingegeben. Ereignisse, mit Ausnahme von Power On, verwendet werden. Kopfteil Argument Es stehen Befehle zur Verfugung, die einige indivi- duelle Ereignisse steuern und die alle Bedienungsabfra- VPOSitive 0.0 (V) gen sperren. So bietet, z.B., der Befehl User Request IPOSitive 0.4 (A) (USEREQ) individuelle Steuerung des Anwenderabfra- VNEGative 0.0 (V) ge-Ereignisses, das bei Drucken des Knopfes ID auftritt. INEGative 0.4 (A) Der Befehl Request for Service (RQS) steuert, ob das VLOGic 5.0 (V) Gerat irgendwelche Ereignisse mit SRQ berichtet. ILOG ic 1.0 (A) FSOUTput OFF RQS OFF verhindert alle SRQs, sodaO der Controller LSOUTput OFF auch uber Ereignisse informieren kann, ohne zuerst eine PR I OFF Serienabfrage durchzufuhren. Bei RQS OFF kann der NRl OFF Controller die ERR? Abfrage jederzeit ausgeben und das LR I OFF Gerat antwortet mit einem Ereignis, das darauf wartet RQS ON berichtet zu werden. Der Controller kann alle Ereignisse USEReq OFF durch Aussenden der Fehlerabfrage ldschen bis ein Null DT OFF (0) Code erscheint, oder alle Ereignisse, mit Ausnahme von Power On, mit der Interface-Mitteilung DCL Ioschen. Wird ein interner Fehler entdeckt, erscheint auf der Frontplattenanzeige ein Fehlercode. Die Fehlercodes sind in Tabelle 3-2 enthalten.

ADD NOV 1985 ANWENDUNGEN

Sprecher/Horer Programm fur Controller der Serie Sprecher/Horer Programm fur den Controller 4041 4050. Dieses Musterprogramm ermbglicht das Aussenden Dieses Musterprogramm ermbglicht das Aussenden der aufgelisteten Befehle und den Empfang der erzeug- der aufgelisteten Befehle und den Empfang der erzeug- ten Daten. ten Daten.

90 REPI F'SS010 TALKEWLISTENER PROGRAM 100 REfi PSSOlO TALKER/LISTENER F'ROGRAn 95 REPl PSJOlO PRImARY ADDRESS = 22 110 REfl PSSUlO YRIRARY AODRESS = 22 OPE14 #I :"GPIB (PRI=22, €Om=.<> :" 120 INIT Ot4 SRQ THEN GOSUB 240 130 ON SRQ THEN 240 Et4ABLE SRQ 140 DIn i4%<200) DIfl A% TO (200) 150 PRINT "ENTER RESSAGE(S)r "1 PRINT "ENTER COFlmAt4D(S) / QUERY " 160 INF'UT CS INPUT CS 170 PRINT @%2:C% IF CS="EXUTHEN GOT0 230 100 REfl CHECK FOR QUERIES PRINT #l:C* 1'30 IF' POS(C$t "'!"'r 1 )=(I THEN 15U REfl CHECK FOR QUERIES 200 REfi INPUT FROn DEVICE IF POS(CSr"?"ri)=O THEN OOTO 130 210 INPUT Q22:A% REPI INPUT FROm DEVICE 22U PRINT A$ INF'UT #1:AS 230 (30 TO 150 PRINT A* 240 REl9 SERIAL. POLL ROUTINE GOT0 130 250 POLL XrYi22 STOP 260 PRINT "STATUS EYTEI "iY POLL see.F'. S. 22 270 RETURN F'RI t4T "SRQ SEEI4. STATUS BYTE :" v SB RETURN

Beschreibung des Sprecher/Horer Programms der Serie 4050 Dieses Programm mu8 in den Controller der Serie Musterprogramm 4050 eingegeben werden, bevor die PS 5010 einge- schaltet wird. Die PS 5010 gibt beim Einschalten SRQ Dieses Programm zeigt, wie die PS 5010 dazu verwen- aus. Bevor es weitergeht, IOscht das Programm die SRQ det werden kann die Einstellungen auf der Frontplatte zu durch eine Serienabfrage. Das Programm beginnt mit lernen. Das Programm variiert diese Einstellungen mit zwei Statements, das eine bezeichnet das Programm einem gewahlten Prozentsatz und verwendet dabei nur und das andere gibt die werksseitig eingestellte Primar- den Knopf INST ID, der zur Unterbrechung durch den adresse des Gerates (22) an. Die Zeile 130 ermbglicht Anwender dient. den ljbergang auf Zeile 240. Nach einer SRQ Unterbre- Zeile 110 teilt dem Controller die Lage der Serienabfra- chung, IOschen die Zeilen 250 und 260 die Serienab- geroutine mit. frage und drucken ein Statusbyte aus. Die Bedingung die SRQ erzeugt hat, kann nach den Angaben in Tabelle Zeile 150 sagt der PS 5010, dal3 der Knopf INST ID zur 3-1 bestimmt werden. Statement 140 dimensioniert die A Unterbrechung durch den Anwenderverwendet wird. Zeichenkette (A$). Die Gesamtlange fur A$ betragt bei der 4050 Serie 72 Zeichen (1 Zeile). Zeile 150 fordert den Die Zeilen 290 und 300 sind Beispiele fur Befehle, die Anwender zur Eingabe einer Mitteilung (Befehl oder Gerate-Einstellungen Variablen zuweisen. Abfrage) auf. Die eingegebene Mitteilung wird C$ zuge- Zeile 390 zeigt die Verwendung einer arithmetischen wiesen. C$ wird uber das Print Statement in Zeile 170 an Variablen als Befehls-Argument. die PS 5010 gesendet. Handelt es sich bei der Mitteilung um einen Einstellbefehl, gibt die Anzeige auf der Front- Die Zeilen 450 bis 530 sind die SRQ Bedienungsrouti- platte den gesendeten Wert wieder. Statement 180 ist nen, die eine Serienabfrage durchfuhren und POLL ein Dokumentations-Statement. Statement 190 pruft, ob Status und die Fehler Abfrage-Antwort ausdrucken. C$ ein Fragezeichen enthglt. 1st in C$ ein Fragezeichen Zeile 470 pruft, ob SRQ durch den Knopf INST ID aus- enthalten, enthielt die Mitteilung eine Abfrage. Das Pro- geldst wurde. Wenn ja, geht die Steuerung an das gramm geht auf die Statements 200,210 und 220 uber, Hauptprogramm zuruck. die die Antwort auf die Frage von der PS 5010 eingeben und druckt diese auf dem Bildschirm des Rechners aus.

ADD NOV 1985 Programmierung - PS 5010

100 REM High level learn and tolerance change ProgPam 110 ON SRQ THEN 430 120 DELETE FIICTD~FIPISTT 130 REM Default address for the PSSOiO 140 P=22 150 PRINT @P:'USER ON' 160 PAGE 170 PRINT 180 PRINT rn This rro#ram 8110~~uou to manu.11~ sat UP tkw P85010 ' 190 PRINT ' front panel and then change the floating surrlu voltaaes'

200 PRINT @ bu plus and minus o selectable ~ercentadev bu using the' 210 PRINT ' INST ID button es a user interru~t.' 220 PRINT 230 PRINT ' Enter percent tolerance chande~then RETURN* 'i 240 INPUT T 250 PRINT 260 PRINT' Set UP front panel for initial settinsfsr then press ' 270 PRINT ' PS5010 INST ID button.' 280 WAIT 290 PRINT QPt8VNEG?iVPOS'?" 300 INPUT @P:AIE 310 LET F=l+T/100 320 PRINT 330 PRINT ' Plus ' ;Ti ' percent tolerance. ' 340 F'RINT @P:'VNEG 'iA*Fi8iVPOS 'iBtF 350 WAIT 360 LET F=l-T/100 370 PRINT 380 PRINT ' M~~IJS';Ti8 percent tolerance.' 390 PRINT @F:'VNEG 'iA*Fi8iVPOS 'iE*F 400 WAIT 410 F'RINT 420 PRINT ' Returned to initial settinds." 430 PRINT @Pt8VNEG 'iAi'iVPQS 'iE 440 GO TO 22Q 450 REM SRR Service routine 460 POLL DpSiP 470 IF S=67 OK S=83 THEN 540 480 F'RINT 490 PRINT 'SRQ serviced @ address 'iP 500 PRINT ' POLL status returned: ' is 510 PRINT @Pt'ERR?i8 520 INPUT @F:F$ 530 PRINT ' Error Querr response: ' iF$ 540 RETURN

ADD NOV 1985 Programmierung - PS 5010

POLL Statement und Loschen des SRQ Speicher des Rechners ab und sendet sie zuruck an die PS 5010. Eine Definition des binaren Blockarguments Das POLL Statement veranlaOt den BASlC Umsetzer finden Sie in der Beschreibung des Befehls LLSET in in den Controllern der Serie 4050, alle Peripheriegeriite diesem Abschnitt. RBME und WBME werden an ande- uber den General Purpose Interface Bus (GPIB) anzu- ren Stellen in diesem Abschnitt und im Programmie- sprechen und zu bestimmen, welches Gerat nach Bedie- rungs-Handbuch des Rechners beschrieben. nung gerufen hat. 1st das Gerat gefunden, sendet es uber den GPlB sein Statusbyte an den BASlC Umsetzer. Programm-Verzogerungen

Das POLL Statement wird normalerweise als Antwort Die PS 5010 verz6gert Statusberichte uber SRQ nach auf den Bedienungsruf eines Peripheriegerates uber Spannungs- Strom- oder Ausgangsanderungen, um den GPlB durch'gefuhrt. Zwei numerische Variablen sind eine Stabilisierung des Gerates zu ermijglichen, Wenn als Parameter im POLL Statement spezifiziert, gefolgt Unterbrechungen zum Auffinden von Statusanderungen von einer Reihe von I/O Adressen. Der BASlC Umsetzer gewunscht werden, muO nach jeder ~nderungeine Ver- ruft die erste I/O Adresse in der Liste auf, dann die zweite, ztigerung von 100 ms in das Programm eingegeben wer- danach die dritte usw., bis das Gerat gefunden ist, das den urn sicherzustellen, daB die PS 5010 ausreichend nach Bedienung gerufen hat. Die I/O Adresse des nach Zeit zum Berichten hat. Bedienung rufenden Geriites mu6 in der Liste enthalten sein, anderenfalls wird die Programmausfuhrung ange- Lieferbare Information halten. Weitere Unterstutzung bei der Entwicklung spezi- Wahrend des Einschalt- oder Ausschaltvorganges fischer, anwendungsorientierter Software bieten die gibt die PS 5010 SRQ aus. Das Einschalt-SRQ mu8 vor nachstehenden Tektronix Handbucher. der Weiterarbeit gelascht werden. 070-3985-00 GPlB Programming Guide. Dieses POLL A,B;22 Handbuch wurde speziell fur Anwendungen die- ses Gerates in IEEE-488 Systemen geschrieben. Dieses Statement zeigt eine Methode zum LOschen Es enthalt Programmierungsanleitungen, Tips der Bedienungsabfrage. Die Variablen A und B in diesem und einige spezielle Programmbeispiele. Beispiel k6nnen irgendwelche undefinierten Variablen sein. Hinter den Variablen steht das Strichpunkt-Ende- 070-2270-00 4051 Hardware Support Manual. zeichen und die in der ersten Zeile definierten Zahlen als Dieses Handbuch bietet eine eingehende Primaradresse des GerBtes. Die Position des Gerates in Beschreibung der Betriebsweise des IEEE-488, der Liste ist der ersten Variablen zugeordnet, die im 8 Bus Erlauterungen des Bus-Timing und frijhe POLL Statement spezifiziert ist. Das Statuswort des Interface-Schaltbilder. Gerates wird dann uber den GPlB gesendet und der zweiten, im POLL Statement spezifizierten Variablen 070-2058-01 Programmieren in BASlC zugewiesen. 070-2059-01 Grafisches Programmieren in Anwendung der Low Level Einstellungen BASlC

P-22 51/00-700 4/0 Programmierungstips fiir die DIM A(26) Serie 4050 PRINT @P:"LLSET?" WBME @64+P: 070-2380-01 Bedienungsanleitung fur 4907 File RBYTE A Manager WBME @32+P:A 070-2128-00 Anwender-Handbuch fur 4924 Das vorstehende Programm bringt die Einstellungen der PS 5010 in ein low level Binarformat und ruft sie zu 070-1940-01 Bedienungsanleitung grafisches einem spateren Zeitpunkt wieder ab. Die ~bertragung System Serie 4050 von Einstellungen in einem low level Binarformat benO- tigt -wesentlich weniger Buszeit. Das erste Statement weist die werksseitig eingestellte Adresse der PS 5010 070-2056-01 Bezugshandbuch grafisches der undefinierten Variablen P zu. Das N8chste dimensio- System Serie 4050 niert A auf 26 Zeichen. Der Einstellungs-Abfragebefehl wird dann an die PS 5010 gesendet. Dasvierte Statement 070-3918-00 Bedienungsanleitung fur 4041 rnacht die PS 5010 zum Sprecher und die folgende Zeile liest den Bin&block in den Speicher des Rechners ein. 061-2546-00 Programmierungs-Handbuch fur Das letzte Statement ruft die Einstellungen aus dem

ADD NOV 1985

WARNING

THE FOLLOWING SERVICING INSTRUCTIONS ARE FOR USE BY QUALIFIED PERSONNEL ONLY. TO AVOID PERSONAL INJURY, DO NOT PERFORM ANY SERVICING OTHER THAN THAT CONTAINED IN OPERATING INSTRUCTIONS UNLESS YOU ARE QUALIFIED TO DO SO. REFER TO OPERATORS SAFETY SUMMARY AND SERVICE SAFETY SUMMARY PRIOR TO PERFORMING ANY SERVICE.

Section 4-PS 50 10

THEORY OF OPERATION

LOGIC AND FLOATING SUPPLY BLOCK DIAGRAM DESCRIPTION

Introduction If the voltage across the sense resistor exceeds the cur- rent DAC voltage, the output of the error amplifier takes The PS 501 has three regulatedOutput and severalin- control of the series pass-transistor and limits the output ternalsu~~lies' The Output su~~liesare the su~~l~y current to the value of the programmed current. and the POSITIVE and NEGATIVE floating supplies.

The fold-back current limit checks the output voltage and Logic Supply Block Diagram current. This circuit protects the pass-transistor from Referring to the first block diagram in the pullout pages overdissipation when the supply is operated outside of the at the rear of this manual, +26 V, -26 V, and +8 V from specified load range. This is done by lowering the current the mainframe are filtered in the input filter and control sup- limit point until transistor dissipation is within a safe region. ply block. This supply provides all voltage is needed to oper- The outputs of the current and voltage loops are monitored ate the CPU and the control voltages for the logic supply. by the loop balance status comparators. These compara- tors serve as inputs to the CPU. In normal operation one of the loops IS balanced. In the fold-back condition or The logic supply consists of an internally mounted pass- overvoltage condition neither loop is balanced. transistor whose collector is connected to the +8 V and the necessary control circuitry. The regulation and control cir- cuitry is divided into three sections. The outputs of these Floating Supply Block Diagram three sections are ORd together at the base of the series As shown on block diagram 2, floating supply power is pass-transistor. These circuits are the current loop, voltage derived from the isolated ac windings in the mainframe. The loop, and the fold-back current limit circuit. rectifier, filter, and control supply are two power supplies whose commons are not directly connected. The + and - commons are connected through the sense resistors to Remote voltage sensing is provided for the common and form the common for both floating supplies. This is the the output terminals. The output of the logic supply ranges front-panel common return. from 4.5 V to 5.5 V. The reference voltage is generated from a 4.5 V signal that track.s the common or ground sense. This 0 4.5 V signal is summed with the output of a to 1 V digital- The -+ 15 V control supplies are referenced to the front- to-analog converter driven by the CPU, resulting in a 4.5 V panel common terminal. These control supplies are used to 5.5 V signal referenced to the ground sense. This signal throughout the floating supply control circuitry. passes to the voltage error amplifier and is compared with the output voltage from the remote sense line. The + collector supply voltages for the series pasqtran- sistors are filtered but unregulated. The base drive for the The current sense resistor is in series with the pass-tran- series pass-transistors is regulated at either +24 V or sistor and the output terminal. The voltage drop across this +40 V depending on the position of the mode relay. If the resistor is proportional to the logic supply current. power supply is programmed for a current greater than 750 mA, (400 mA in a standard compartment) the collector switches to the + 24 V supply. The collector voltage The output voltage of the logic current DAC is propor- changes range with the base drive to prevent tional to the programmed current limit. overdissipation of the pass-transistors.

The DAC voltage is compared to the sense resistor volt- As the $- and - floating supplies are identical, except for age by the current error amplifier. polarities, only the + supply is described. The voltage at the Theory of operation-PS 50 10

base of the pass-transistor is controlled by ORing the out- negative output voltage from the voltage DAC is summed puts of the voltage and current loops through appropriate with the positive output voltage on the sense line, and the drodes. There is no fold-back circuitry for this supply as the difference signal is fed to the other input of the voltage error voltage in the current mode can range from 0 to the set amplifier. The output of the voltage error amplifier is diode value. Since the supply is floating, information for the cur- ORd with the current amplifier and also connects to the loop rent and voltage digital-to-analog converters pass through balance status comparator. an optical isolation link. The balance status comparator in- formation to the CPU board also passes through an optical isolation link. The + current DAC is referenced to COMMON for the supply. The negative output voltage from the current DAC is summed with the voltage across the sense resistor and the The floating supplies utilize remote sensing. There are difference signal is fed to the other input of the current error three remote sensing lines, + supply, - supply, and com- amplifier and added to the voltage output from the -k cur- mon. In front-panel operation, the + sense is connected to rent DAC. The current across the sense resistor is equal to the POSITIVE, the common to the common, and the nega- the output current of the supply. The output of the current tive sense to the NEGATIVE front-panel connectors. In rear error amplifier is ORd to the base of the series pass-transis- interface operation, the sense lines and the output lines are tor and also provides a signal that passes to the loop bal- separate. ance status comparator.

The positive voltage digital-to-analog converter is The current through the emitter of the pass-transistor referenced to the common sense line. One input of the volt- passes through the output relay and the input-output select age error amplifier is also referenced to the same point. The switch to the selected output terminal.

DETAILED CIRCUIT DESCRIPTION

The GPlB communications are controlled by U1001, When the mainframe supply voltages are stable. the U 1000, and U1010. Bidirectional buffers U1000 and U1010 PWR line is TTL high. This PWR signal from the mainframe provide drive capability for U1001, the GPlB interface. The is applied to the + input of U1020B. This comparator pro- IEEE 488-1975178 standard protocol is handled automati- vides signal hysteresis at + 0.7 V to + 2 V to eliminate the cally in both talker and listener modes by U1001. This in- effects of noise on the PWR line. The output of U10206 at strument is assigned a 5 bit address to enable talker or pin 7 is delayed about 10 ms by R1125 and C1120. This listener addressing over the bus. This address is set on signal is compared to the 5 V reference on the + input of switch S1221 shown on schematic 4. The switch is located U1020C. IC U1020C drives (21125, providing the open on the CPU board (A12). The switch settings are read by the collector PON signal to the microprocessor. microprocessor at power on and written into the address register of U 1001. The power on reset RES, for the processor and related circuitry, is the PON signal ANDed with Ext Reset. CPU Regulator 0 Voltage comparator U1020A and the series pass-transis- tor Q1021 furnish the +5 V power to the Logic Supply Filter Microprocessor board, A1 3, Front-Panel board, A1 0, and CPU board, A1 2. When the current through the sense resistor R1018 is about The M6800 microprocessor, Ul1 1 1, controls the internal 1.8 A, transistor 01020 reduces base drive to Q1021. This operation of the PS 5010. It accepts commands from either provides foldback curent limiting. The foldback current limit the front panel or GPIB. It sets the operating parameters in is 0.6 A at 0 V. The output of the voltage comparator response to these commands. The M6800 is an 8 bit parallel U1020A is ORd with the output of the current foldback processor with a 16 bit address bus. The data bus IS Q1020 through CR1020. Reference voltage (5 V) is pro- buffered by U1202 and the lower 8 address lines. A0 vided by Zener diode VR1011. through A7, are buffered by U1210. Theory of Operation-PS 50 10

System Clock @ Table 4-3 U 13 1 1 CHlP SELECTS 1 The M6800 is driven by a two-phase, nonoverlapping clock signal. The clock is generated by a three transistor Circuit Number (Q1120, Q1121, Q1122) RC oscillator that includes R1223, R1220, R1128, and C1122. The oscillator runs at 4 MHz. This signal is divided to 1 MHz by two flip-flops, U1220A Keyboard 2800-2BFF and U1220B. Bus 42 (1 MHz clock) is taken directly from pin Display 2400-27FF 9 of U1220B. Clock signals (1 MHz) MPU $1 and MPU 42 Display 2000-23FF are supplied from pins 13 and 10 of U1112D and U1112C, respectively. NOR gate U1112C and U1112D insures that MPU (/,Iand MPU 42 are nonoverlapping. VMA is included in all Ul3ll chip selects.

Chip Selects @ Memory @ Chip selects for the following are generated by U1120. Located the CPU board are 16k bytes of ROM con- taining the operating system firmware. This instrument has either 2 8kx8 or 4 4kx8 ROMs. Table 4-4 shows the location Table 4-1 and addresses of these ROMs. U 1 120 CHlP SELECTS

Circuit Number Type Address Table 4-4 U1300, U1302 RAM 0000-1 FFF OPERATING SYSTEM FIRMWARE U1200, U1201 ROM COOO-DFFF LOCATIONS AND ADDRESSES U1100, U1101 ROM E000-FFFF Circuit Address Circuit Address U1001 GPIB 8000-9FFF Number Number U1212 Switch A000-BFFF

VMA and 42 are included in the chip enable for U1120.

Chip Selects @ Ch~pselects for the following are generated by U1310.

There are seven input lines from the analog boards. These pass information to the microprocessor via U1420, an 8 bit, tristate buffer. Table 4-2 U 13 10 CHlP SELECTS

Circuit Number Type Address Six of the seven inputs lines are status bits from the three supplies. These consist of two lines for each supply, a ROM COOO-CFFF current and voltage regulation line. The status bits tell the ROM D000-DFFF microprocessor whether the supplies are in voltage or cur- ROM E000-EFFF rent regulation or unregulated. The seventh bit is a high ROM FOOO-FFFF power indicator. This informs the microprocessor that the Latch 3000-303F PS 5010 is in the high power compartment of the power Latch 3040-307 F module. U1315 Latch 3080-30BF

System RAM VMA is used only in Ul411, U1314, and U1315. @ System RAM consists of U 1300 and U 1302. These pro- vide temporary operating memory. These RAMS are The remaining chip selects are produced by U13ll and 1024 x 4 bit arranged in a 1024 x 8 bit pattern at address are: 0000-03FF. These are fully static devices. Theory of Operation-PS 5010

Keyboard @ @ When the microprocessor calls for a bright digit, it writes a logic 1 at U1315. This gates a logic 0 through U1301 to the The front panel of this instrument has 20 momentary display controller IC. If the microprocessor writes a logic 0 contact SPST pushbutton switches shown on schematic 6. to U1315, the data selector gates a 20 kHz, 40% duty cycle These buttons are arranged in a 4 x 5 matrix. They are en- signal to the display controller IC causing the seven-seg- coded by U1421 shown on schematic 4. This device is a ment LEDs to dim. CMOS 20 key encoder. Scanning and debouncing circuitry are included on this chip. Also included on U1421 is an inter- nal RAM that stores the last key pressed, even after the key The remaining three seven-segment LEDs are is released. The output of U1421 is tristate and is placed multiplexed by U1410. This integrated circuit is similar to directly on the data bus. When a key is pressed, pin 13 (data U1400, except each LED segment is controlled indepen- available) goes high. This signals the microprocessor that a dently rather than with BCD data. This multiplexer scans at keyboard entry has been made. a 500 Hz rate and is capable of driving four seven-segment LEDs. The LEDs that are equivalent electrically to the fourth segment are the AMPS and VOLTS lights for the three sup- Output Control @@ plies, the ERROR and the NOT ENTERED lights. The three The CPU boapd outputs nine bits to the two analog AMPS and VOLTS LEDs are either on, off, or flashing. The boards. Four of the nine bits are the two clock and two data NOT ENTERED and ERROR LEDs are either off or flashing. lines from U1411. The microprocessor programs the voltage To achieve the flash capability, bus (62 is divided to 1.2 Hz and current DACs in serial format through these four bits. by U1322 and U1221. This 1.2 Hz square wave is gated by These lines go to shift registers on the analog boards. an addressable latch, U1314, and fed to U1412, an octal buffer. To flash the LED, the M6800 writes a logic 1 into U1410 and a logic 1 into U1314. IC U1314 acts as a switch The logic and floating supply output relays are controlled through AND gates U1321, U13238, and Ul32lC. These via U1411 pin 7 and U1315 pin 11, respectively, shown on pass the 1.2 Hz square wave to the cathodes of the LEDs. schematic 5. When the microprocessor writes a logic 0 into U1314, the flashing stops and the LED is continuously on.

The data strobe line that transfers the shift register bits to the DACs is pin 10 of U1315 shown on schematic 5. Pins The remaining three LEDs (REMOTE, ADDRESSED, and 7 and 9 of U 1315 have control over the floating supply mode OUTPUT ON) are controlled by addressable latch Ul4ll relays. These set the overhead voltage for either the high or shown on schematic 4. The REMOTE and ADDRESSED low output voltage mode. LEDs are illuminated with logic 0 into U1411. The OUTPUT LCD is illuminated with a logic 1. Front-Panel Display Gee The front panel of this instrument has nine '/-segment Ground Referenced Circuits 0 LEDs shown on schematic 6. The negative and positive sup- The +26 V from the mainframe is applied at interface ply LEDs (the first 6 counting from left to right) are pins 12A and B. This voltage passes through F1340 to the multiplexed by U1400, shown on schematic 5. This collector of Q1440. The base of Q1440 is set at about multiplexer is a 6 digit BCD display controller and driver. + 16 V by VR1341. + 15 V is available at the emitter of This device has six RAM locations. These are selected by Q144O. The - 26 V from the mainframe passes through pins 26, 27, and 28. These RAMS contain the information F1341 to the collector of Ql44l. The base of Q1441 is set that is written on the seven-segment LEDs. This device has by VRl34O at about - 16 V. - 15 V is available at the an internal oscillator that runs at approximately 300 Hz. The emitter of (31441. + 8 V from the mainframe passes through display refreshing is automatically accomplished without in- F1250, and is filtered by L1240. C1120 and C1231. A tervention from the processor. crowbar circuit is formed by Q1240. An RC time constant at the gate of Q1240 is formed by R1130 to C1230 and R1132. Drive for the crowbar is provided by Q1130 and The first six common cathode seven-segment LEDs are Q123O. If either the + 5 V at the emitter of Q123O or logic driven from U14OO through transistors Q1040, Q1132, supply sense at the emitter of Q1130 goes more than Q1131, Q1121, Q1120, and Q1122, shown on schematic 6. -700 mV positive than the base voltage, the respective Pin 16 of U 1400 is used for duty cycle brightness control. By transistor turns on. This action fires Q1240, which opens varying the duty cycle of the waveform at pin 16, the dis- the input fuse or trips the mainframe current limit. plays are dimmed when the unit is in the program mode.

Five relays and drivers are shown on this schematic. The duty cycle is controlled by U1301 (shown on sche- They are the floating supply output relay, floating supply matic 5), a data selector and U1315, an addressable latch. sense relay, logic supply output relay, + mode relay and -

REV SEP 1981 Theory of Operation-PS 501 0

mode relay. Each relay is operated from $26 V, except converter for the logic supply. As this converter is +5 V is used for the floating supply sense relay. The relay referenced to 4.5 V, it effectively sums the current informa- coils are in series with the collectors of the driving transis- tion from the DAC with the 4.5 V reference, thus creating a tors. The relay contacts are shown on other schematics in- voltage between 4.5 V and 5.5 V at pin 7 of U1741 B. The dicated by the numbers in the diamonds. The emitters of the output of U1741 B passes to the + input of U1740, which logic supply output relay driver, (21630, and the floating serves as a voltage error amplifier. The V+ sense line con- supply output and sense relay driver, Q1440, are connected nects to the - input of U1740. The sense line is clamped by together and to the collector of Q1729. This transistor is CR1110, CR1111, and CR1113 to the voltage output line. turned on by the power on (PWR) signal from the mainframe These diodes prevent the sense line from going more than via rear interface pin 6B. This transistor keeps the output one diode drop from the output line. This prevents damage relays open during power up. to U1740 should the sense line be misconnected. The out- put of U1740 is clamped to the input through VR1741 and VR1740. These diodes form a window within which the error Also shown on this schematic are four of the seven amplifier operates. If this amplifier is unbalanced, the output optoisolators. These four isolators form the loop status attempts to go to the + or - supply voltage. These diodes translators. These devices isolate the floating circuitry from clamp the output at approximately + 10 V or -2 V prevent- the ground reference CPU circuitry. Contact 11 of the high ing amplifier output stage saturation. This speeds up recov- power compartment switch S1600 connects to contact 10 ery times. to provide a low when the unit is plugged into a high power compartment in the power module. This signal tells the CPU at turn on that the instrument is plugged into a high power compartment. The output of the voltage error amplifier passes through CR1740 and to the emitter of Q1650. The base to emitter junction of this transistor is used as a simple diode. The collector of this transistor provides status information con- cerning loop balance. The output of current error amplifier Input information from the CPU for the digital-to-analog U1640 is ORd with the voltage error amplifier output at the converters comes in serial form over the data, strobe, and base of Q1650 through CR1531. This information passes to clock inputs. This information passes to shift and store reg- the base of Q1200, which in turn drives the base of the isters U1841 and U2041. These registers contain an output series pass-transistor, Q1400. latch. The output of the shift register is transferred to the output latch on the rising edge of the strobe input. The out- put of the latches goes directly to the voltage and current The output of U1740 also drives the base of 01731. This digital to analog converters U2040 and U1840. The output is done to determine the balance status information of the stage of the DACs is the collector of a transistor which has voltage loop amplifier. When both (21650 and (21731 are a large voltage compliance. conducting, the base of 01640 is low. This causes a high at the collector of Q1640 that tells the CPU the voltage loop amplifier is balanced. The reference voltage is obtained through the -+ refer- ence inputs. These inputs (pins 14 and 15) connect directly to the summing nodes of an internal amplifier. When the The output current flows through series pass-transistor DAC is functioning properly, the reference inputs are at the Q1400, through the current sense resistor R1300, the 6 A same voltage. The - input goes directly to the summing fast blow fuse, through the output relay, and to the supply amplfier input, which has a high input impedance. The + output. input serves as a current reference to set the current sources inside the DAC. The current flowing into this input is equal to the current derived from the voltage drop across The current DAC acts as a constant current sink to cre- R2040 or for the current DAC, R1940. This voltage is de- ate a constant voltage across R1841. The + input to U1640 rived from the voltage across VR2050. The ground refer- is the voltage drop acrosss R1300, the current sense resis- ence for both DACs is a ground sense line connected to pin tor in the output circuit. If the output current exceeds the 1 of U1741A. selected current limit, pin 3 of U1640 goes more negative than pin 2. This causes pin 6 to go more negative, reducing the conduction of the series pass-transistor until the current The reference voltage is generated across 6.2 V tem- is at the selected limit. The output of U1640 also passes perature compensated Zener diode VR2050. Constant cur- through divider R1631 and R1630 to the base of Q1730. rent is provided by (22050 with associated components. The collector of Q1730 provides current loop balance infor- R1746 sinks this current into - 15 V, minimizing the loading mation to the CPU. Whenever the current loop is in balance, on follower U1741A. A voltage divider consisting of R1944, U1640 has an output voltage of 6 V or less. This voltage is R1945, R1943, and R1950 provides 4.5 V at pin 5 of insufficient to turn Q1730 on. The collector, therefore, is at U1741 B. This operational amplifier is a current to voltage -1 5 v.

REV OCT 1986 Theory of Operation-PS 501 0

Fold-back current limit is provided by U1540. IC U1540 Base drwe for the + supply series pass-transistor is pro- functions similar to current error amplifier U1640, except the v~dedby emitter followers Q1500 in the high voltage mode reference voltage is related to the supply output voltage. and Q1501 ~nthe low voltage mode. Transistors (22000 and This reference is produced by divider network R1541, Q1900 perform the same function for the - supply. Correct R1542, and R1543. With an output voltage of 4 V, the cur- base voltages for these transistors are provided by Zener rent limit is about 3 A. At 0 V, output current limit is less diodes VR1501 and VR1600 and in the - supply, VR2000 than 1 A. and VR1800. Constant current for these Zeners is provided by (21600 and VR1500 (Q1901 and VR1900 in the - supply).

Floating Supply Rectifiers and Filters A constant current load for the collector supply is pro- Each of the floating supplies in the PS 5010 has two in- + vided by current source Q1800, R1811, and VR1701 ternal operating modes. These are the high voltage and low (Ql700, R1711, and VRl7OO in the supply). A constant voltage modes. Output voltages from 0 V to 32 V are avail- - current of about 25 mA flows from Q1800 to the - supply able In the high voltage mode, and 0 V to 15 V in the low output. Likewise, 25 mA flows from the supply output, voltage mode. The operating mode is determined by the + through Q1700, into the - collector supply. The positive programmed current limit. Low voltage mode above 400 mA current source is connected to the anode of CR1800. The In a standard mainframe compartment occurs with current negative current source is connected to the cathode of limits. and above 750 mA in a high power compartment. CR1700. When the supplies power down, the regulator ceases operation before the filter capacitors fully discharge. CR1800 becomes a positive current source and CR1700 a The + and - floating supply voltages come from four negative current sink. These diodes provide an alternate dis- isolated 25 V ac windings located in the power module. As charge path for capacitance in the opposite polarity supply shown on the schematic, only the center two windings sup- during shutdown. ply current in the low voltage modes. The maximum current available from these supplies depends on whether the plug- in is in a high power or standard compartment. Floating Supply Digital-to-Analog Converter circuits @ The return for the + supply is ground 3, and the return The data, clock, and transfer strobe are applied to opto- for the - supply is ground 4. These grounds are connected isolators U1030, U1041, and U1042. These isolators are through current sensing resistors R1104 and R1105 to form necessary, as the CPU circuitry is referenced to chassis the output common (ground 1). Grounds 3 and 4 are used ground and the floating supply circuitry is not. The output of throughout the circu~tryto avo~dgenerating errors in the the optoisolators drives the emitters of level shifting transis- current limit. Current drawn from any positive voltage and tors Q1140, Q1141, and (21142. The base current for these returned through ground 3 doesn't affect either current limit. transistors is provided by (21143 with associated compo- Current drawn from ground 4 and returned through any neg- nents. The output voltage of this emitter follower is 2 V. ative voltage will not affect either current limit; however, any These level shift transistors permit higher speed operation current drawn from the + output must return through the + for the transistors in the optoisolators, as only a small volt- sense resistor. The same occurs in the negative supply. age change is required at the collectors of the optoisolator transistors.

The ac from the power module is fused and passes to four bridge rectifiers. C1710, C1620, C1711, and C1910 re- The registers U1140, U1240, Ul241, U1121 and U1242 duce commutation noise entering the dc bus. The two di- are shift-and-store devices similar to the ones used in the odes shown before the bridge rectifiers supply additional logic supply. The serial data input is accumulated in time voltage for the base drive regulators as described later. with the clock pulse inputs. When the transfer strobe pulse After passing through the bridge rectifiers, the pulsating di- occurs, the registered data transfers to the device's internal rect current is filtered by a choke input filter. Chokes L500A latches. A total of 37 output bits are used. Bits 33 through and LSOOB, as well as L510A and L5106, are mutually 36 pass to the FET gain switches shown on schematics 11 coupled. and 12. Bit 37 disables the voltage reference. The remaining bits go directly to the digital-to-analog converters.

The collector voltage for the series pass-transistors in the mainframe is relay switched depending on the output Four DACs are used in this circuit. The - current refer- voltage mode selected. Relays K1510 and K2010 switch the ence is generated by U 1221 and U 11 1 1 A. The + current collector and base drive voltages for the series pass-transis- reference is generated by U1230 and U1111 B. The + volt- tors. The supplies are stacked to obtain the higher dc age reference is generated by U1130 and U 1330B, while the voltages. - voltage reference is generated by U1231 and U1330A. Theory of Operation-PS SO 10

Internally, all four DACs employ a current reference driv- Floating Supply ing a ladder network. Each bit drives a binary weighted cur- + rent switch that steers the current into either lout or m. The output of the + current DAC connects to pin 3 of The negative current sources (pins 2 and 4) in U1221 and U1100. The + current sense from sensing resistor R1104 U1230 are transistor collectors. This gives the lout terminal connects to pin 2 of U1100. As the supply output current a voltage compliance of - 10 V to + 18 V. The current increases, the voltage at pin 2 of U1100 goes more negative sources in voltage DACs U1130 and U1231 are taps on the with respect to the output common (ground 1). When the passive ladder network thus requiring termination of lout current sense voltage equals the current DAC voltage, the and into exactly the same voltage as the ladder ground output, pin 6, of U1100 goes positive. This signal, along with (pin 3). The reference for the current DACs U1221 and the - voltage error amplifier output, increases conduction in U 1230 is provided by VR 11 11. The reference current is de- Q14O2. This lowers the base voltage on (21401, Q1400, and termined the same as in the logic supply DACs, as previous- the two series pass-transistors in the power module, result- ly described. However, in the floating supply, voltage divider ing in a lower output voltage. R1100 and R1101 program the logic threshold of U1221 and U1230 to match the shift register output. To set the output voltage, the +V sense is combined through a resistive divider consisting of R1533, R1545, The entire voltage DAC reference circuit tracks the com- R1543, R1542, R1544, and R1541 with the negative volt- mon sensing input (ground 2). A +6.2 V reference is gener- age from the +V DAC. If the 10 V range is selected, (21640 ated by temperature compensated Zener VR1340. The is on and (21641 is off. If the 32 V range is selected, (21641 Zener diode is driven by constant current source (21340, conducts, selecting the 32 V divider to be applied to pin 3 of R1347, R1346, and VR1341. R1530 sinks about the same U1420. The voltage at pin 2 of U1420 comes from R1345 current from ground 2 (common sensing input) to - 15 V, and has a range of 220 mV from the common sensing minimizing the loading on the common sensing line. The cur- point. When a change in output load lowers the output volt- rent source is off when the reference disable line is high. age, the sense line voltage lowers the common input of When the current source is off, R1349 pulls the reference dividers R 1533 and R 1541 . This lowers pin 3 of U 1420, voltage negative. Diode CR1340 then clamps this level at which reduces conduction in (21402. This action raises the about - 700 mV. The reference is disabled during the out- base voltage of Q1401, which tracks through the Darlington put off sequence. triple output stage increasing the output voltage. CR1420 and VR1420 prevent saturation and slow recovery of U 1420 in under and over-voltage conditions. The sense line is The reference voltage is buffered by U1330C and invert- + connected to the output terminal through CR1500 and ed by U1330D. The resulting + and -6.2 V drive the refer- + CR1510. These diodes prevent the sense line from moving ence inputs of voltage DACs U1130 and U1231. Both more than one diode drop from the output bus. The voltages also drive a divider network with four zero adjust- + emitter of Q1400 is connected to pin 3 of U1420 through ments. R1335 and R1334 null out the offset voltage in the C1410. This capacitor provides high frequency compensa- +V and -V current to voltage converters, U1330B and tion for the amplifier. U1330A respectively. To meet differential linearity specifica- tion (step size accuracy), this voltage must be nulled to ~200pV. R1345 and R1344 are zero adjustments for the iand - output voltage. A 10 !IF capacitor, C1531, is connected from the + out- put terminal to common. A current sink contributes stability and provides a rapid discharge path for C1531. R1340 and R1327, along with C1231 and C1230, are compensation networks for the current to voltage convert- ers. Schottky diodes CR1130 and CR1220 protect the lout S1500 selects the front panel or the rear interface out- outputs from negative excursions on power up. The current puts and sense lines. The unused ports are floating. to voltage converter feedback to resistor is connected to pin 16 inside the DAC.

The emitters of the series pass-transistors are balanced The output of the - current DAC is converted to voltage through R1622, R1611, and R1612. When the power supply via U1111A. The zero adjust for this converter is R1321 in is operated in the standard compartment of a power mod- conjunction with the associated resistive dividers. These ule, the high power switch S1600A is open. The emitter re- dividers operate between + 15 V and - 15 V. Current to sistor for the high power series pass-transistor is 0.75 !1 voltage conversions for the + current DAC is provided by (R1611). In the high power compartment, St 600A is closed, R1211 and R1210. The 0 adjust for this converter is pro- shunting R16ll with R1612. This increases the current vided by R1311. This signal is buffered by unity gain follow- through the high power transistor to approximately two er U1111B. times that passing through the standard transistor. Theory of Operation-PS SO 10

The + voltage loop balance comparators U111OC and anced operation under worst case conditions. When a loop U111OD connect to the output of U1420. The output of the is unbalanced, the output of its comparator is approximately current error amplifier, U1100, connects to the inputs of -- 15 V. The output of these comparators drive the opto- Uf 11 OA and U111OB. A voltage divider formed by R1122, isolators shown on diagram 7. R1120, and R1121, connected between the + 15 V and - 15 V, provides a + 8 V and - 8 V comparison voltage for the + loop balance comparators. These comparators have Negative Floating Supply open collector outputs. As long as the inputs to these com- 0 Except for value changes in frquency compensation net- parators, from the voltage and current error amplifiers, re- works, the negative supply is identical to the positive sup- main within the window +8 V to -8 V, the outputs will ply. Circuit operation is identical. remain high. These voltages are the normal window for bal- Section 5-PS 501 0

CALIBRATION

PERFORMANCE CHECK PROCEDURE

Introduction All steps in the Performance Check procedure may be performed with the PS 5010 in the power module. All steps This procedure checks the electrical performance re- except source effect and transient recovery may be per- quirements as listed in the Specification section in this man- formed with the instrument connected to the power module ual. Perform the internal adjustment procedure if the through extender cables. See heading Adjustment Access in instrument fails to meet these checks. If recalibration does Internal Adjustment procedure later in this section for infor- not correct the discrepancy, circuit troubleshooting is indi- mation on extender cables. cated. Also, use this procedure to determine acceptability of performance in an incoming inspection facility. For conve- nience, many steps in this procedure check the performance of this instrument at only one value in the specified perfor- mance range. Any value within the specified range, within appropriate limits, may be substituted. The performance check may be done at any ambient temperature between 0°C and +50°C. Some steps in this procedure require resistors con- nected to the front panel terminals. These resistors Test Equipment Required can become hot under certain conditions. Do not The test equipment listed in Table 5-1, or equivalent, is touch the resistors or allow them to contact the instru- suggested to do the performance check or the adjustment ment front panel or other material easily damaged by ' procedure. heat. Calibration-PS 50 10 Performance Check Procedure Table 5-1 SUGGESTED TEST EQUIPMENT Minimum Performance Adjustment Description Requirements Check Step Procedure Step Recommended Equipment TM 5006 Power High power com- All steps. High pow- All steps. High pow- Module partment required in er compartment re- er compartment re- steps 7, 10 quired in steps 7 and quired in steps 1P, 10 11,12 -- - TEKTRONIX DM 501A ~0.1%~0 A to 2 A, t0.3%, 0 Vac to 1 Vac true rms Variable voltage 1000 VA capability Autotransformer, Technipower transformer Inc.

Oscilloscope 5 mV/div, differential TEKTRONIX 7A26 Amplifier, capability, 20 Hz to two 1x probes, with 7000-series 20 MHz with mainframe and timebase. 20 MHz bandwidth limit switch

Resistor Tektronix Part No. 388-0842-00.

Resistor 1 560 R, 5%, 3 W Tektronix Part No. 308-0298-00 Resistor, special 0.1 R, 0.1%, 3 W Tektronix Part No: 308-0769-00 four terminal Resistor 1 45 R, 5%. 25 W 2 ea. Tektronix Part No. 308- 0744-00 2A spst switch I Patch cords Tektronix Part No. 01 2-0031-00 red and 012-0039-00 black

Extender cables All steps 2 ea. Tektronix Part No. 067- P 0645-02 Various values of Sufficient wattage resistance as rating chosen -- Miscellaneous As required As required test connectors and leads Controller TEKTRONIX 4050 series or desktop computer, TEKTRONIX 4041 computerlcontroller

GPlB cable As required

REV OCT 1986 Calibration-PS 501 0 Performance Check Procedure PERFORMANCE CHECK SUMMARY SHEET

This sheet may be duplicated and used as a short form performance check procedure. Perform the check and record the reading in the 'Measured" column. Compare the reading with the upper and lower limits. After maintenance or adjustment again perform the procedure and compare the readings.

Date

Serial Number Tested by

Step Description Minimum Measured Maximum

- Calibration-PS 501 0 Performance Check Procedure 1. Check Constant Voltage Range and Overall n. Make certain the OUTPUT is ON. Accuracy

Make certain the power module is set to the correct line o. CHECK-that the dvm reads from -0.020 V to voltage. +0.020 v.

Set the variable voltage transformer to nominal line p. Press the following buttons in the order listed. voltage. 3 2 Connect the power module through the variable voltage ENTER transformer to the supply.

q. CHECK-that the dvrn reads from -32.18 V to Connect the dvrn to the front panel POSITIVE and -31.82 V. common terminals.

r. Leave these connections for the next step. Turn on the mainframe. Make certain the OUTPUT is ON.

Make certain the display for the POSITIVE supply is set for 0.00 V. 2. Check Source Effect a. Connect the dvrn to the POSITIVE or NEGATIVE front CHECK-for a dvrn reading from -0.020 V to panel connectors. +0.020 v.

b. Determine the selected line voltage range of the power Press the following buttons in the order listed: module. SUPPLY SELECT POS c. With the power module connected to the variable 3 voltage transformer, lower the voltage to the lower limit 2 for the selected line voltage tap used. ENTER

d. Program the PS 5010 for any voltage POSITIVE or Make certain the OUTPUT is ON. NEGATIVE within the range of the instrument.

CHECK-that the dvrn reads from 31.82 V to 32.1 8 V. e. Note the displayed voltage on the dvm.

the the PS 5010 f. Change the variable voltage transformer to the front panel. maximum for the line voltage range used.

C0nne~tthis POSlTlVE lead to the PS 5010 front panel g. CHECK-^^^^ the dvm display reads 0.01ol0 NEGATIVE connector. +2 mV from the reading noted in step e.

m. Press the following buttons in the order listed: h. Repeat Source Effect check for the other floating SUPPLY SELECT supply- NEG 0 ENTER i. Leave these front panel connections for the next step. Calibration-PS 501 0 Performance Check Procedure 3. Check Step Size (Resolution) m. Press the following buttons in the order listed: a. Connect the POSITIVE connector through a jumper to SUPPLY SELECT the dvrn positive input terminal. NEG 5 b. Connect the front panel common terminal to the dvm 1 common terminal. 1 ENTER c. Press the following buttons in the order listed: n. Record the dvrn reading. SUPPLY SELECT POS 5 o. Press the INCREMENT t button for one step change. 1 1 p. CHECK-that the dvrn reads from 0 mV to -20 mV ENTER from the reading obtained in step n. d. Make sure the OUTPUT is ON. q. Press the following buttons in the order listed: 2 e. Record the dvrn reading. 0 ENTER f. Press the INCREMENT t button for one step change. r. Note the dvrn reading. g. CHECK-that the dvrn reads from 0 mV to +20 mV from the reading taken in step e. s. Press the INCREMENT f button for one step change. h. Press the following buttons in the order listed: t. CHECK-that the display reads from -60 mV to - 140 mV more negative than the reading obtained in 2 step r. 0 ENTER u. Leave these connections for the next step. i. Record the dvrn reading. j. Press the INCREMENT t button for one step change. k. CHECK-that the dvrn reads from f0.060 V to 4e Check Load Effect + 0.1 40 V from the reading obtained in step i. a. Make certain the OUTPUT is OFF.

I. Remove the connector to the POSITIVE front panel ter- minal and connect it to the NEGATIVE front panel b. Connect the dvrn directly to the front panel POSITIVE terminal. and common connectors. Calibration-PS 501 0 Performance Check Procedure c. Press the following buttons in the order listed: Floating supply (left) board. SUPPLY SELECT POS + ( - ) sense 23A (238) 5 ENTER I ( - ) output 22A (228) CURRENT + 4

6 +(-) common 21A (218) 7- ENTER

+ (-) sense common 24A (2481 1 d. Turn the OUTPUT ON. e. Note the dvrn reading (4.990V to 5.01 0 V). Fig. 5-1. Connections for rear interface load effect check. Dvm must be connected to same point as sense lines. f. Turn the OUTPUT OFF. n. Connect the resistor and dvrn as shown in the figure. Connections for the negative supply are shown in Connect the 5 52 resistor from the front panel POSITIVE g. parenthesis. terminal to the front panel common terminal.

o. Use the same control settings as listed previously. h. Turn the OUTPUT ON.

p. The tolerance for the rear output load effect is =GI mV. i. CHECK-the dvrn for a reading.of =GI0 mV from the reading noted in step e. q. Remove all connections for the next step.

r. Change the front-rear switch to front panel output.

To prevent resistor overheating do not leave the resis- tor connected for longer than necessary to make the check. 5. Check PARD (ripple and noise) a. Connect the POSITIVE connector to the dvrn ac input.

Repeat steps a through i for the NEGATIVE supply. Substitute the word NEGATIVE for POSlTlVE in these b. Connect the common to the dvrn low terminal. steps. All tolerances and voltages are identical except for the sign change. c. Set the dvrn for ac true rms.

To verify the rear interface output load effect see Fig. 5- 1. d. Select any specified voltage and current combination for the POSITIVE floating supply.

All entered values are identical. e. Make certain the PS SO1 0 OUTPUT is ON. m. Change the front-rear switch on the rear panel of the instrument to rear. f. Allow up to 30 s for the dvrn to stabilize. Calibration-PS 50 10 Performance Check Procedure g. CHECK-that the dvm display reads =GI mV rms. e. Set the front panel pushbuttons for a 5 V 1.6 A output voltage. h. Connect the oscilloscope vertical input to the front panel POSITIVE and common terminals through a 1X f. Alternately open and close the switch in series with the probe. 5 11 load.

Ac couple the oscilloscope input. Set the bandwidth g. Adjust the oscilloscope triggering so that the transient limit to 20 MHz. waveform during switch opening and closing is visible on the oscilloscope display. see Fig. 5-3.

CHECK-that ' the oscilloscope reads ~10mV peak- to-peak. 4- t 500 jls

Repeat this check for the NEGATIVE floating supply. The specifications are identical.

Remove these connections for the next step.

6. Check Load Transient Recovery a. Make certain the OUTPUT is OFF.

Connect the test fixture shown in Fig. 5-2 to the front panel common and POSITIVE output connectors. +Floating supply transient response

'/ 2A switch

Fig. 5-2. Test fixture for load transient recovery.

-Floating supply transient response 3391-16 c. Connect the oscilloscope to the front panel POSITIVE Fig. 5-3. Load transient recovery waveforms. and common connectors. d. Set the oscilloscope for ac coupled vertical input and h. CHECK-that the time required for the waveform to the sweep speed to measure approximately a 500 ps return within 20 mV of the voltage before the switch is waveform (20 mV/div and 100 psldiv). opened is ~500ps. Calibration-PS 5010 Performance Check Procedure Repeat these steps for the NEGATIVE floating supply. CHECK-that the time from 0 V to 32 V is ~1 ms. All steps are identical with exception of the sign change. See Fig. 5-3. Retrigger the oscilloscope for a negative-going waveform from 32 V to 0 V. Remove these connections for the next step.

CHECK-that the time from 32 V to 0 V is ~20ms.

Check Voltage Change Response Time Turn the OUTPUT OFF. Make certain the PS 5010 is installed in the high power compartment of the power module. Connect a 45 Q 25 W resistor across the POSITIVE and common front panel connectors. (This is two 90 R resis- tors in parallel.) Make certain the OUTPUT is OFF.

Repeat steps e, f, g, h and i. Press the following buttons in the order listed: SUPPLY SELECT TRACK CHECK-for a 1 ms risetime from 0 V to +32 V. CURRENT

7 Repeat steps k and I. 5 ENTER VOLTAGE CHECK-for a falltime of 6 3mS. 0 ENTER Repeat this entire procedure for the NEGATIVE supply. Substitute NEG for POS and use the NEGATIVE and Connect an oscilloscope to the front panel POSITIVE common front panel connections. and common terminals.

Increase for the NEGATIVE supply means a larger ab- Turn the OUTPUT ON. solute value.

With 0 V output from the PS 5010, set the oscilloscope Remove these connections for the next step. controls for dc input to the vertical amplifier and to trig- ger on a +32 V leading edge.

Press the 3 and the 2 pushbuttons. Check Constant Current Range and Overall Accuracy While viewing the oscilloscope, press the ENTER button.

NOTE Note the Q to 10O0/0 risetime of the waveform. The voltage selected in performing this check must be sufficient to force the selected current through the internal resistance of the current meter and NOTE associated leads. It may be necessary to go from 0 V to 32 V several times to obtain proper oscilloscope triggering. This can be accomplished by pressing the OUTPUT a. Connect the front panel POSITIVE and common ON/OFF pushbutton. terminals to the digital current meter.

REV JUL 1987 Calibration-PS 501 0 Performance Check Procedure Select the POSITIVE supply and any voltage within the Select any voltage within the range of the instrument. specified voltage range. The selected voltage must be sufficient to force the selected current through the internal resistance of the current meter and associated leads. If the power module is in a high power compartment, select any current from 50 mA to 0.750 A. Select any current within the specified range of the instrument. If the power module is in a standard compartment, select any current from 50 mA to 400 mA. Turn the OUTPUT ON.

CHECK-that the current meter reads within +(5% + 20 mA) of the selected current. Note the current meter reading.

If the power supply is in the high power compartment, Change the current output up or down by 50 mA. select any voltage from 15 V or less. See previous note. Note the new meter reading.

Select any current from 1.6 A or less. CHECK-that the second reading is from 35 mA to 65 mA from the reading obtained in step f. CHECK-that the current meter reads within + (5% + 20 mA) of the current selected. Repeat the above steps for the NEGATIVE supply.

If the power module is in a standard compartment, select any voltage from 15 V or less. Leave these connections for the next step.

Select any current from 0.750 A or less.

CHECK-that the current meter reads within +(5% +20 mA) of the current selected. Check Constant Current Source Effect Repeat steps a through k for the NEGATIVE supply. Make certain the PS 5010 is in the high power Change the POSlTlVE to NEGATIVE. The voltages, compartment. currents and tolerances remain the same. Only the sign changes. Make certain the OUTPUT is OFF. m. Leave these connections for the next step. Connect a current meter from the front panel POSITIVE connector to the common connector.

Set the PS 5010 for 15 V output at 1.6 A.

9. Check Constant Current Step Size Turn the OUTPUT ON. Allow the PS 5010 to stabilize for 1 minute before proceeding. a. Turn the OUTPUT OFF.

Vary the line voltage to the power module from the b. Connect the current meter to the front panel POSITIVE lower limit to the upper limit for the nominal line voltage and common terminals. used. Calibration-PS 5010 Performance Check Procedure g. CHECK-that the current meter changes =z1 mA while j. Repeat the procedure for the NEGATIVE supply. All changing the line voltage. specifications remain the same. h. Repeat steps a through g for the NEGATIVE supply. All k. Remove these connections for the next step. values except for the sign change remain the same. i. Remove these connections for the next step. 12. Check Constant Current PARD Turn the OUTPUT OFF.

1 1. Check Constant Current Load Effect Connect a known value resistor across the front panel a. Turn the PS 5010 OUTPUT OFF. POSITIVE and common terminals. The suggested value is 5 Q with sufficient wattage for the current limit desired. b. Connect the test setup as shown in Fig. 5-4 to the POSlTlVE and common front panel terminals. Connect the oscilloscope across the resistor. Ac couple the vertical input and limit the bandwidth to 20 MHz.

Select the current limit desired with sufficient voltage to force the supply into current limit.

Using Ohms law, determine the vertical deflection of the oscilloscope necessary to conveniently read a current change of 10 mA through the resistor.

Turn the OUTPUT ON. Fig. 5-4. Test setup for checking load effect in the constant current mode. CHECK-that the peak-to-peak current variations through the resistor are less than or equal to 10 mA peak-to-peak. Set the POSlTlVE supply for 32 V at 50 mA current limit. Turn the OUTPUT OFF.

Open the switch on the test setup. Remove the resistor and oscilloscope from the front panel terminals. Turn the OUTPUT ON.

Connect the current meter directly across the front Note the current on the current meter. panel POSITIVE and common terminals.

Close the switch on the test setup. Turn the OUTPUT ON.

CHECK-that the current deviates ~10mA from the CHECK-for =~5mA rms for the supply in current limit. reading taken in step f.

Repeat this procedure for the NEGATIVE supply. Turn the OUTPUT off. Specifications remain the same. Calibration-PS 501 0 Performance Check Procedure n. Remove these connections for the next step. p. Remove these connections for the next step.

13. Check Current Change Response Time 14. Check Logic Supply Constant Voltage Range and Overall Accuracy Make certain the OUTPUT is OFF. Make certain the OUTPUT is OFF.

Connect the 5 R resistor from the front panel POSITIVE connector to the common connector. Connect the dvm to the front panel LOGIC and ground terminals.

Connect the oscilloscope across this resistor. Dc couple the vertical amplifier. Connect the power module through the variable voltage transformer to the supply.

Set the POSITIVE supply for 32 V. Set the variable voltage transformer to nominal line voltage. Set the POSITIVE supply for 50 mA.

Make certain the power module is set to the correct line Turn the OUTPUT ON. voltage.

Change the front panel setting to 0.75 A. Press the following buttons in the order listed: SUPPLY SELECT LOGIC Adjust the oscilloscope to trigger on the rising 4 waveform. 5 ENTER Change back and forth from 50 mA to 0.75 A until the entire rising waveform is visible on the oscilloscope. Use the OUTPUT ONIOFF switch to properly set the Turn the OUTPUT ON. oscilloscope trigger.

CHECK-that the dvm reads from 4.45 V to 4.55 V. CHECK-that the risetime of the waveform from 0.25 V to 3.75 V is ~20ms. Press the following buttons in the order listed: Switch the supply from 0.75 A to 50 mA. 5

5 Change the oscilloscope to trigger on the falling ENTER waveform.

CHECK-that the dvm reads from 5.45 \/ to 5.55 V. CHECK-that the time for the voltage to decrease from 3.75 V to 0.25 V is ~20ms. Leave these connections for the next step.

Turn the OUTPUT OFF. 15. Check Logic Supply Step Size (Resolution) Repeat the procedure for the NEGATIVE supply. The a. Connect the LOGIC and ground connectors to the dvm absolute values are identical. input terminals. Calibration-PS 5010 Performance Check Procedure b. Press the following buttons in the order listed: 17. Check Logic Supply Load Effect SUPPLY SELECT a. Make certain the OUTPUT is OFF. LOGE 5 b. Connect the dvrn directly to the front panel LOGIC 1 connectors. 1 ENTER c. Press the following buttons in the order listed: SUPPLY SELECT c. Make sure the OUTPUT is ON. LOGIC 5 ENTER d. Record the dvrn reading. CURRENT 2 e. Press the INCREMENT button for a one step change. 0 ENTER f. CHECK-that the dvrn reads from 0 mV to +20 mV from the reading taken in step d. d. Turn the OUTPUT ON.

Leave these connections for the next step. g. e. Note the dvrn reading.

f. Turn the OUTPUT OFF. 16. Check Logic Supply Source Effect Connect the dvrn to the LOGIC supply front panel g. Connect the 5 Q resistor between the front panel LOG- connectors. IC terminals.

Determine the line voltage range of the power module. h. Turn the OUTPUT ON.

With the power module connected to the variable i. CHECK-the dvrn for a reading of ~10mV from the voltage transformer, lower the voltage to the lower limit reading noted in step e. for the line voltage used.

Program the PS 5010 for any voltage within the range of the logic suppy. To prevent resistor overhealing do not leave the resis- tor connected for longer than necessary to make the Note the displayed voltage on the dvm. check.

Change the varible voltage transformer to the maximum for the line voltage range used. j. To verify the rear interface output load effect see Fig. 5-5.

CHECK-that the dvrn display reads within 1 mV from the reading noted in step e. k. Connect the resistor and dvrn as shown in the figure.

Leave these connections for the next step. I. Use the same entered settings as listed previously. Calibration-PS 5010 Performance Check Procedure NOTE If the Logic Supply fails to meet the 10 mV p-p Sense 23A PARD specification due to a line frequency compo- Inent superimposed on the output waveform, a Output 22A or 228 ground loop may exist from the Logic Supply ground DVM to the oscilloscope through the probe lead. Under these conditions, to determine PARD, operate the oscilloscope vertical amplifier in the differential Common 21A or 218 mode. Set the oscilloscope vertical amplifier for B 5 m V/div, ac coupled with a 20 MHz bandwidth. I Sense common 24A or 248 1

k. Remove these connections for the next step.

Fig. 5-5. Connections for rear interface logic supply load effect check Dvm must be connected to same point as sense lines. m. The tolerance for the rear load effect is =GI mV. 19. Check Logic Supply Load Transient Recovery a. Make certain the OUTPUT is OFF. n. Remove all connections for the next step. Connect the test fixture shown in Fig. 5-2 to the front panel LOGIC output connectors. 18. Check Logic Supply PARD (ripple and noise) Connect the LOGIC connectors to the dvm ac input. Connect the oscilloscope to the front panel LOGIC connectors.

Set the dvm for ac true rms. Set the oscilloscope for ac vertical input and the sweep speed to measure approximately a 500 ps waveform Select any specified voltage and current combination (20 mVIdiv, 100 psldiv). The waveforms are similar to for the logic supply. those shown in Fig. 5-3.

Make certain the PS 5010 OUTPUT is ON. Set the front panel pushbuttons for a 5 V 2.0 A output.

Allow up to 30 s for the dvm to stabilize. Turn the OUTPUT ON

CHECK-that the dvm display reads 62mV rms. Alternately open and close the switch in series with the 5 Q load.

Remove the dvm from the front panel connectors. Adjust the oscilloscope triggering so that the transient waveform during switch opening and closing is visible Connect the oscilloscope vertical input to the front on the oscilloscope display. panel LOGIC terminals. Use the 1x probe.

CHECK-that the time required for the waveform to Ac couple the oscilloscope input. Set the bandwidth to return within 20 mV of the voltage before the switch is 20 MHz. opened is <5OO j~s.

CHECK-that the oscilloscope reads G 10 mV peak- Remove these connections for the next step. to-peak. Calibration-PS 5010 Performance Check Procedure 20. Check Logic Supply Constant Current Range, I. CHECK-that the current flowing through the resistor Step Size and Accuracy is from 70 mA to 130 mA less than the original current selected. a. Determine the current to be verified within the specified range of the instrument. m. Remove the dvm for the next step. b. Divide 5 V by the chosen current. This determines the resistor required. If the exact resistor value is not obtainable, make certain that the resistor selected provides a voltage drop from 4.5 V to 5.5 V at the chosen current. Make certain the resistor has sufficient wattage rating. 21. Check Logic Supply Scaled Current Out a. Using the same setup in the previous step connect the dvm to rear interface terminals 28A (+ lead) and 27A c. Press the following buttons in the order listed: (- lead). These terminals are not ground referenced. SUPPLY SELECT LOGIC 5 b. Determine the current flowing through the front panel resistor connected to the LOGIC terminals. 5 ENTER CURRENT e. CHECK-that the dvm reads 1 mV k(20/0 + 1 mV) for every 10 mA of current flowing through the resistor.

Select the current desired and press ENTER. d. Remove all connections.

Make certain the OUTPUT is OFF.

Connect the selected resistor across the LOGIC front panel terminals. Check the GPIB Bus via the Controller Refer to the talker-listener programs in the Connect the dvm across the resistor. Programming section of this manual.

Using the resistor value selected determine the voltage Send commands using the program and observe the drop across the resistor for the desired current. front panel changes. Send SET? and note the data returned to the controller.

Turn the OUTPUT ON. CHECK-that the PS 5010 displays the voltages and curents as sent and sends the correct voltages and CHECK-that the dvm reads a voltage indicating a cur- currents when queried. rent through the resistor within +:(5% +20 mA) of the current value selected. Remove all connections.

Reduce the current limit by 100 mA (press the INCRE- MENT 1 pushbutton once). This completes the Performance Check procedure. Calibration-PS 5010 Internal Adjustment Procedure INTERNAL ADJUSTMENT PROCEDURE

Introduction Adjust 4.5 V Adj and Gain Adj This procedure should be performed if the instrument Connect the negative terminal of the digital voltmeter to fails to meet the performance requirements of the electrical the ground terminal of the LOGIC output. Connect the characteristics listed in the Specification section of this man- positive terminal to the positive terminal of the LOGIC ual. To ensure continued instrument accuracy, it is recom- output. mended that adjustment be performed every 1000 hours of operation or every 6 months if used infrequently. Adjust- ment is also recommended following instrument repair or Make certain the PS 5010 output button is illuminated modification. The adjustments must be made at an ambient (ON). temperature of +20°C to +30°C.

Press the following buttons in the order listed: Services Available SUPPLY SELECT Tektronix, Inc. provides complete instrument repair and LOGIC adjustment at local field service centers and at the factory 4 service center. Contact your local Tektronix field office or representative for further information. 5 ENTER

Test Equipment Required CHECK-that the dvm reads from 4.499 V to 4.501 V. The test equipment (or equivalent) listed in Table 5-1 is required for adjustment of the PS 5010. Specifications given for the test equipment are the minimum necessary for accu- ADJUST-R1950, 4.5 V Adj, for a dvm reading of rate adjustment. All test equipment is assumed to be cor- 4.499 V to 4.501 V. rectly calibrated and operating within specification. If other test equipment is substituted, the calibration may need to be altered to meet the requirements of the equipment used. Press the following buttons in the order listed:

Adjustment Access 5 Use two extender cables (Tektronix Part No. 067-0645- ENTER 02) to operate the plug-in outside the power module. An extender cable for the GPlB (Tektronix Part No. 067-0996- 00) is also available. When connecting the plug-in to the CHECK-that the display reads from 5.499 V to power module via the plug-in extenders, make certain the 5.501 V. top of the extender in the power module is connected to the top of the plug-in. Remove the right side cover of the PS 5010. All adjustments are located on the right side and bot- ADJUST-R1851, Gain Adj, for a reading from 5.499 V tom of the PS 5010. See Figs. 9-10 and 9-1 1 in the pullout to 5.501 V. pages in the rear of this manual.

Fig. 5-6 shows adjustment interactions. Remove these connections for the next step.

Adjust Max I Adj Make certain the OUTPUT light is OFF

To prevent damage to the power module series pass transistors do not operate the PS 5070 on extender Connect the PS 501 0, dvm and 0.1 R resistor as shown cables at high loads for extended periods of time. in Fig. 5-7.

REV AUG 1981 Calibration-PS 5010 Internal Adjustment Procedure

Logic supply Floating supply

Step 5'5'5'3 Adjusting this a5' u5' a 4 a a 5 5 C .E .E .5 3 5' Interacts 5 5' a auaSddd u- -a with this a 4 , NN22>>>> mx xm bz.$, a 2dftft::ggaa~~

4.5 V Adj Logic Gain Adj supply Max I Adj

+ Da Zero Adj - Da Zero Adj + Zero Adj - Zero Adj - 10 V Gain Adj Floating , 9 18 V Gain Adj +3% V Gain Adj -32 V Gain Adj - 10 + 10 + Max I Adj - Max I Adj

Fig. 5-6. Adjustment interactions. If the intersecting square is darkened the adjustments interact.

c. Press the following buttons in the order listed: f. CHECK-that the dvm reads from 0.2950 V to 0.3050 V. SUPPLY SELECT LOGIC CURRENT g. ADJUST-R1850, Max I Adj, for a dvm reading of 3.0 0.2950 V to 0.3050 V. ENTER CLEAR h. Remove the foldback defeat short. d. Short TP1550, Foldback Defeat Test Point, to ground with a screwdriver.

NOTE A dvm reading of 0.05 V to 0.15 V verifies proper foldback opera tion. Do not ground this test point any longer than necessary. e. Turn the OUTPUT ON. i. Remove these connections for the next step.

REV SEP 1981 Calibration-PS 501 0 Internal Adjustment Procedure g. Make certain the OUTPUT front panel button is illuminated.

PS 5010 DVM h. CHECK-that the dvrn reads from -0.20 mV to +0.20 mV.

LOGIC i. ADJUST-R1335, + Da 0 Adj, for a dvrn reading of - 0.20 mV to +0.20 mV.

j. Move the dvrn positive lead to TP 1430, the V-Dac test point.

u k. CHECK-for a dvrn reading from -0.20 mV to + 0.20 mV. The DVM must be connect- ed directly across the 0.1 Q resistor sense leads. The sense leads break out the I. ADJUST-R1334, -Da 0 Adj, for a dvrn reading from side of the resistor body. -0.20 mV to +0.20 mV. 3391 -20

m. Remove these connections for the next step. Fig. 5-7. Test setup for Max I Adj., step 2.

3. Adjust + and - Da 0 Adj a. Turn power module off. Adjust +O Adj Connect the dvrn + lead to the floating supply b. Move the J1320 jumper to the calibration position. Its POSITIVE connector and the dvrn -lead to the front location is shown in Fig. 6-1. panel common (ground) connector.

Make certain the positive supply is programmed for 0 V output, and the OUTPUT is ON.

NOTE CHECK-for a dvrn reading from -1.00 mV to J1320 remains in the calibration positon for the re- + 1.OO mV. maining adjustments.

ADJUST-R1345, +O Adj, for a dvrn reading of - 1.OO mV to + 1.OO mV. Connect the dvrn negative lead to TP1330, the Ref Com test point. Remove the connection to the front panel POSITIVE terminal for the next step. Connect the dvrn positive lead to TP1431, the V + Dac test point.

Turn the power module on Adjust -0 Adj Connect the dvrn positive lead to the PS 5010 Program the positive and negative supplies for 0 V NEGATIVE terminal and the dvrn negative lead to the output. front ane el common terminal. Calibration-PS 501 0 Internal Adjustment Procedure Make certain the negative floating supply is Turn the OUTPUT ON. programmed for 0 V output, and the OUTPUT is ON.

CHECK-the dvrn for a reading from +9.999 V to CHECK-for a dvrn reading from -31.99 V to + 10.001 v. -32.01 V.

ADJUST-R1545, + 10 V Gain Adj, for a dvrn reading ADJUST-81344, -0 Adj, for a dvrn reading from from +9.999 V to + 18.001 V. - 1.OO mV to + 1.OO mV.

Leave these connections for the next step. Leave these connections for the next step.

Adjust +32 V Gain Adj Adjust - 10 V Gain Adj Make certain the dvrn is connected to read the Connect the dvrn positive lead to the PS 5010 POSITIVE PS 5010 output voltage. NEGATIVE front panel connector and the dvrn -lead to the front panel common (ground) connector. Make certain the PS 501 0 is in the TRACK mode. Press the following buttons in the order listed: SUPPLY SELECT Press the following buttons in the order listed: TRACK 3 1 2 0 ENTER ENTER

CHECK-that the dvrn reads from +31.99 V to Make certain the OUTPUT pushbutton is illuminated $32.01 V. and 10.0 appears in the negative display.

ADJUST-R1544, +32 V Gain Adj, for a dvrn reading CHECK-for a dvrn reading from -9.999 V to from +31.99 V to +32.01 V. -10.001 v.

Remove the dvrn lead to the POSITIVE front panel ADJUST-R1443, - 10 V Gain Adj, for a dvrn reading connector. from -9.999 V to - 10.001 V.

Remove the lead to the POSITIVE connector for the next step. Adjust -32 V Gain Adj Make certain the dvrn + lead is connected to the PS 501 0 NEGATIVE connector and the dvrn -lead is connected to the PS 5010 common terminal. Adjust + 10 V Gain Adj Turn the PS 501 0 OUTPUT OFF. Maker certain -32.0 V appears in the negative display.

Connect the dvrn + lead to the PS 5010 front panel POSITIVE connector. The dvrn -lead is connected CHECK-for a dvrn reading from - 31.99 V to 32.01 V. the common connector.

ADJUST-R1442, -32 V Gain Adj, for a dvrn reading Make certain 10.0 V appears in the positive display. from - 31.99 V to -32.01 V. Calibration-PS SO 10 Internal Adjustment Procedure e. Remove all front panel connections for the next step. 10. Adjust -1 0 a. Make certain the PS 5010 is in the high power mode.

NOTE To complete the remaining four steps the PS 5010 must be in the high power mode. To accomplish this; b. Connect the POSITIVE terminal to the 2 A current meter input. Connect the common terminal to the I) turn the power module power off, 2) hold switch -input. S 1600 in (Fig. 5-8),3) turn the power module on, 4) release the switch after self test is completed (the word CAL shows in the LOGE display). c. Press these buttons in the order listed:

CAUTION SUPPLY SELECT D TRACK

FOR IEEE-488ADDRESS SELECTION, REFER TO INSTRUCTION MANUAL. THE "INST ID" BUITON WILL DISPLAY THE CURRENTADDRESS.

OUTPUT SELECTOR SWITCH OUT-FRONT PANEL ONLY IN-REAR PANEL ONLY REAR INTERFACE I VOLT MAX TO GND 42 VOLT PEAK 60 VOLT DC

Fig. 5-8. Locations of S1600 and S1500 on rear of instrument. Calibration-PS 5010 Internal Adjustment Procedure d. CHECK-that the drnm display reads from -1.0 mA to ADJUST-R1211, + Max I Adj, for a drnm reading + 1.0 mA. from + 1595 mA to + 1605 mA. e. ADJUST-R1321, - 1 0, for a drnm reading from Turn the OUTPUT OFF. -1.0 mA to +1.0 mA.

Remove the lead from the POSITIVE connector on the f. Turn the OUTPUT OFF. PS 501 0. g. Remove the lead from the POSITIVE connector on the PS 5010 front panel. Adjust -Max I Adj Connect the positive lead of the drnm to the front panel NEGATIVE connector. Connect the - lead of the drnm 1 1. Adjust +I 0 and + Max I Adj to the front panel common terminal. Connect the POSITIVE front panel connector through a jumper to the + current input on the dmm. Connect the common terminal to the - current input on the dmm. Press the following buttons in the order listed (10 V output from both supplies): SUPPLY SELECT Press the following buttons in the order listed (10 V TRACK output from both supplies): CURRENT SUPPLY SELECT 1 TRACK CURRENT 6 0 ENTER ENTER

Turn the OUTPUT ON. CHECK-that the display reads from - 1.O mA to + 1 .O mA.

CHECK-for a drnm display reading from +I595 mA ADJUST-41311, +I 0, for a display reading from to + 1605 mA. - 1.0 mA to + 1.0 mA.

ADJUST-R1111, -Max I Adj, for a display reading Turn the OUTPUT OFF. from + 1595 mA to + 1605 mA.

Press the following buttons in the order listed (10 V output from both supplies): Turn the OUTPUT OFF SUPPLY SELECT TRACK CURRENT Remove all connections from the PS 501 0. 1

6 Turn the power module off. ENTER

Turn the OUTPUT on. Replace the jumper J1320 in the normal position. See Fig. 6-1.

CHECK-for a drnm reading from + 1595 mA to + 1605 mA. This completes the internal adjustment procedure. Section 6-PS 501 0

MAINTENANCE

GENERAL MAINTENANCE INFORMATION

Bus Address Switch GPlB Address The address switch for the PS 5010 is located on the CPU board. This board is the leftmost board when facing the front panel of the instrument. The address switch is fac- tory set for address 22. No secondary address capability LF or exists. Fig. 6-1 shows the switch. The leftmost toggle se- EOI Logic 1 lects the message delimiters the PS 5010 responds to. These delimiters are either LF (line feed) and EOI (end or EOI Logic 0 identify) or EOI only. Switches 1 through 5 can set any bina- ry address from 0 to 31. An address setting of 31 causes the PS 5010 to ignore GPlB commands. BINARY WEIGHT Internal Jumpers S1221 Also located on the CPU board are two jumpers. The mode jumper J1320 has three positions. See Fig. 6-1. This JUMPER POSITIONS jumper should be in the Normal mode for instrument oper- ation. Place the jumper in the Signature analysis mode or Normal mode the Calibration mode when instructed to do so in this man- ual. The normal operating position for J1220 is the Run / mode position. The Force data position is only used in the )/ Signature analysis mode signature analysis mode.

4-, Calibration mode Static-Sensitive Components

Force data mode Static discharge can damage any semiconductor component in this instrument. rC---- Run mode

This instrument contains electrical components that are susceptible to damage from static discharge. See Table 6-1 for relative susceptibility of various classes of semi- conductors. Static voltages of 1 kV to 30 kV are common in unprotected environments. Fig. 6-1. Address switch and jumpers. Maintenance-PS 501 0

Observe the following precautions to avoid damage: Table 6-1 RELATIVE SUSCEPTIBILITY TO Minimize handling of static-sensitive components. TO STATIC DISCHARGE DAMAGE Relative Transport and store static-sensitive components or Semiconductor Classes Susceptibility assemblies in their original containers, on a metal rail, or on conductive foam. Label any package that contains static-sensitive assemblies or components. MOS or CMOS microcircuits or discretes, or linear microcircuits with MOS inputs. (Most Sensitive) Discharge the static voltage from your body by ECL wearing a wrist strap while handling these compo- Schottky signal diodes nents. Servicing static-sensitive assemblies or com- ponents should be performed only at a static-free Schottky TTL work station by qualified service personnel. High-frequency bipolar transistors JFETs Linear microcircuits Nothing capable of generating or holding a static Low-power Schottky TTb charge should be allowed on the work station TTL (Least Sensitive) surface. 'voltage equivalent for levels:

Keep the component leads shorted together when- 1 =I00 to 500V 4 = 500V 7 = 400 to 1000 V(est.) 2 = 200 to 500 V 5 = 400 to 600 V 8 = 900 V ever possible. 3 = 250 V 6 = 600 to 800 V 9 = 1200 V (Voltage discharged from a 100 pF capacitor through a resis- Pick up components by the body, never by the leads. tance of 10QR.)

Do not slide the components over any surface.

Avoid handling components in areas that have a floor or work surface covering capable of generating a static charge.

Use a soldering iron that is connected to earth ground. CAUTION Use only special antistatic suction type or wick type a desoldering tools. To clean the front panel use freon, isopropyl alcohol, or denatured ethyl alcohol. Do not use petroleum based cleansing agents. Before using any other type Cleaning of cleaner, consult your Tektronix Service Center or This instrument should be cleaned as often as operating representative. conditions require. Loose dust accumulated on the outside of the instrument can be removed with a soft cloth or small brush. Remove dirt that remains with a soft cloth dampened Do not use air or any solvent to clean the front panel in a mild detergent and water solution. Do not use abrasive circuit board unless the pushbutton switches are cleaners. removed. The best way to clean the interior is to blow off the accu- Soldering Techniques mulated dust with dry, low-velocity air (approximately 5 lb/in2)or use a soft brush or cloth dampened with a mild detergent and water solution. I WARNING ) Hold the board so the cleaning residue runs away from the connectors. Do not scrape or use an eraser to clean the To avoid electric-shock hazard, disconnect the instru- edge connector contacts. Abrasive cleaning can remove the ment from the power source before soldering. gold plating.

The reliability and accuracy of this instrument can be CAUTION maintained only if proper soldering techniques are used a when repairing or replacing parts. General soldering tech- niques which apply to maintenance of any precision elec- Circuit boards and components must be dry before tronic equipment should be used when working on this applying power. instrument. Use only 60140 rosin-core, electronic grade sol- der. The choice of soldering iron is determined by the repair to be made. Obtaining Replacement Parts Electrical and mechanical parts can be obtained through your local Tektronix Field Office or representative. However, CAUTION it may be possible to obtain many of the standard electronic a components from a local commercial source. Before pur- chasing or ordering a part from a source other than All circuit boards in the PS 501 0 are multilayer type Tektronix, Inc., check the Replaceable Electrical Parts list boards with a conductive path laminated between the for the proper value, rating, tolerance, and description. top and bottom layers. All soldering on these boards should be done with extreme care to prevent breaking the connections to this conductive path. Only exper- ienced maintenance personnel should attempt to re- NOTE pair these boards. When selecting replacement parts, remember that the physical size and shape of a component may affect its When soldering on circuit boards or small wiring, use performance in the instrument. only a 15 watt, pencil type soldering iron. A higher wattage soldering iron can cause the etched circuit wiring to sepa- rate from the board base material and melt the insulation Some parts are manufactured or selected by Tektronix, from small wiring. Always keep the soldering iron tip proper- Inc., to satisfy particular requirements or are manufactured ly tined to ensure the best heat transfer to the solder joint. for Tektronix, Inc., to our specifications. Most of the me- Apply only enough heat to remove the component or to chanical parts used in this instrument have been manufac- make a good solder joint. To protect heat sensitive compo- tured by Tektronix, Inc. To determine the manufacturer, nents, hold the component lead with a pair of long-nose refer to the Replaceable Parts list and the Cross Reference pliers between the component body and the solder joint. index, Mfr. Code Number to Manufacturer. Use a solder removing wick to remove excess solder from connections or to clean circuit board pads. When ordering replacement parts from Tektronix, Inc. in- clude the following information:

lnstrument type and option number.

Semiconductors lnstrument serial number. To remove in-line integrated circuits use an extracting tool. This tool is available from Tektronix, Inc.; order A description of the part (if electrical, include complete Tektronix Part Number 003-0619-00. If an extracting tool is circuit number). not available, use care to avoid damaging the pins. Pull slowly and evenly on both ends of the integrated circuit. Try Tektronix part number. to avoid disengaging one end before the other end. Multipin Connectors ticular board, pull the board toward the rear of the instrument until free of the interconnect board. The pin connectors used to con,nect the wires to the interconnecting pins are clamped to the ends of the wires. To replace damaged multipin connectors, remove the old pin connector from the holder. Do this by inserting a scribe between the connector and the holder and prying the con- nector from the holder. Clamp the replacement connector to the wire, Reinstall the connector in the holder.

If the individual end lead pin connectors are removed from the plastic holder, note the order of the individual wires for correct replacement in the holder. For proper replace- ment see ~i~.-6-2.

To remove connector from holder unsnap pin. *& sz' End-lead Remove this screw multi-pin to remove the Remove this screw connector Floating Supply to remove the index board. Logic Supply-Filter Remove this screw board- to remove the CPU board. 3391-24

Fig. 6-3. Bottom view of instrument showing screws holding boards. multi-pin connector A calibration fixture (Tektronix Part No. 067-1028-00) permits operating the CPU board on a flexible extender. The logic supply filter board is then extended a short distance to the rear by using the solid extender between the board and Mutli-pin the interface board. This permits access to all components connector on the logic supply filter board. index

Figure 6-4 shows removal procedures for the Front Panel circuit board. The front panel bezel covering the LEDs can be removed by pressing down on the two tabs located on top of the front panel casting about 1 inch in from the sides. Fig. 6-2. Orientation and disassembly of multipin connectors.

Instrument Disassembly To remove the circuit boards, first remove the two side covers. Then remove the instrument back. This is accom- Attempting to remove the bezel without first removing plished by removing the two screws at the top of the back the front panel circuit board will destroy the L EDs. and the two fasteners at the bottom. Use a 311 6 in. wrench on the bottom fasteners. Next, remove all screws in the top cover and remove the cover. Now, remove the screws as To remove the switches from the front panel circuit shown in Fig. 6-3 for the board of interest. (To remove the board, push the switches out from the rear of the board. If Logic Supply board it is necessary to first remove the Float- the switch is illuminated first unsolder the wires from the ing Supply board.) After disconnecting the plugs to the par- circuit board. Use care when replacing the switches. Press them back into the board with a socket wrench that con- tacts the periphery (case) of the switch. If pressure is ap- plied to the clear plastic near the center of the switch the switch may come apart. Once apart the switch is difficult to reassemble.

terconnect board remove this screw and the one on the opposite side. ing the Intercon- nect board. 3391-25

Fig. 6-4. Interface board removal.

GENERAL TROUBLESHOOTING

Troubleshooting Information Generally, locating a problem area in the PS 5010 circuits is straightforward. Review the related section of the detailed circuit description as an aid. Some subtle problems may af- fect circuits not apparently related, or may not show up while performing the Performance Check Procedure. As an aid in locating some of these problem areas, the following descriptions and tests are provided.

CPU Board Intermittent failure of the instrument processor is often caused by a timing problem. This is especially true if the instrument fails after warmup. The timing margins of the CPU board components are susceptible to power supply Waveform taken at U1112A, pin 1 tolerance and clock duty factor. The Vcc acceptable range for the CPU board is 4.75 V to 5.25 V measured from TP1020 to TP1011. Clock timing tolerance is shown in Fig. Fig. 6-5. CPU clock waveform timing tolerances. This waveform 6-5. is TTL compatible. Logic Supply Unstable constant current operation or insufficient float- ing supply I zero adjust or maximum I adjust range can be Overvoltage protection for both the logic supply output caused by either a + 15 V control supply out of tolerance or and CPU power supply is provided by an SCR across the a circuit fault which results in drawing too much bias current +8 V input. To verify proper opration remove all other in- which returns through a current sense resistor. The 15 V struments from the power module. Program 5.5 V into the + supplies can be checked from the emitters of Q1100 and $- floating supply. Connect the floating supply common ter- Q1101 to TP1620 (Floating Supply board). The normal minal to ground and the floating supply output to the + range is 14.4 V to 16.2 V. logic supply output. Turn the output on. While carefully ob- serving the display, press and hold the INCREMENT t but- ton. When the crowbar trips, the entire supply will shut No positive supply current limit can be caused by a short down for a few seconds and then go through a power on between /, and 4, or and for the negative supply. restart. The normal trip range for the crowbar is 5.9 V to 1, 1, 7.1 V. Mainframe pass transistor failure can be caused by an inoperative high power compartment switch (S16OO). With Since the crowbar reference is powered by +26 V, the the instrument out of the power module, check to make sure crowbar constantly trips if the +26 V fuse is open. the spring return pushes the switch out. Reinstall the instru- ment in a pair of standard compartments, program 20 V in a floating supply and INCREMENT t current. The current An inoperative foldback circuit may cause pass transistor should not increment and remain at 400 mA, the power up failure. Check this by programming in 3.0 A and shorting the current. Mainframe pass transistor failure may also result supply into a low impedance ammeter. With an output volt- from a serious external fault which destroyed the output age less than 500 mV, the logic supply should source less clamp diode CR1522 or CR1621. These are located on the than 1.75 A and, with the logic supply in the nonprogram Floating Supply board. mode, the display should blank out. Pass transistor failure or shorted output may be caused by a serious fault such as a reversed polarity source placed on the output, destroying Loop Balance Status Indicators (Floating and Logic clamp diode CR1200. Supplies) Proper operation of all modes of status indication can be The intended return path for the logic supply is from the verified with a pair of banana plug test leads. To verify volt- ground terminal through the chassis, and finally through the age status circuits, program a voltage in the floating sup- locating pins on the rear panel of the instrument. To facili- plies and turn the OUTPUT on. All supplies should indicate a tate operating the instrument on extenders, an etched cir- balanced voltage loop. (For a detailed description of how to cuit board run provides an alternate return path through the interpret balance status, see the Operating Instructions sec- lower mounting nut block of the Logic Supply-Filter board. tion in this manual.) Program 0.1 A in logic supply. Individ- This path is broken when the board is placed on the rigid ually short each supply output. The corresponding supplies extender. When necessary to extend this board for servic- display should indicate current loop balanced (constant cur- ing, a clip lead should be connected between the lower nut rent) while the output is shorted. Program 3.0 A in the logic block (angle mounting bracket on the bottom of the board) supply and short the output. The display should indicate and the instrument chassis. neither loop balanced due to foldback operation. Program 4.5 V into the + floating supply, 5.0 V into logic supply and interconnect them with jumpers, common to ground, + to The floating supply should indicate neither loop bal- Floating Supplies +. + anced, while the logic supply indicates voltage loop balance Isolation faults are indicated by a supply going into cur- (due to overvoltage condition in the floating supply). Enter rent limit when only one output lead is grounded. If an isola- 5.5 V in the + floating supply. The + floating supply now tion fault occurs, start by checking for a bent lug on an indicates voltage balance and the logic supply indicates nei- output terminal touching the chassis. ther loop balanced. Repeat the above test with the negative supply, connecting the - output to ground, and the com- mon output to the logic supply + output. Failure to meet transient recovery, or no load down time specifications, or insufficient adjust range for a floating sup- ply I zero adjust can be caused by a failure in the associated Problems in the loop balance status circuits can be iso- current source. Current source operation can be verified by lated by monitoring the digital outputs from either the logic measuring the voltage across the 274 I1 emitter resistors supply board or the floating supply board, while performing R 181 1 and R 1711 located on the Logic Supply-Filter board. the above tests. These signals are TTL compatible, with This should measure approximately 7.5 V. logic-1 (high) indicating loop balance. SIGNATURE ANALYSIS introduction turned on. This verifies CPU, ROM, RAM, and bus lines. The display check is the way the display illumi- Signature analysis provides a simple and direct method nates in signature analysis mode. The 521 on each of troubleshooting complex digital circuitry to the compo- display (if correct) verifies that adjacent lines on the nent level. There are two signature analysis modes avail- display drivers are not shorted and the lines used are able. The first is called kernel test mode. This mode is used functioning, to check the processing functions of the instrument. It covers the CPU, ROM, address bus, and address decoding. The second mode is a firmware routine referred to as the 2. Addressldata buffer test. Verify address buffer with signature analysis mode. This mode requires a working this test (checks unbuffered address lines, but they CPU, ROM, RAM, address, and data bus. To verify these, should be good if self-test works). Also checks data the normal power-up self-test is performed. Refer to the bus and buffer, which indicates if keyboard encoder pullout pages at the rear of this manual for detailed test (U1421) and GPlB chip (U1001) are putting out cor- procedures for each test. rect data.

3. Addressable latch test. Checks the three addressable Mode Descriptions latches.

The kernel test mode is implemented by forcing an in- Verifies operation of: struction on the data bus. This causes the CPU to increment through memory. The instruction used is an LSRA (Logic a. Dim and relay latch (U1315) Shift Right-Accumulator A) which is a Hex 44. This is ac- complished by setting the runlforce data jumper (J1220), b. Serial output and partial display (R 141 1) mode jumper (J1320), and GPlB address switch (S1221) as shown in the tests. c. Blink control latch (U1314)

Three tests are provided. They are: 4. GPlB chip test. Checks for correct data output from U1001. This is not a functional test of the IC. It is used to detect data bus errors from the addressldata buffer 1. GPlB address switch and buffer test. This test is used test. if the kernel test mode or signature analysis mode does not work, and other electrical conditions neces- sary (listed with each test) have been verified. 5. Keyboard encoder test. Provides a complete function- al check of keyboard encoder (U1421). Use it to find data bus errors from addressldata buffer test. Also, 2. CPUIaddress test. Use this test when a system error, mechanical problems can be traced (such as front unknown power-up condition, address bus or address panel switch problems) since necessary input condi- decoding problem is suspected or reported via the tions are given. front panel error codes.

6. Logic supply shift register test. Provides a 3. ROM test. Used when a ROM error is reported via the troubleshooting method for finding faults in the logic front panel error codes or a power-up condition is supply shift registers (such as incorrect data trans- incorrect. ferred to D-to-A converters).

The signature analysis mode is implemented by setting the mode jumper (J1320) to the signature analysis mode. This runs a firmware routine, which exercises the hardware in the instrument. How To Use Signature Analysis The Troubleshooting Chart, Table 6-2, shows the avail- able tests and what is covered by each. The tests may be There are six tests provided. They are: performed in any order as long as the Electrical Conditions Necessary to Perform Test listed with each test procedure 1. Power-upldisplay checks. These checks are automat- are met. The If Failure section indicates suggested action if ic. Power-up self-test runs when the instrument is a failure is found on that test. Table 6 -2 TROUBLESHOOTING CHART PS 50 10 If Failure*

- I* I C I. GPlB addresslswitchlbuffer test Fix problem

#

11. CPUIaddress test A. Replace CPU A. CPU 6. Replace CPU or buffer Kernel B. Address bus and buffer C. Replace decoder TEST C. Address decoders MODE b w

Ill. ROM Test A. Replace ROM A. Bad ROMs 6. Move ROM(s) B. Misplaced ROMs C. Troubleshoot bus C. Stuck data bus -b w

I I. Power-upldisplay check I A. Use kernel test mode A. Self-test 0.. Troubleshoot display driver 0. Display

A. Replace buffer if bad; other II. AddressIData Buffer Test failures, try kernel test mode A. Address bus and buffer B. Depending on response, replace B. Data bus and buffer data buffer; do GPlB chip test; do keyboard encoder test A I

1 Ill. Addressable latch test Signature Analysis - A. Dim and relay latch (U1315) Replace defective latch MODE B. Serial output & partial display (U1411) C. Blink control latch (Ul314) =

IV. GPlB chip test Replace U1001 I L Replace U1421 or troubleshoot sw~tches

2 7 Replace defective shift register

'Assumes that electrical conditions necessary to perform test (listed with each test) are functioning. 3391-30A

REV APR 1982 By using the CPU board block diagram, front panel indi- C. By checking the block diagram, we find that the logic cations and instrument operation troubleshooting time can supply D-to-A converters data comes from the Serial 1 be reduced. An example problem is given to explain the pro- I10 section of the CPU board. This data is transferred cess involved. via a shift register on the logic supply board.

D. We assume the instrument is calibrated correctly Problem Observed: Logic supply output offset by 80 mV since the output is correct when 80 mV multiples are from the programmed voltage except when a voltage that programmed. includes an 80 mV multiple is selected. Example: Programmed Voltage Voltage Output

Step 2: Procedure Step 1. Assumptions that can be made from this information: Since checking signals on the logic supply board re- quires extender boards, it may be a good idea to check the data going from the Serial IIO section of the A. Power-up self-test passed, so CPU, ROM, RAM, ad- CPU board. Use the Signature Analysis Mode, dress and data bus are operational. Addressable Latch Test. If this shows an error, fix the problem (verify that the output of the PS 5010 is cor- B. From the nature of the problem, we can assume that rect). If outputs of latches are correct, then use Logic for some reason the data bit that controls the 80 mV Supply Shift Register Test. If the shift registers are all offset is stuck or the D-to-A converter is not respond- right, then most likely the D-to-A converter is ing correctly. defective.

REAR INTERFACE INFORMATION

Functions Available at Rear Connector I WARNING ( Slots exist between pins 19 and 20 and 6 and 7 on the rear interface connectors. The slot between pins 19 and 20 is the family key slot. The slot between pins 6 and 7 identi- Maximum allowable voltage on any rear interface pin fies the PS 5010 as a member of the TM 500-TM 5000 is 42 V peak ac or 60 Vdc with respect to chassis family. Insert a barrier in the corresponding position of the (earth) ground. power module jack to prevent noncompatible plug-ins from being inserted in slots wired for the PS 5010. This protects the plug-in if specialized connections are made to that com- partment. Consult the power module manual for further in- formation. Signal inputs, outputs and other specialized connections may be made to the rear interface connectors Logic ~~~~l~ Scaled Current out (Logic Board 28A) as shown in the inputloutput assignments illustrations (Figs. 6-6 and 6-7). The location and operation of the rear interface This connector provides a voltage in relationship to the switch is shown in Fig. 6-1. A description of these connec- current supplied by the logic supply. See the specification tions follows. GPlB connector assignments are shown in section of this manual for the specified voltge. This output is Fig. 6-8. not ground referenced. Use pin 27A as the return.

REV JAN 1983 Logic Supply Filter Board

FUNCTION CONTACTS CONTACTS FUNCTION Logic Supply scaled current out Measurement reference

Sensing common Sensing common +Remote sense +Output +Output Common (chassis ground) Common (chassis ground

Family Key

25 V ac winding 25 V ac winding +26 V dc i-26 V dc Collector lead of pnp series pass Base lead of pnp series pass Transformer shield Emitter lead of pnp series pass Ground Ground -26 V dc -26 V dc Collector lead of npn series pass Emitter lead of npn series pass TM 5000 Key

PWR Base lead of npn series pass 18 V ac winding 18 V ac winding Ground Ground Ground Ground

+8 Vdc +8 Vdc

25 V ac winding 25 V ac winding Bottom

Assignments listed for pins 1 through 13 are available from all power modules; however, only those pins marked with an asterisk (') are used in the PS 5010. Maximum allowable voltage on any rear interface contact referenced to chassis ground is 42 V peak

Or 60 V dc. 3391-27

Fig. 6-6. Assignments for rightmost connector as viewed from rear of instrument. Floating Supply Board

FUNCTION CONTACTS CONTACTS FUNCTION 2884 278- 2684 25B* Sensing common 2484 Sensing common -Remote sense 23B4 +Remote sense -Output 228 + +Output Common 21B* Common 20B- Family Key 198- 18B-w 17B-w 16B- 15B- 14B+ 25 V ac winding 1384 25 V ac winding +26 V dc 12B+# +26 V dc

Collector lead of pnp series pass 11B+ Base lead of pnp series pass Transformer shield 10B-k Emitter lead of pnp series pass Ground 9B- Ground -26 V dc 8B4 -26 V dc Collector lead of npn series pass 78- Emitter lead of npn series pass TM 5000 Key

PWR 6B4 Base lead of npn series pass

18 V ac winding 5B- 18 V ac winding Ground 4B -ti Ground Ground 3B-h Ground +8 Vdc 28 * +8 Vdc 25 V ac winding IBu 25 V ac winding Bot

Assignments listed for pins 1 through 13 are available from all power modules; however, only those pins marked with an asterisk (') are used in the PS 5010. Maximum allowable voltage on any rear interface contact referenced to chassis ground is 42 V peak or 60 V dc.

Fig. 6-7. Assignments for leftmost connector as viewed from rear of instrument. + Output (Logic Board 22A and 228) FUNCTION CONTACTS CONTACTS FUNCTION These connections are the + logic supply output. Dl0 1 Dl05 Dl02 Dl06 Common (Logic Supply 21A and 21 B) Dl03 Dl07 These connections provide the return path for the + log- Dl04 Dl08 ic supply output voltage. They are connected to chassis ground. CE* TE" EOI IFC + and - Remote Sense and Sensing Common DAV SRQ (Floating Supply Board 23A, 238, 24A and 24B) NRFC) ATN These Connections function only in the rear interface mode. The sense lines are diode clamped to the respective NDAC REN outputs to prevent uncontrolled regulator response if the NC sense lines are misconnected. See the heading Remote Sense in the Operating Instructions of this manual for more Bottom information.

"TE Open collector talk control for GPlB buffer card. Low en the bus = talk. '*CE Use only for devices that can be controllers in the mainframes. Not used in PS 5010. + Output (Floating Supply Board 22A) This is the positive supply output for the rear interface.

- Output (Floating Supply Board 22B) Fig. 6-8 Assignments for GPlB connector as viewed from rear of instrument. This k the negative supply output for the rear interface. Measurement Reference (Logic Board 27A) This connection serves as the return for the logic supply Common (Floating Supply Board 21A and 21 B) scaled current out. This connection is not connected to These are the return connections for the and - float- chassis ground. + ing supply outputs.

+ Remote Sense and Sensing Common (Logic Board 23A, 24A and 24B) NOTE These connections function only when using the rear in- Remote sense must be used with the rear interface terface output. These sense lines are diode clamped to the floating supply outputs. Overvoltage damage to deli- respective outputs to prevent uncontrolled regulator re- cate loads may result from operating the PS 5010 sponse if the sense lines are misconnected. See the heading with S1600 pushed in (rear interface output) and the Remote Sense in the Operating lnstructions of this manual sense lines open. for more information.

REV AUG 1981 Section 7-PS 501 0

OPTIONS

No options exist for the PS 5010 at this time.

Section 8-PS 50 10 REPLACEABLE ELECTRICAL PARTS PARTS ORDERING INFORMATION

Replacement parts are available from or through your local Only the circuit number will appear on the diagrams and Tektronix, Inc. Field Office or representative. circuit board illustrations. Each diagram and circuit board illustration is clearly marked with the assembly number. Changes to Tektronix instruments are sometimes made to Assembly numbers are also marked on the mechanical exploded accommodate improved components as they become available, views located in the Mechanical Parts List. The component and to give you the benefit of the latest circuit improvements number is obtained by adding the assembly number prefix to the developed in our engineering department. It is therefore impor- circuit number. tant, when ordering parts, to include the following information in your order: Part number, instrument type or number, serial The Electrical Parts List is divided and arranged by number, and modification number if applicable. assemblies in numerical sequence (e.g., assembly A1 with its subassemblies and parts, precedes assembly A2 with its sub- If a part you have ordered has been replaced with a new or assemblies and parts). improved part, your local Tektronix, Inc. Field Officeor represen- tative will contact you concerning any change in part number. Chassis-mounted parts have no assembly number prefix and are located at the enQ of the Electrical Parts List. Change information, if any, is located at the rear of this manual. LIST OF ASSEMBLIES TEKTRONIX PART NO. (column two of the Electrical Parts List) A list of assemblies can be found at the beginning of the Electrical Parts List. The assemblies are listed in numerical order. Indicates part number to be used when ordering replace- When thecompletecomponent number of a part is known, this list ment part from Tektronix. will identify the assembly in which the part is located.

CROSS INDEX-MFR. CODE NUMBER TO SERIAL/MODEL NO. (columns three and four MANUFACTURER of the Electrical Parts List)

The Mfr. Code Number to Manufacturer index for the Column three (3) indicates the serial number at which the Electrical Parts List is located immediately after this page. The part was first used. Column four (4) indicates the serial number at Cross Index provides codes, names and addresses of manufac- which the part was removed. No serial number entered indicates turers of components listed in the Electrical Parts List. part is good for all serial numbers.

ABBREVIATIONS Abbreviations conform to American National Standard Y 1.1. NAME & DESCRlPTlON (column five of the Electrical Parts List) COMPONENT NUMBER (column one of the In the Parts List, an Item Name is separated from the Electrical Parts List) description by a colon (:). Because of space limitations, an ltem Name may sometimes appear as incomplete. For further ltem A numbering method has been used to identify assemblies, Name identification, the U.S. Federal Cataloging Handbook H6-1 subassemblies and parts. Examples of this numbering method can be utilized where possible. and typical expansions are illustrated by the following: Example a. component number ~23~1234 ~23- ~1234 MFR. CODE (column six of the Electrical Parts Assembly number Circuit number List) lndicates the code number of the actual manufacturer of the Read: Resistor 1234 of Assembly 23 part. (Code to name and address cross reference can be found immediately after this page.) Example b. component number A23A2R 1234 -R1234 Assembly Subassembly Circuit MFR.PARTNUMBER(columnsevenofthe number Electrical Parts List)

Read: Redstor 1234 of Subassembly 2 of Assembly 23 Indicates actual manufacturers part number. Replaceable Electrical Parts - PS 5010

CROSS INDEX - MFR. CODE NUMBER TO MANUFACTURER Mfr. Code Manufacturer Address City, State, Zip Code AMP INC 2800 FULLING MILL HARRISBURG PA 17105 PO BOX 3608 SANGAM0 WESTON INC SANGAMO RD PICKENS SC 29671-9716 COMPONENTS DIV PO BOX 128 ALLEN-BRADLEY CO 1201 SOUTH 2ND ST MILWAUKEE WI 53204-2410 TEXAS INSTRUMENTS INC 13500 N CENTRAL UP DALLAS TX 75265 SEMICONDUCTOR GROUP PO BOX 655012 HAMILTON STANDARD CONTROLS INC 17070 E GALE AVE CITY OF INDUSTRY CA 91749 SPECTROL DIV P 0 BOX 1220 HI-G CO INC 101 LOCUST ST H4RTFORD CT 06114-1504 SUB OF NYTRONICS INC RCA CORP ROUTE 202 SOMERVILLE NJ 08876 SOLID STATE DIVISION GENERAL ELECTRIC CO W GENESEE ST AUBURN NY 13021 SEMI-CONDUCTOR PRODUCTS DEPT AVX CERAMICS DIV OF AH CORP 19TH AVE SOUJH MYRTLE BEACH SC 29577 P 0 BOX 867 MOTOROLA INC 5005 E MCDOWELL RD PHOENIX AZ 85008-4229 SEMICONDUCTOR PRODUCTS SECTOR UNION CARBIDE CORP 11901 WISON AVE CLEVELAND OH 44101 MATERIALS SYSTEMS DIV VIKING CONNECTORS INC 21001 NORDHOFF ST CHATSWORTH CA 91311-5911 SUB OF CRITON CORP GENERAL INSTRUMENT CORP 600 W JOHN ST HICKSVILLE NY 11802 GOVERNMENT SYSTEMS DIV PRECISION MONOLITHICS INC 1500 SPACE PARK OR SANTA CLARA CA 95050 SUB OF BOURNS INC FA1RCHI LD SEMICONDUCTOR CORP 10400 RIDGEVIEW CT CUPERTINO CAW CA 95014 NORTH AMERICAN SALES SUB OF SCHLUMBERGER LTD MS 118 TRW INC 2850 MT PLEASANT AVE BURLINGTON IA 52601 TRW IRC FIXED RES ISTORS/BURLINGTON SPECTRA-STRIP AN ELTRA CO 7100 IAMPSON AVE GARDEN GROVE CA 92642 CTS CORP 406 PARR ROAD BERNE IN 46711-9506 BERNE DIV THICK FILM PRODUCTS GROUP MICROSEMI CROP 2830 S FAIRVIEW ST SANTA ANA CA 92704-5948 GENERAL INSTRUMENT CORP 600 W JOHN ST HICKSVILLE NY 11802 DISCRETE SEMI CONDUCTOR DIV ITT SEMICONDUCTORS 500 BROADWAY LAWRENCE M4 01841-3002 A DIVISION OF INTERNATIONAL P 0 BOX 168 TELEPHONE AND TELEGRAPH CORP ELEC-TROL INC 26477 N GOLDEN VALLEY RD SAUGUS CA 91350-2621 SIGNETICS CORP 4130 S MARKET COURT SACRAMENTO CA 95834-1222 MILITARY PRODUCTS DIV MEPCOKENTRALAB P 0 BOX 760 MINERAL WELLS TX 76067-0760 A NORTH AMERICAN PHILIPS CO KYOCERA INTERNATIONAL INC 11620 SORRENTO VALLEY RD SAN DIEGO CA 92121 PO BOS 81543 PLANT NO 1 DU PONT E I DE NEMOURS AND CO INC 515 FISHING CREEK RD NEW CMBERLAND PA 17070-3007 DU PONT CONNECTOR SYSTEMS DIV MILITARY PRODUCTS GROUP ANALOG DEVICES INC RT 1 INDUSTRIAL PK NORWOOD MA 02062 PO BOX 9106 CORNING GLASS WORKS 550 HIGH ST BRADFORD PA 16701-3737 NATIONAL SEMICONDUCTOR CORP 2900 SEMICONDUCTOR DR SANTA CLARA CA 95051-0606 ITT SCHAWW INC 8081 WALLACE RD EDEN PRAIRIE MN 55344-2224 BOURNS INC 1200 COLUMBIA AVE RIVERSIDE CA 92507-2114 TRIMPOT DIV HEWLETT-PACKARD CO 370 W TRIMBLE RD SAN JOSE CA 95131 OPTOELECTRONICS DIV MATSUSHITA ELECTRIC CORP OF AMERICA ONE PANASONIC WAY SECAUCUS NJ 07094-2917 PO BOX 1501 NICHICON /AMERICA/ CORP 927 E STATE PKY SCHAUMBURG IL 60195-4526 SPRAGUE ELECTRIC CO 92 HAYDEN AVE LEXINGTON MA 02173-7929 WORLD HEADQUARTERS

REV JAN 1988 Replaceable Electrical Parts - PS 5010

CROSS INDEX - MFR. CODE NUMBER TO MANUFACTURER Mr. Code ManuFacturer Address City, State. Zip Code R-OM CORP 16931 MILLIKEN AVE IRVINE CA 92713 GENERAL INSTRUMENT CORP 3400 HILLVIEW AVE PAL0 ALTO CA 94304-1319 OPTOELECTRONICS DIV TUSONIX INC 7741 N BUSINESS PARK DR TUCSON AZ 85740-7144 PO BOX 37144 MEPCO/CENTRALAB 7158 MERCHANT AVE A NORTH MERICAN PHILIPS 'CO BUSSMANN 114 OLD STATE RD ST LOUIS MO 63178 DIV OF COOPER INDUSTRIES INC PO BOX 14460 TRW INC 401 N BROAD ST PHILADELPHIA PA 19108-1001 TRW ELECTRONIC COMPONENTS IRC FIXED RESISTORS PHILADELPHIA DIV TEKTRONIX INC 14150 SW KARL BRAUM DR BEAVERTON OR 97077 PO BOX 500 MS 53-111 GRAYHILL INC 561 HILLGROVE AVE LA GRANGE IL 60525-5914 PO BOX 10373 DALE ELECTRONICS INC 2064 12TH AVE COLUMBUS NE 68601-3632 PO BOX 609 ZMAN AND ASSOCIATES 7633 S 180TH KENT WA 98032 TEKA PRODUCTS INC 45 SALEM ST PROVIDENCE RI 02907 PHILIPS NEDERLAND BV POSTBUS 90050 5600 PB EINDHOVEN THE NETHERLANDS AFD ELONCO

REV JAN 1988 Replaceable Electrical Parts - PS 5010

Tektmnix Seri a1 /Asably No. Part No. Effective Dscont Name & Description Mfr. Part No. 670-6682-00 CIRCUIT BD ASSY: FRONT PANEL 670-6682-00 670-6680-00 CIRCUIT BD ASSY: INTCON 670-6680-00 670-6676-00 CIRCUIT BD ASSY:CPU 670-6676-00 670-6681-00 BOlOlOO 8020969 CIRCUIT BD ASSY :LOGIC SUPPLY 670-6681-00 670-6681-01 8020970 CIRCUIT BD ASSY: LOGIC SUPPLY 670-6681-01 670-6677-00 BOlOlOO 8020969 CIRCUIT BD ASSY: FLOATING SUPPLY 670-6677-00 670-6677-01 8020970 8029999 CIRCUIT BD ASSY: FLOATING SUPPLY 670-6677-01 670-6677-02 B030000 8031399 CIRCUIT BD ASSY :FLOATING SUPPLY 670-6677-02 670-6677-03 8031400 CIRCUIT BD ASSY: FLOATING SUPPLY 670-6677-03

REV JAN 1988 Replaceable Electrical Parts - PS 5010

Tektroni x Seri a1 /Ase&ly No. Mfr. / Carponent No. Part No. Effective Oscont Nam & Description Code Mfr. Part No. A10 CIRCUIT BD ASSY: FRONT PANEL A10C1040 CAP, FXD,CER DI: O.lUF,+/-1PF,5OV AlODSlOOl LAMP,LED RDOUT:ORANGE,7 SEG,1 DIGIT AlODS1002 LAMP,LED RDOUT:ORANGE,7 SEG,1 DIGIT AlODSlOll LT EMITTING DIO:RED,650NM,40MA MAX AlODS1012 LT EMITTING DIO:RED,650NM140MA MAX

AlODS1030 LT EMITTING DIO:RED,650NM,40MA MAX AlODSllOl LAMP,LED RDOUT:ORANGE,7 SEG,l DIGIT AlODS1102 LAMP,LED RDOUT:ORANGE,7 SEG,l DIGIT AlODS1103 LAMP,LED RDOUT:ORANGE,7 SEG,1 DIGIT AlODSllll LT EMITTING DIO:RED,650NM,40MA MAX AlODS1112 LT EMITTING DIO:RED,650NM,40MA MAX

LAMP, LED RDOUT:ORANGE, 7 SEG, 1 DIGIT LAMP,LED RDOUT:ORANGE,7 SEG.1 DIGIT LAMP,LED RDOUT:ORANGE,7 SEG,1 DIGIT LT EMITTING DIO:RED,650NM140MA MAX LT EMITTING DIO:RED,650NM,40MA MAX LAMPPLED RDWT:ORANGE,7 SEG,l DIGIT

LT EMITTING DIO:RED, 650NM,40MA MAX LT EMITTING DIO:RED,650NM,40MA MAX LT EMITTING DIO:RED,650NM,40MA MAX LT EMITTING DIO:RED,650NM,40MA MAX CONN ,RCPT ,ELEC :CIRCUIT BOARD, 25 CONTACT CONN ,RCPT ,ELEC :CIRCUIT BOARD, 25 CONTACT

TRANSISTOR: NPN, SI, TO-92 TRANS ISTOR :NPN ,S I, TO-92 TRANSISTOR: NPN, SI, TO-92 TRANSISTOR: NPN, SI,TO-92 TRANSISTOR: NPN, SI, TO-92 TRANSISTOR: NPN ,$1, TO-92

A10Q1131 TRANS ISTOR :NPN ,SI , TO-92 151-0190-00 A10Q1132 TRANSISTOR: NPN, SI, TO-92 151-0190-00 A10Q1320 TRANSISTOR: NPN, SI, TO-92 151-0190-00 A10Q1330 TRANS ISTOR :NPN ,SI , TO-92 151-0190-00 AlORlOOl RES,FXD,FILM:100 OHM,5"/,,0.25W NTR25J-E lOOE A10R1002 RES,FXD,FILM:100 OHM,5"/,,0.25W NTR25J-E 100E

AlORlOlO RES,FXD,FILM:lOO OHM,5%,0.25W NTR29-E lOOE AlORlOll RES,FXD,FILM:100 OHM,5"/,,0.25W NTR25J-E lOOE A10R1020 RES,FXD,FILM:100 OHM,5%,0.25W NTR25J-E lOOE AlOR1021 RES, FXD,FILM: 100 OHM,5%,0.25W NTR25J-E lOOE A10R1022 RES,FXD,FILM:lOO OHM,5%,0.25W NTR25J-E lOOE A10R1023 RES,FXD,FILM:lOO OHM,5%,0.25W NTR25J-E 100E

RES, FXD, FILM: 160 OHM,5%,0.25W RES,FXD,FILM:160 OHM,5%,0.25W RES, FXD, FILM: 160 OHM,5%,0.25W RES,FXD,FILM:160 OHM,5%,0.25W RES,FXD,FILM: 160 OHM,5%,0.25W RES,FXD,FILM:S.lK OHM,5%,0.25W

REV JAN 1988 Replaceable Electrical Parts - PS 5010

Tektmni x Seri a1 /Assably No. Mfr. earPanent No. Part No. Effective Dscont Nane 8 Description Code Mfr-PartNo. RES,FXD,FILM:lK 0HMf5%,0.25W RES NTWK,FXD, FI: (5)lOK OHMf5%,0.l25W RES,FXD,FILM: 160 OHM,5%,0.25W RES,FXD,FILM: 160 0HMf5%,0.25W RES, FXD, FILM: 560 OHM, 5%, 0. 25W RES,FXD,FILM:560 OHM,%,0.25W

263-0019-01 BOlOlOO SWITCH PB ASSY :MOMENTARY 263-0019-35 8020210 SWITCH PB ASSY :MOMENTARY 263-0019-03 BOlOlOO SWITCH PB ASSY :MOMENTARY 263-0019-38 8020210 SWITCH PB ASSY :MOMENTARY 263-0019-03 BOlOlOO SWITCH PB ASSY :MOMENTARY 263-0019-38 8020210 SWITCH PB ASSY :MOMENTARY

263-0019-03 8010100 SWITCH PB ASSY :MOMENTARY 263-0019-38 8020210 SWITCH PB ASSY :MOMENTARY 263-0019-03 BOlOlOO SWITCH PB ASSY :MOMENTARY 263-0019-38 8020210 SWITCH PB ASSY: MOMENTARY 263-0019-03 BOlOlOO SWITCH PB ASSY :MOMENTARY 263-0019-38 8020210 SWITCH PB ASSY :MOMENTARY

263-0019-03 BOlOlOO SWITCH PB ASSY :MOMENTARY 263-0019-38 8020210 SWITCH PB ASSY :MOMENTARY 263-0019-03 BOlOlOO SWITCH PB ASSY :MOMENTARY 263-0019-38 8020210 SWITCH PB ASSY :MOMENTARY 263-0019-03 BOlOlOO SWITCH PB ASSY :MOMENTARY 263-0019-38 8020210 SWITCH PB ASSY :MOMENTARY

263-0019-03 BOlOlOO SWITCH PB ASSY :MOMENTARY 263-0019-38 8020210 SWITCH PB ASSY:MOMENTARY 263-0019-03 BOlOlOO SWITCH PB ASSY :MOMENTARY 263-0019-38 B020210 SWITCH PB ASSY :MOMENTARY 263-0019-03 BOlOlOO SWITCH PB ASSY :MOMENTARY 263-0019-38 8020210 SWITCH PB ASSY :MOMENTARY

263-0019-03 ~010100 SWITCH PB ASSY :MOMENTARY 263-0019-38 B020210 SWITCH PB ASSY :MOMENTARY 263-0019-03 BOlOlOO SWITCH PB ASSY :MOMENTARY 263-0019-38 8020210 SWITCH PB ASSY :MOMENTARY 263-0019-03 BOlOlOO SWITCH PB ASSY :MOMENTARY 263-0019-38 8020210 SWITCH PB ASSY: MOMENTARY

263-0019-36 BOlOlOO SWITCH PB ASSY :MOMENTARY 263-0114-00 8032488 SWITCH, PB ASSY :MOMENTARY 263-0019-03 BOlOlOO SWITCH PB ASSY :MOMENTARY 263-0019-38 B020210 SWITCH PB ASSY :MOMENTARY 263-0019-03 BOlOlOO SWITCH PB ASSY :MOMENTARY 263-0019-38 8020210 SWITCH PB ASSY :MOMENTARY

263-0019-03 BOlOlOO SWITCH PB ASSY :MOMENTARY 263-0019-38 8020210 SWITCH PB ASSY :MOMENTARY 263-0019-04 BOlOlOO SWITCH PB ASSY :MOMENTARY 263-0019-37 8020210 SWITCH PB ASSY :MOMENTARY

REV JAN 1988 Replaceable Electrical Parts - PS 5010

Tektroni x Seri a1 /Assdl y No. Mr. Carpanent No. Part No. Effectiw Dscont Nam & Description Code Mfr. Part No. A1 1 670-6680-00 CIRCUIT BD ASSY: INTCON 80009 670-6680-00 AllJ1020 131-2543-00 CONN ,RCPT, ELEC :CKT BD, 25/50, FEMALE 05574 000201-4543 AllJ1021 131-1614-00 CONN, RCPT, ELEC:CKT BD, 1 X 36,O. 1 SPACING 08261 800-380-000 AllJ1240 131-1614-00 CONN, RCPT, ELEC:CKT BD, 1 X 36,O. 1 SPACING 08261 800-380-000 AllJ1400 131-2545-00 CONN ,RCPT ,ELEC: CKT BD,36/72 CONT, FEMALE 05574 000201-3774 AllJ1500 131-2543-00 CONN ,RCPT, ELEC :CKT BD, 25/50, FEMALE 05574 000201-4543

REV JAN 1988 Replaceable Electrical Parts - PS 501Q

Tektroni x Seri a1 /Assehly No. Mfr. Carponent No. Part No. Effective Dscont Name & Description Code Mfr.PartN0. CIRCUIT BD ASSY:CPU CAP, FXD,CER DI:O.lUF,+/-1PF,50V CAP,FXD,CER DI:O.lUF,+/-1PF,50V CAP,FXD,CER DI:O. lUF,+/-1PF150V CAP, FXD, ELCTLT :100UF ,+SO%-2O%, 1OWVDC CAP, FXD, ELCTLT :100UF,+500%20%, 1OWVDC

CAP,FXD,CER DI:270PF,lO%,lOOV CAP, FXD,CER DI:O. lUF,+/-1PF,50V CAP,FXD,CER DI:O. lUF,+/-1PF,50V CAP,FXD,CER DI:O. lUF,+/-1PF,50V CAP, FXD,CER DI:O. lUF,+/-lPF, 5OV CAP, FXD,CER DI:O. lUF,+/-1PF150V

CAP,FXD,MICA DI:560PF,1%,300V CAP,FXD,CER DI:O. lUF,+/-1PFf50V CAP, FXD,CER DI:O. lUF,+/-1PF,50V CAP, FXD,CER DI:O. lUF,+/-1PFq50V CAP, FXD,CER DI:O. lUF,+/-IPF, 50V CAP, FXD,CER DI:O. lUF,+/-lPF, 5OV

CAP, FXD,CER DI: O.lUF,+/-lPF, 5OV CAP, FXD,CER DI:O. lUF,+/-1PF,50V CAP, FXD,CER DI: 0. lUF,+/-lPF, 5OV CAP, FXD,CER DI:O. lUF,+/-1PF,50V CAP, FXD,CER DI:O. lUF,+/-1PF,50V CAP, FXD,CER DI:O. lUF,+/-1PF,50V

CAP, FXD,CER DI: O.lUF,+/-1PF,SOV CAP, FXD,CER DI:O. lUF,+/-lPF, 5OV CAP, FXD,CER DI:O. lUF,+/-lPF, 50V CAP, FXD,CER DI:O. lUF,+/-lPF,50V CAP,FXD,CER DI:O. lUF,+/-1PF,50V CAP, FXD,CER DI:O. lUF,+/-1PF,50V

CAP, FXD, ELCTLT: 1UF,+75 -10%. 50V TERM SET, PIN:36/O.O25 SQ PIN,ON 0.1 CTRS TERM SET,PIN:36/0.025 SQ PIN,ON 0.1 CTRS TERM SET, PIN:36/0.025 SQ PIN,ON 0.1 CTRS TRANS ISTOR :NPN ,S I, TO-92 TRANS1STOR :SELECTED

TRANSISTOR: PNP,SI ,TO-92 TRANSISTOR: PNP, SI ,TO-92 TRANS ISTOR :PNP ,SI ,TO-92 TRANSISTOR: NPN, SI,TO-92 RES,FXD,FILM:4.7K OHM,5%,0.25W RES,FXD,FILM:4.7K OHM,5%,0.25W

RESlFXD,FILM:4.7K OHM,5%,0.25W RES, FXD, FILM:51K OHM,!%, O.ZW RES, FXD, FILM:9.6K OHM, 1%,0.12%,TC=TO RES,FXD,FILM:560 OHM,5%,0.25W RES,FXD,FILM:50K OHM,l%,O.l25W,TC=TO RES,FXD,WW:0.33 OHM,5%,2W

RES,FXD,FILM:lK OHM,5%,0.25W RES, FXD,FILM:13K OHM,5%,0.25W RES,FXD,FILM:51K OHM,5%,0.25W RES,FXD1FILM:20.5K OM,1%,0.125W1TC=TO RES, FXD, FILM: lOOK OHM, 1%,0.125W,TC=TO RES, FXD,FILM:20 OHM,5%,0.25W

REV JAN 1988 Replaceable Electrical Parts - PS 5010

Tektronix Serial /Asably No. Mfr. Carponent Mo. Part No. Effective Dscont Mame 81 Description Mfr-PartNo. RES.FXD,FILM:lK OHM,5%,0.25W 57668 RES,FXD,FILM:25.5K OI-M,l%,O.l25W,TC=TO 19701 RES,FXD,FILM:lK OHM,l%,O.l25W,TC=TO 19701 RES,FXD,FILM:68K OHM,5%,0,25W 57668 RES, FXD, FILM:510 OHM,5%,0.25W 19701 RES, FXD, FILM:240 OHM,5%,0.25W 19701

RES, FXD, FILM: 130 OHM 1%, 0.125W,TC=TO 07716 RES NTM,FXD,FI:4.7K OHM,20%,(9)RES 32997 RES NTM, FXD, FI:8,0.005 0I-M,+150-5%,0.125W 00779 RES,FXD,FILM:3.74K OW,l%,O.l25W,TC=TO 19701 RES,FXD.FILM:1.3K OHM,5%,0.25W 57668 RES,FXD,FILM:2.61K 0~.1%,0.125W,TC=TO 07716

RES NTWK,FXD,FI :4.7K OHM,20%, (9)RES 32997 RES NTWK, FXD, FI: IOK OHM, 2%. (9)RES 11236 SWITCH, ROCKER : (6) SPST, 125M, 30VDC 81073 TERM,TEST PO1NT:BRS CD PL 80009 TERM,TEST PO1NT:BRS CD PL 80009 TERM,TEST PO1NT:BRS CD PL 80009

TERM,TEST P0INT:BRS CD PL 80009 214-0579-00 MICROCKT, DGTL:TTL, OCTAL GPIB XCVR KTBUS 01295 SN75161A N MICROCKT, DGTL: NMOS, GPIB INTFC CONTROLLER 01295 TMS9914A (NL MICROCKT, DGTL:TTL,OCTAL GPIB XCVR DATA BUS 01295 SN75160 (N OR J) MICROCKT, L1NEAR:QUAD OPNL AMPL, SELECTED 01295 LM324J4 MICROCKT, DGTL: 4096 X 8 EPROM, PROGRAMMED 80009 160-1334-00

MICROCKT ,DGTL: 4096 X 8 EPROM, PROGRAMMED 80009 160-1333-00 MICROCKT, DGTL: MICROPROCESSOR 04713 MC6800 (S OR Pf MICROCKT ,DGTL :QUAD 2-1 NP NOR GATE, SCRN 18324 N7402(NB OR FB) MICROCKT ,DGTL :3/8 LINE DCDR, SCRN 01295 SN74LS138NP3 MICROCKT, DGTL :4B6 X 8 EPROM, PROGRAMMED 80009 160-1332-00 MICROCKT ,DGTL :4096 X 8 EPROM, PROGRAMMED 80009 160-1331-00

MICROCKT,DGTL:OCTAL BUS XCVR W/3 STATE OUT 01295 MICROCKT, DGTL: LSTTL ,3-STATE OCTAL BFR, SCRN 27014 MICROCKT ,DGTL :LSTTL, 3-STATE OCTAL BFR ,SCRN 27014 MICROCKT,DGTL:QUAD 2-INP OR GATE,SCRN 01295 MICROCKT, DGTL: DUAL D FLIP-FLOP, SCRN 01295 MICROCKT ,DGTL :14 BIT BINARY COUNTER, BURN- IN 02735

MICROCKT,DGTL: 1024 X 4 SRAM,SCREENED 80009 MICROCKT,DGTL:8-INP DATA SEL WI3-STATE OUT 01295 MICROCKT,DGTL:1024 X 4 SRAM,SCREENED 80009 MICROCKT, DGTL :DUAL 2-TO 4-LINE DCDR/DEMUX 04713 MICROCKT ,DGTL :3/8 LINE DCDR, SCRN 01295 MICROCKT,DGTL:TRIPLE 3-INP NOR GATE,SCRN 01295

MICROCKT, DGTL :8 BIT ADDRESSABLE LATCH 04713 MICROCKT, DGTL: 8 BIT ADDRESSABLE LATCH 04713 MICROCKT, DGTL: HEX INVERTER, SCAN 07263 MICROCKT, DGTL:QWD 2-INP & GATE, SCRN, 01295 MICROCKT, DGTL: DUAL DECADE COUNTER, SCRN 01295 MICROCKT ,DGTL :QUAD 2- INP & GATE, SCRN , 01295

MICROCKT,DGTL:CMOS,6-DIGITDSPLCONT/DRVR 27014 MICROCKT, DGTL:CMOS, 4-DIGIT UP SEG DSPL 27014 MICROCKT ,DGTL :8 BIT ADDRESSABLE LATCH 04713 MICROCKT, DGTL :OCTAL BFR W/3 STATE OUT, SCRN 01295

MICROCKT, DGTL: LSTTL, 3-STATE OCTAL ' BFR, SCRN 27014 MICROCKT, DGTL :CMOS, 20 KEY ENCODER 27014

SEMICONDDVC,DI:ZEN,SI,5V,1%,400MW,DO-7 04713 SEMICOND DVC,DI:ZEN,SI,lZV,5%,0.4W,DO-763B 14552

REV JAN 1988 Replaceable Electrical Parts - PS 5010

Tektronix Serial/AssenblyNo. Mr. Carponent No. Part No. Effective Oscont Name & Description Code Mfr. Part No. 670-6681-00 BOlOlOO 8020969 CIRCUIT BD ASSY: LOGIC SUPPLY 670-6681-01 8020970 CIRCUIT BD ASSY :LOGIC SUPPLY 290-0768-00 CAP, FXD, ELCTLT: lOUF, +50-2%,100WVDC 290-0632-00 CAP, FXD, ELCTLT :62OOUF. +75-lo%, 15V 290-0755-00 CAP, FXD, ELCTLT :100UF,+50%-20%, lOWVDC 290-0759-00 CAP, FXD, ELCTLT: 290UF,+75-lo%, 15V

CAP, FXD,CER DI:O. lUF,+/-1PF,50V CAP, FXD,CER DI:O. lUF,+/-1PF,50V CAP, FXD, ELCTLT: 2000UFf+75-10%,40V CAP, FXD, ELCTLT: 2000UF,+75-10% ,4OV CAP, FXD, ELCTLT: 2000UF,+75-10%,40V CAP, FXD,CER DI:O. lUF,+/-lPF, 5OV

CAP, FXD,CER DI:O. lUF,+/-lPF, 5OV CAP, FXD, ELCTLT:330UF,+50-lo%, 25VDC CAP,FXD,CER DI:O.O47UF,20%,50V CAP,FXD,CER DI:O. lUF,+/-lPF,SOV CAP, FXD,CER DI:O.OlUF,+lOO-0%,50OV CAP, FXD, ELCTLT: 100UF,+75-lo%, 50V

CAP,FXD,CER DI:O. lUF,+/-1PF,50V CAP, FXD,CER DI:O.OlUF,+lOO-0%,50OV CAP, FXD,CER DI: O.OlUF,+lOO-0%,50OV CAP, FXD, ELCTLT: 330UF,+50-20%. 35V CAP, FXD,CER DI:O. lUF,+/-lPF,SOV CAP, FXD,CER DI: 200 PF,Y/,, 100V

CAP,FXD,CER DI:O. lUF,+/-1PF,50V CAP, FXD, ELCTLT :100UF,+75-lo%, 5OV CAP,FXD,CER DI:O.lUF,+/-1PF,50V CAP,FXD,CER DI:O. lUF,+/-1PF,50V CAP, FXD,CER DI:O. OlUF, lo%, 100V CAP,FXD,CER DI:O.OlUF, 1077,100V

CAP, FXD,CER DI:O. 01UF,+100-0%,500V CAP, FXD, ELCTLT: 330UF,+50-lo%, 25VDC CAP, FXD, ELCTLT :33OUF, +50-20%, 35V CAP, FXD, ELCTLT: 2000UF,+75-10"/,,40V CAP, FXD, ELCTLT: 2000UF,+75-10"/,,40V CAP, FXD, ELCTLT :2000UF, +75-10%, 40V

CAP, FXD,CER DI:O. lUF,+/-lPF, SOV CAP, FXD,CER DI:O.OlUF, 10"/,,100V SEMICOND DVC,DI:SW,SI,30V,150M4,30V,DO-35 SEMICOND DVC, DI:SW, SI,30V, 150M4,30V,DO-35 SEMICOND DVC,DI :SW,SI ,30V,150M4,30V,DO-35 SEMICOND DVC,DI:SW,SI,30V,150M4,30V,DO-35

SEMICOND DVC, DI:RECT, SI,100V, €%,A264 SEMICOND DVC,DI :RECT,SI ,400V, lA,DO-41 SEMICOND DVC,DI :SW,SI,30V,150M4,30V,DO-35 SEMICOND DVC, DI: RECT, SI,4OOV, lA, DO-41 SEMICOND DVC, DI:RECT ,SI ,400V, lA, DO-41 SEMICOND DVC, DI: RECT, SI,4OOV, lA, DO-41

SEMICOND DVC,DI:RECT,SI,400V,lA,DO-41 SEMICOND DVC,DI:RECT,SI,400V,lA,DO-41 SEMICOND DVC, DI:RECT,SI ,4OOV, lA, DO-41 SEMICOND DVC,DI:RECT,SI,400V,lA,DO-41 SEMICOND DVC, DI: RECT, SI,4OOV, lA, DO-41 SEMICOND DVC, DI:SW, SI,3OV, l5OM4, 3OV, DO-35

SEMICOND DVC,DI:SW,SI,30V,150M4,30V,DO-35 SEMICOND DVC,DI:SW,SI,30V,150M4,30V,DO-35 SEMICOND DVC, DI:RECT,SI ,20OV,3A,A249 SEMICOND DVC, DI: RECT ,S I,200V. 3A, A249

REV JAN 1988 Replaceable Electrical Parts - PS 5010

Tektronix Serial/Assmbly No. Mr. Carparent No. Part No. Effective I)scont Nane & Description Code Mfr. Part No. A13CR1530 SEMICOND DVC,DI :SW,SI ,30V, l5OM4, 30VfDO-35 A13CR1531 SEMICOND DVC,DI :SW,SI ,30V,JSOM4,30V,DO-35 A13CR1540 SEMICOND DVC,DI:RECT,SI,400V,lA,DO-41 A13CR1600 SEMICOND DVC, DI:SW,SI ,3OV, l5OM4,3OV, DO-35 A13CR1601 SEMICOND DVC, DI:RECT, SI,400V. lA,DO-41 A13CR1620 SEMICOND DVC, DI:RECT,SI ,200V, 3A,AZ49

A13CR1621 SEMICOND DVC, DI:RECT,SI ,200V,3A,A249 A13CR1641 SEMICOND DVC, DI:SW,SI ,3OV,l5OM4,3OV, DO-35 A13CR1642 SEMICOND DVC,DI:SW,SI,30V,150M4,30V,DO-35 A13CR1700 SEMICOND DVC,DI :SW,SI, l75V,O. lA, DO-35 A13CR1710 SEMICOND DVC,DI :RECT,SI ,200V, 1A A13CR1740 SEMICOND DVC,DI:SW,SI,30Vf150M4,30V,DO-35

A13CR1741 SEMICOND DVC,DI :SW, SI,30V,150M,30V,DO-35 A13CR1800 SEMICOND DVC,DI:SW,S1,175V,O.lA,DO-35 A13CR1810 SEMICOND DVCfDI:RECT,SI,200V,1A A13CR1910 SEMICOND DVC,DI:RECT,SI,2O0Vf3A,A249 A13CR1911 SEMICOND DVC,DI:RECTfSI,200V,3A,A249 A13CR1912 SEMICOND DVC,DI:RECT,SI,200V,3A,A249

A13CR2010 SEMICOND DVC,DI:RECT,SI,2O0V,3AfA249 A13CR2030 SEMICOND DVC,DI:SW,SI,30V,150M,30VfDO-35 A13CR2110 SEMICOND DVC,DI :RECT,SI ,400V. 1A. 00-41 A13CR2111 SEMICOND DVC,DI:SW,SI,30V,150M,30V,DO-35 A13F1110 FUSE,CARTRIDGE:3AG,6A, 250V,MEDIUM BLOW A13F1250 FUSE,CARTRIDGE: 3AG. 6A, 250V,MEDIUM BLOW

A13F1340 FUSE, CARTRIDGE: 3AG, lA, 250V. FAST BLOW AGC-CW-1 A13F1341 FUSE, CARTRIDGE :3AG, lA, 250V, FAST BLOW AGC-CW-1 A13F1410 FUSE, CARTRIDGE: 3AG, 1.6A, 250V, 25SEC MDX 1 6/10 A13F1411 FUSE, CARTRIDGE :3AG, 1.6A, EOV, 25SEC MDX 1 6/10 A13F1420 FUSE, CARTRI DGE :3AG, 2.5A, lEV, lSEC MDL 2-1/2 A13F1421 FUSE,CARTRIDGE:3AG,2.5A, 125V,lSEC MDL 2-1/2

A13J1120 TERM SET,PIN:l X 14,0.15 SPACING A13J1140 TERM SET,PIN:l X 14,0.15 SPACING A1351530 TERM SET.PIN:l X 14.0.15 SPACING A13J1930 TERM SB,PIN:~ X 1410.15 SPACING A13K1110 RELAY ,ARMATURE :2 FORM C ,2A, 30VDC. COIL 24VDC 870 OM

A13K1510 RELAY, ARMATURE :2 FORM C ,2A, 30VDC, COIL 24VDC 870 OM A13K2010 RELAY, ARMATURE :2 FORM C ,2A, 30VDC, COI L 24VDC 870 OM A13L1240 COIL,RF:FXD,TOROID,25.7UH A13Q1130 TRANSISTOR: PNP, SI,TO-92

A13Q1200 TRANSISTOR:NPN,SI ,TO-18 A1341230 TRANSISTOR:PNP,SI ,TO-92 A1341240 SCR: SI,MU-10 A13Q1400 TRANSISTOR: NPN, SI, TO-220 A1341430 TRANSISTOR: NPN, SI,TO-92 A13Q1440 TRANSISTOR: NPN, SI, TO-220

A13Q1441 TRANS ISTOR : PNP ,SI , TO-220 A13Q1500 TRANS ISTOR :NPN ,SI , TO-220 A13Q1501 TRANSISTOR: NPN, SI,TO-220 A13Q1600 TRANSISTOR:PNP,SI,TO-92 A13Q1630 TRANS ISTOR :NPN ,S I, TO-92 A13Q1640 TRANSISTOR: NPN, SI,TO-92

A13Q1650 TRANSISTOR:NPN,SI ,TO-18 A13Q1700 TRANSISTOR: NPN, SI, TO-220 A13Q1729 TRANSISTOR:NPN, SI, TO-18 A13Q1730 TRANSISTOR:NPN,SI ,TO-92

REV JAN 1988 Replaceable Electrical Parts - PS 5610

Tektroni x Seri a1 /Assably No. Mfr. Carprxlent No. Part No. Effective Dscont Name & Description Code Mfr. Part No. TRANS ISTOR :NPN ,SI ,TO-92 TRANS ISTOR: PNP, SI, TO-220 TRANSISTOR: PNP, SI, TO-220 TRANSISTOR: NPN, SI, TO-106 TRANSISTOR: PNP, SI ,TO-220 TRANSISTOR: NPN ,SI ,TO-92

TRANSISTOR: PNP, SI, TO-18 RES,FXD,FILM:470 OHMI5%,0.25W RES,FXD,FILM:470 OHM,5%,0.25W RES,FXD,CMPSN:lK OHM,5%,0.50W RES,FXD,FILM:lK OHM,5%,0.25W RES,FXD,FILM:680K OHMI5%,0.2RJ

RES,FXD,FILM:160 OHM,5%,0.25W RES,FXD,FILM:330 OHM,5%,0.25W RES, FXD, FILM: 4.53K OM, 1%, 0. lEW, TC=T9 RES,FXD,FILM:453 OHM,1%,0.125W,MI RES,FXD,FILM:8.66K OtM,1%,0.125W,TC=TO RES,FXD,WW:O.l OHM,1%,3W

RES,FXD,FILM:2.7K OHM15A,0.25W RES,FXD,FILM:910 OHM,5%,0.25W RES,FXD,FILM:910 OHM,5%,O025W RES,FXD,CMPSN:lK OHM,5%,0.50W RES, FXD, FILM: 1K OHMI5%,0.25W RES,FXD,FILM:470 OHM,5%,0.25W

RES,FXD,FILM:100 OHM,5%,0.5W RES, FXD, FILM: 1.05K OM, l%,O.l25W,TC=TO RES, FXD, FILM: l69K OHM, l%,O. 125W,TC=TO RES,FXD,FILM:25.5K OtM,l%,O.l25W,TC=TO RES1FXD,FILM:9.1K OHM,5%,0.25W RES,FXD,FILM:150 OHM,5%,0.5W

RES, FXD,FILM: 10K OHM,5"L10.25W RES,FXDrFILM:30K OHM,5%,0.25W RES,FXD, FILM:2.7K OHM,5%,0.25W RES,FXD,FILM:27K OHM,5%,0.25W RES,FXD,FILM:2.7K OHM,5%,0.25W RES,FXD, F1LM:lK OHM,5%,0.25W

RES, FXD, FILM:274 OHM, 1%,0.25W,TC=TO RES,FXD,FILM:1.6K OHM,5%,0.25W RES,FXD,FILM:lK OHM,5%,0.25W RES,FXD,FILM:4.7K OHM,5%,0.25W RES,FXD,FILM:lK OHM,Y%,0.25W RES,FXD,FILM:lOK OHM,5%,0.25W

REV JAN 1988 Replaceable Electrical Parts - PS 5010

Tektmnix Serial/Assenbly No. Mfr. Conpa?ent No. Part No. Effective Dscont Narne & Description Code Mr. Part No. RES,FXD,FILM:2.74K OtM,1%,0,125W,TC=TO CEAD27400F RES,FXD,FILM:3K OHM,5%,0.25W NTR25J-EO3KO RES,FXD,FILM:4.53K OtM,l%,O.l25W,TC=T9 5033ED4K530F RES,FXD,FILM:1.75K OtM,O.Y/o,O.l25W,TC=T2 5033RClK750D RES, FXD, FILM:583 OHM,0.25%,0.125W,TC=T2 ADVISE RES, FXD, FILM: 289 OHM, 0.25%. 0. lBW, TC=T2 5033RC289ROC

RES,VAR,NONWW:TRMR,2K OHM,10%,0.5 W 3386C-TO7-202 RES,FXD,FILM:2.7K OHM,5%,0.25W NTR25J-E02K7 RES,FXD,FILM:3.09K OtM,l%,O.l25W,TC=TO CEAD309OOF RES,FXD,FILM:1.6K OHM,5%,0.25W 5043CXlK6OOJ RES, FXD, FILM:365 OHM, 1%, 0. lXW, TC=TO CEAD365ROF TERM-TEST PO1NT:BRS CD PL 214-0579-00

TERM,TEST PO1NT:BRS CD PL 214-0579-00 8020969 MICROCKT, L1NEAR:OPNL AMPL,CHECKED MC1741CPlDS MICROCKT, L1NEAR:OPNL AMPL, SELECTED UA741CJG4 MICROCKT, L1NEAR:OPNL AMPL, SELECTED OP-02EP MICROCKT , LINEAR: OPNL AMPL ,CHECKED LM301AP3 MICROCKT, L1NEAR:DUAL OPNL AMPL, SCREENED MC1458JG4

MICROCKT, LINEAR:D/A CONVERTER.8 BIT, SCRN DACO80156Q MICROCKT, DGTL: 8 STG SHF & STORE BUS RGTR CD4094BFX MICROCKT,LINEAR:D/A CONVERTER,8 BIT,SCRN DAC080156Q MICROCKT, DGTL :8 STG SHF & STORE BUS RGTR CD4094BFX SEMICOND DVC,DI:ZEN,SI ,16V,5%,0.4W,DO-7 SZG35014KIRL SEMICOND DVC,DI:ZEN,SI,16V.5%,0.4W,DO-7 SZG35014KIRL

SEMICOND DVC,DI:ZEN,S1,5.1V,5%,0.4W,DO-7 SZ1l755RL SEMICOND DVC,DI:ZEN,SI,16V,5%,0.4W,DO-7 SZG35014KIRL SEMICOND DVC,DI:ZEN,SI,24V,5%,0.4W TD3810986 SEMICOND DVC,DI:ZEN,S1,8.2V,5%,0.4W,DO-7 SZG20 SEMICOND DVC,DI:ZEN,S1,8.2V,5%,0.4W,DO-7 SZG20 SEMICOND DVC,DI:ZEN,SI,4.3V,5%,0.4W SZG35009K18

SEMICOND DVC, DI:ZEN, SI,6.2V, 3,4OOW, 00-7 SZ11738RL SEMICOND DVC,DI :ZEN,SI ,24V,5%,0.4W TD3810986 SEMICOND DVC,DI:ZEN,SI,5.1V,5%,0.4W,DO-7 SZ11755RL SEMICOND DVC,DI:ZEN,SI,16V,5%,0.4W,DO-7 SZG35014KI RL SEMICOND DVC,DI:ZEN,S1,6.2V,5%,0.25W,DO-7 SZG20012 SEMICOND DVC,DI:ZEN,SI,6.2V,5%,40W,DO-7 SZ11738RL

REV JAN 1988 Replaceable Electrical Parts - PS 5010

Tektroni x Seri a1 /Asserrbly No'. Mfr. Carponrnt No. Part No. Effective Dscont Nam & Description Code Mfr-PartNo. CIRCUIT BD ASSY :FLOATING SUPPLY CIRCUIT BD ASSY: FLOATING SUPPLY . CIRCUIT BD ASSY :FLOATING SUPPLY CIRCUIT BD ASSY :FLOATING SUPPLY CAP, FXD,CER DI:O. lUF,+/-1PF,50V CAP,FXD,CER DI:O.lUF,+/-1PF,50V

CAP,FXD,CER DI:O.lUF,+/-1PF,5OV CAP,FXD,CER DI:O. lUF,lO%,lOOV CAP, FXD,CER DI: 0. lUF,+/-lPF, 50V CAP, FXD,CER DI:O. lUF,+/-1PF,50V CAP,FXD,CER DI:O.lUF,+/-1PF,50V CAP,FXD,ELCTLT:Z. 7UF,10%,20V

CAP, FXD,CER DI:O. lUF,+/-lPF, 5OV CAP, FXD,CER DI:O.lUF,+/-1PF,50V CAP, FXD,CER DI: O.lUF,lO%, 100V CAP, FXD,CER DI: O.lUF,+/-lPF, 5OV CAP, FXD,CER DI:O.lUF,+/-lPF.50V CAP, FXD,CER DI:0.01UF,10%,100V

CAP, FXD,CER DI:O.OlUF, 10%,100V CAP,FXD,CER DI:470PF,lO%,lOOV CAP, FXD,CER DI:470PF, 10"/,, 100V CAP,FXD,CER DI:O. lUF,+/-1PF,50V CAP, FXD, ELCTLT: 2. 7UF,20%, 50V CAP,FXD,CER DI:O.lUF,+/-1PF,5OV

CAP, FXD, PLASTIC:O.OlUF, 10%,200V 192P10392 CAP, FXD,CER DI:O. lUF,+/-1PF,50V MA205E104MAA CAP,FXD,CER DI:O.lUF,+/-lPF.50V MA205E104MAA CAP,FXD,CER DI:O.O047UF,20"/,,500V 811-565C471J CAP, FXD,CER DI: 1500PF, 5% 200V 805-534-Y5D0152J CAP, D(D,CER DI: 100PF,5%, 100V MAlOlAlOlJAA

CAP, FXD,CER DI: l5OOPF, 5%,200V 805-534-Y5D0152J CAP,FXD,CER DI:O.O047UF,20"/,500V 811-565C471J CAP, FXD,CER DI:O. lUF,+/-1PF,50V MA205E104MAA CAP, FXD,CER DI: O.lUF,+/-lPF, 5OV MA205E104MAA CAP, FXD,CER DI: 100PF,Y/o, 100V MAlOlAlOlJAA CAP, FXD, ELCTLT: 10UF,+50-20"/, 1OOWVDC ECE-A100V10L CAP, FXD, ELCTLT: 10 UF +50% -lo%, 50VK 5020237

CAP, FXD, ELCTLT: 10UF,+50-20"/,, lOOWVDC CAP, FXD, ELCTLT: 10 UF +50% -1m, 5OVDC CAP, FXD,CER DI:0.22UF, 10%,200V CAP, FXD, CER DI: 0.22UF, 10%, 200V CAP, FXD,CER D1 :O.lUF,+/-1PF,50V CAP,FXD,CER DI:O. lUF,+/-1PF,50V

283-0346-00 8010100 CAP,FXD,CER DI:0.47UF,+80-20"/,,10OV 283-0346-00 BOlOlOO CAP,FXD,CER DI:0.47UF,+80-20%,100V 283-0346-00 8010100 CAP, FXD,CER DI: 0.47UF,+80-20%, 100V 283-0346-00 8010100 CAP,FXD,CER DI:0.47UF,+80-20""/,100V 152-0322-00 SEMICOND DVC, DI:SCHOTTKY, SI,15V, DO-35 152-0066-00 SEMICOND DVC,DI:RECT,S1,400V,lA,DO-41

SEMICOND DVC,DI:RECT,SI,400V,lA,W-41 SEMICOND DVC,DI:SCHOTTKY.S1,15V,DO-35 SEMICOND DVC,DI:RECT,SI,400V,1AfM3-41 SEMICOND DVC,DI:SW,SI,30V,15OM4.30V,DO-35 SEMICOND DVC,DI :SW,SI ,30V, 150MA.30V.DO-35 SEMICOND DVC,DI:SW,SI,30V,150MA,30V,W)-35

SEMICOND DVC, DI:SW,SI ,3OV, 15OMA,3OV,DO-35 SEMICOND DVC, DI:SW, SI,3OV, 150MAf 3OV, DO-35 SEMICOND DVCfDI:RECT,SI,400V,lA,DO-41

REV JAN 1988 Replaceable Electrical Parts - PS 5010

Tektmix Serial/Mly No. Mfr. Carponent No. Part No. Effective I)scont Name & Description Code Mfr. Part No. SEMICOND DVC,DI:RECT,SI,400V,lA,DO-41 SEMICOND DVC,DI :RECT,SI,4OOV, &DO-41 SEMICOND DVC,DI:SW, SI ,3OV,lSOM9,3OV, DO-35 SEMICOND DVC,DI :SW, SI ,3OV,l5OMA, 3OV. DO-35 SEMICOND DVC,DI :SW, SI,3OV, l5OM9, 3OV, DO-35 SEMICOND DVC,DI:SW, SI ,3OV,l5OM,3OV, DO-35 SEMICOND DVC,DI :SW,SI ,3OV,l5OMr\, 3OV, DO-35 SEMICOND DVC,DI:SW,SI,30V,150M4,30V,DO-35 SEMICOND DVC,DI:SW,SI,30V,150M4,30V,DO-35 SEMICOND DVC,DI:SW,SI,30V,150M4,30V,DO-35 SEMICOND DVC,DI :RECT,SI ,400V,lA, DO-41 SEMICOND DVC,DI:RECT,SI ,400V, lA,DO-41 SEMICOND DVC,DI :RECT,SI,400V. lA,DO-41 SEMICOND DVC,DI :SW,SI,30V,150MA,3OV,DO-35 SEMICOND DVC,DI :RECT,SI,4OOV, lA, 00-41 SEMICOND DVC,DI:RECT,SI,lOOV,6A,A264 SEMICOND DVC,DI:SW,GE,15V,40MAID0-7 SEMICOND DVC,DI:SW,SI,30V,150MA,30V,DO-35 SEMICOND DVC,DI :SW. SI ,3OV,l5OMA,3OV, DO-35 SEMICOND DVC,DI:SW,SI,30V,150EV\,30V,DO-35 SEMICOND DVC,DI :RECT,SI,100V, 6A,A264 TERM SET,PIN:l X 14.0.15 SPACING TERM SET,PIN:l X 14,0.15 SPACING RELAY,REED: 2 FORM A,200MA, 100VDC ,COI L

RELAY,ARMATURE :2 FORM C ,2A,30VDC. COI L 24VDC 870 OM COIL,RF: FIXED,395NH TRANSISTOR:NPN, SI ,TO-220 TRANSISTOR:PNP,SI, TO-220 TRANSISTOR:NPN, SI ,TO-92

TRANSISTOR:NPN, SI ,TO-92 TRANS ISTOR :NPN ,S I ,TO-92 TRANS ISTOR :NPN ,SI ,TO-92 TRANSISTOR:PNP, SI ,TO-220 TRANSISTOR:PNP,SI ,TO-18 TRANSISTOR:PNP,SI ,TO-18

TRANS ISTOR : PNP ,SI ,TO-92 TRANSISTOR:NPN, SI ,TO-220 TRANSISTOR:NPN, SI ,625MW,TO-92 TRANSISTOR:NPN ,SI ,625MW.TO-92 TRANS ISTOR :FET ,P-CHAN ,S I ,TO-92 TRANSIST0R:NPN. SI ,TO-18

TRANS I STOR :FET ,P-CHAN ,S I ,TO-92 TRANSIST0R:FET.P-CHAN,SI ,TO-92 TRANS ISTOR: FET ,P-CHAN ,S I ,TO-92 RES,FXD,FILM:lK OHM,5%,0.25W RES,FXD,FILM:lK OHM,5%,0.25W RES,FXD,FILM:2.2K OHM,5%,0.25W

RES,FXD,FILM:lK OHM,5%,0.25W RES,FXD,FILM:2.2K OHM,5%,0.25W RES,FXD, FILM:360 OHM,5%,0.25W RES,FXD, FILM:360 OHM,5%,0.25W

REV JAN 1988 Replaceable Electrical Parts - PS 5010

Tektronix Serial/Assehly No. Mfr . Carpanent No. Part No. Effective Dscont Name & Description Code Mfr.PartN0. 5043CX360ROJ NTR25.I-E05K1 NTR25J-E02K7 NTR2U-EO9Kl 5043CX6K2OOJ NTR25J-E lOOE

RES,FXD,FILM:4.3K OHM,5%,0.25W RES,FXD,WW:O.l OHM,1%,3W RES, FXD,WW:O.l OHM,1%,3W RES ,VAR, NONW :TRMR ,SO OHM, O.W RES, FXD, FILM:301 OHM,l%, O.l25W,TC=TO RES,FXD,FILM:6.19K OH\1,1%,0.12W,TC=TO

RES,FXD,FILM:lOK 0HMt5%,0.25W 5043CXlOKOOJ RESfFXD,FILM:4.3K OHM,5%,0.25W NTR25J-E04K3 RES,FXD,FILM:100 OHM,5%,0.25W NTR25J-E lOOE RES,FXD, FILM:4.3K OHM,5%,0.25W NTR25J-E04K3 RESPFXD,FILM:64.9K OtM,l%,O.l25W,TC=TO CEAD64901F RES, FXD, FILM:301 OHM,l%,O.l2W,TC=TO CEAD301ROF

RES, VAR, NONW: TRMR ,5O OHM, 0.5W RES, FXD, FILM:93.1 OHM, 1%,0.125W,TC=TO RES,FXD,FILM:93.1 OHM,1%,0.125W,TC=TO RES,FXD,FILM:6.19K OtM,1%,0,125W,TC=TO RES,FXD,FILM:6,.19K OtM,l%,O.l2W,TC=TO RES,FXD,FILM:6.2K OHM,5%,0.25W

RES, VAR, NONW: TRMR, 5K OHM, 0.5W RESVFXD,FILM:2.80K OtM,l%,O.l25W,TC=TO RES,FXD,FILM:9.6K OHM,1%,0.125W,TC=TO RES,VAR,NOW:TRMRf5K OHM,O.W RES,FXD,FILM: 10K OHM,5%,0.25W RES,FXD,FILM:ZOK OHM,5%,0.25W

RES,FXD,FILM:ZOK 0HMf5%,0.2W NTR25J-E 20K RES, FXD, FILM: 1.8K OHM,5%,0.25W NTR25J-E1K8 RES,FXD,FILM: 16K OHM,5%,0.25W NTR25J-E 16K RES,FXD,FILM:12.4K 0~,1%,0.125W,TC=T9 ORDER BY DESCR RES,FXD,FILM: l2.4K OM, 1%,0.125W,TC=T9 ORDER BY DESCR RESVFXD,FILM:15K OHM,0.5%,0.125W,TC=T2 5033RC15KOOD

RES, FXD, FILM: 20.0 OHM,O.5%,O.l25W,TC=TZ RES,VAR,NONW:TRMR,2K OHM.0.5W RES, VAR, NONW: TRMR, 2K OHM,O .5W RES,FXD,FILM:16K OMc1,5%,0.25W RES,FXD,FILM:lOK OHM,5%,0.25W RES,FXD,FILM:15K OHM,0.5%,0.125W,TC=T2

REV JAN 1988 Replaceable Electrical Parts - PS 5010

Tektmix Serial/AssemblyNo. Mr. Ccmpanent No. Part No. Effective Dscont Name & Description Code Mfr-PartNo. A14R1347 A14R1349 A14R1400 A14R1401 A14R1411 A14R1412

A14R1413 RES,FXD,FILM:1.8K OHM,5%,0.25W A14R1420 RES,FXD,FILM:lOK OHM,5%,0.25W A14R1422 RES,FXD,FILM:6.2K OHM,%,0.25W A14R1423 RES,FXD,FILM:6.2K OHM,5%,0.25W A14R1430 RES, FXD, FILM: 1M OHM,%, O.25W A14R1431 RES,FXD,FILM:lM 0HMf5%,0.25W

A14R1432 RES,FXD,FILM:12.OK 0tM,0.25%,0.125WfTC=T2 A14R1442 RES,VAR,NONWW:TRMR.lK OHM,0.75W A14R1443 RES,VAR,NONW:TRMR,lK OHM,0.75W A14R1444 RES,FXD,FILM:6.81K OI-M,0.5%,0.125W,TC=T2 A14R1445 RES,FXD,FILM:6.81K OW,0.5%,0.125W,TC=T2 A14R1500 RES, FXD, FILM: 1K OHM, 5%,0.25W

A14R1530 RES,FXD,FILM:2K OHM,5%,0.25W A14R1531 RES, FXD,FILM: 1K OHM,5%,0.25W A14R1532 RES,FXD, F1LM:lK OHM,5%,0.25W A14R1533 RESfFXD,FILM:12.0K OH4,0.25%,0.125W,TC=T2 A14R1540 RESfFXD,FILM:40K OHMf0.25%,0.125W,TC=T2 A14R1541 RESfFXD,FILM:40K OHM,0.25%,0.125W,TC=T2

A14R1542 RES,FXDfFILM:6.81K 0~,0.5%,0.125W,TC=T2 A14R1543 RES,FXDfFILM:6.81K 0W,0.5%,0.125WfTC=T2 A14R1544 RES,VAR,NONW:TRMR,lK OHM,0.75W A14R1545 RES, VAR, NONW: TRMR, 1K OHM, 0.7% A14R1600 RES,FXD,CMPSN:5.1 OHM,5%,0.25W A14R1610 RES,FXD,W:0.2 OHM,57%,1W,FlJSIBLE

A14R1611 RES,FXD,WW:0.75 OHM,5%,2W BWF 0.75 OHM 5% A14R1612 RES,FXD,W:0.2 OHM,5%,1W,FUSIBLE BW-20F-0.20HM 5% A14R1620 RES,FXD,W:0.75 OHM,5%,2W BWF 0.75 OHM 5% A14R1621 RES,FXD,W:0.75 OHM,5%,2W BWF 0.75 OHM 5% A14R1622 RES,FXD,WW:O.75 OHM,5%,2W BWF 0.75 OHM 5% A14R1631 RES, FXD, FILM: 100 OHM,5%,0.25W NTR253-E lOOE

A14R1632 RES,FXD,FILM:100 0HMf5%,0.25W NTR25J-E lOOE A14R1640 RES,FXD,FILM:lM OHM,5%,0.25W 5043CXlMOOOJ A14R1641 RES,FXD,FILM:lM 0HMf5%,0.25W 5043CXlMOOOJ A14R1642 RES.FXD, FILM: lOOK 0HM,5°%,0.25W NTR25J-E100K A14R1643 RES,FXD,FILM: lOOK OHM,5%,0.25W NTR25J-E100K A14S1500 SWITCH, PUSH: 1 BTN ,6 POLE, M4IN/DELAY MODE 2KAB0001001022

A14S1600 SWITCH, PUSH:4PDT MOMENTARY, NON-SHORTING ORDER BY DESCR A14TP1330 TERM,TEST PO1NT:BRS CD PL 214-0579-00 A14TP1340 TERM,TEST PO1NT:BRS CD PL 214-0579-00 A14TP1430 TERM,TEST PO1NT:BRS CD PL 214-0579-00 A14TP1431 TERM,TEST PO1NT:BRS CD PL 214-0579-00 A14TP1630 TERM,TEST PO1NT:BRS CD PL 214-0579-00

A14U1010 CPLR ,OPTOELECTR :LED, 5KV ISOLATION SOC 123A A14U1020 CPLR, OPTOELECTR: LED, 5KV ISOLATION SOC 123A A14U1021 CPLR, OPTOELECTR: LED, 5KV ISOLATION SOC 123A A14U1022 CPLR, OPTOELECTR: LED, 5KV ISOLATION SOC 123A A14U1030 CPLR ,OPTOELECTR: LED, 5KV ISOLATION SOC 123A A14U1041 CPLR, OPTOELECTR: LED, 5KV ISOLATION SOC 123A

A14U1042 CPLR, OPTOELECTR: LED, 5KV ISOLATION SOC 123A A14U1100 8020969 MICROCKT, L1NEAR:OPNL AMPL ,CHECKED MC1741CPlDS A14U1100 MICROCKT, L1NEAR:OPNL AMPL, SELECTED UA741CJG4 A14U1110 MICROCKT, LINEAR :QUAD COMPARATOR, SCREENED LM339JDS

REV JAN 1988 Replaceable Electrical Parts - PS 5010

Tektmni x Seri a1 /Asserl,ly No. Mr. Carpa?ent No. Part No. Effective Dscont Name & Description Code Mr. Part No. 156-0158-07 MICROCKT, L1NEAR:DUAL OPNL AMPL, SCREENED 156-041 1-02 MICROCKT ,LINEAR: QUAD COMPARATOR, SCREENED 156-0796-01 MICROCU', DGTL:8 STG SHF & STORE BUS RGTR 156-0719-00 BOlOlOO MICROCKT,LINEAR:CMOS,lO BIT MULTIPLYING DAC 156-0719-01 8031400 MICROCKT,LINEAR:10 BIT MULTIPLYING D/A CONV 156-0796-01 MICROCKT, DGTL:8 SfG SHF & STORE BUS RGTR

156-0067-10 BOlOlOO MICROCKT, L1NEAR:OPNL AMPL,CHECKED 156-0067-13 8020969 MICROCKT, L1NEAR:OPNL AMPL ,SELECTED 156-1255-01 MICROCKT, LINEAR:D/A CONVERTER,8 BIT, SCRN 156-1255-01 MICROCKT, LINEAR: D/A CONVERTER ,8 BIT, SCRN 156-0719-00 BOlOlOO MICROCKT,LINEAR:CMOS,lO BIT MULTIPLYING DAC 156-0719-01 8031400 MICROCKT, L1NEAR:lO BIT MULTIPLYING D/A CONV

156-0796-01 MICROCKT, DGTL:8 STG SHF & STORE BUS RGTR 156-0796-01 MICROCKT, DGTL:8 STG SHF & STORE BUS RGTR 156-0796-01 MICROCKT,DGTL:8 STG SHF & STORE BUS RGTR 156-0495-02 MICROCKT, L1NEAR:QUAD OPNL AMPL, SELECTED 156-0067-10 BOlOlOO MICROCKT, L1NEAR:OPNL AMPL,CHECKED 156-0067-13 8020969 MICROCKT, L1NEAR:OPNL AMPL,SELECTED

MICROCKT ,L1NEAR:OPNL AMPL ,CHECKED MICROCKT, L1NEAR:OPNL AMPL,SELECTED SEMICOND OVC,DI:ZEN,S1,16V,5%,0.4W,DO-7 SEMICOND DVC,DI:ZEN,S1,16V,5%,0.4W,DO-7 SEMICOND DVC,DI:ZEN,SI,6.2V,5%0.25W,DO-7 SEMICOND DVC,DI:ZEN,SI,6.2V,5%,0.2W,DO-7

SEMICOND DVC,DI:ZEN,SI,5.1V,5%,0.4W,DO-7 SEMICOND DVC,DI :ZEN,SI,10V,5%,004W,M3-7 SEMICOND DVC,DI :ZEN,SI ,10V,5%,0.4W,DO-7

REV JAN 1988 Replaceable Electrical Parts - PS 5010

Tektronix Serial/ksably No. Mr. Carponent No. Part No. Effective IXscont Name & Description Code Mfr-PartNo. C500 283-0177-00 CAP, FXD,CER DI :1UF,+80-20%, 25V 04222 SR302E105ZAATR C550 283-0346-00 CAP, FXD,CER DI :0.47UF1+80-20%, lOOV 20932 5034ES 100RD474Z C610 283-0346-00 CAP, FXD, CER DI :0.47UF,+80-20%, 100V 20932 5034ESlOORD474Z 5500 131-2487-00 JACK,TIP:GREEN 80009 131-2487-00 5510 136-0732-00 JACK, TIP: RED 80009 136-0732-00 5520 131-2488-00 JACK,TIP: WHITE 80009 131-2488-00

JACK,TIP:RED 80009 136-0732-00 JACK,TIP: BLACK 80009 136-0731-00 COIL ASSY ,AF: FIXED, 2 INDUCTORS, SWINGING 80009 108-1015-00 COIL ASSY ,AF: FIXED, 2 INDUCTORS, SWINGING 80009 108-1015-00 RES,FXD,CMPSN:2.7 OHM,5%,0.25W 01121 CB27G5 RES,FXD,FILM:lOOK 0HM15%,0.25W 57668 NTR25J-E100K

REV JAN 1988

Section 9-PS 50 10

Symbols 1 $: Graphic symbols and class designation letters are Drafting Practices. so Line Conventions and Lettering. 42 based on ANSI Standard Y32.2-1975. FPO Letter Symbols for Quantities Used in 02 Logic symbology is based on ANSl Y32.14-1973 in Electrical Science and Electrical $; terms of positive logic. Logic symbols depict the logic Engineering. i=Z function performed and may differ from the manufac- iLa turer's data. American National Standard Institute F=,Z 1430 Broadway 3"'i'S New York, New York 10018 The overline on a signal name indicates that the signal 2: performs its intended function when it is in the low state. Component Values z Electrical components shown on the diagrams are in " the following units unless noted otherwise: Abbreviations are based on ANSl Y1.l-1972. Capacitors = Values one or greater are in picof.arads ( pF). Values less than one are in microfarads Other ANSl standards that are used in the preparation (m. of diagrams by Tektronix, Inc. are: Resistors = Ohms (f2).

The information and special symbols below may appear in this manual..

Assembly Numbers and Grid Coordinates The schematic diagram and circuit board component Each assembly in the instrument is assigned an location illustration have grids. A lookup table with the assembly number (e.g., A20). The assembly number grid coordinates is provided for ease of locating the appears on the circuit board outline on the diagram, in the component. Only the components illustrated on the facing title for the circuit board component location illustration, diagram are listed in the lookup table. When more than and in the lookup table for the schematic diagram and one schematic diagram is used to illustrate the circuitry on corresponding component locator illustration. The a circuit board, the circuit board illustration may only Replaceable Electrical Parts list is arranged by assemblies appear opposite the first diagram on which it was ii- in numerical sequence; the components are listed by lustrated; the lookup table will list the diagram number of component number *(see following illustration for other diagrams that the circuitry of the circuit board constructing a component number). appears on.

Modified Component-See Funct~onBlock T~tle- -- Parts List (Depicted in grey. or with grey outline)

Strap or Link

Cam Swttch Closure Chart Plug to E.C. Board Uched Circuit Board Outlined in Black 1 Indicators Refer to Waveform Coaxial connectors: male female Plug Index; signifies pin No. 1 External Screwdriver Adj. Shieiding

Selected value, see Parts List and Maintenance Section for Selection Criteria

Decoupled or Filtered voltage AtwmMy Number Refer to Diagram Number Tektron~xPart NO / *camafm~*awu for clrcult boards "P"i'"y". Scl=mnatic Name -7- - and Number -----.I Ilr-*.)Lwk.m

GPlB ADDRESS S ITCH AND BUFFER TEST

GPlB address switch S1221 Mode jumper 5 1320 I. Purpose Check operation of GPlB buffer and address switch. m Depress this side = low -) nc 13106 (Short to ground for low; Depress this side = high -f)0 08 0 0 11 open for high) II. Equipment required - 07 DDDDDD (Short to ground for low; A. Oscilloscope 012345 open for high) B. TM 500 Flexible Extenders, Tektronix Part Number 067-0645-02 C. Voltmeter

Ill. Electrical conditions necessary to perform test A. Check U1212 pin 20 for +5 V B. Check U1212 pin 14 with oscilloscope for approximately a 1 MHz signal. C. Set J1220 as shown.

IV. Setup (PS 5010) A. Remove CPU U1111 (to free up data bus). B. Remove R1211 (to open data bus).

V. Measurements I I CPU board Using oscilloscope connected to U1212 as shown and checking for highs and lows, exercise GPlB address switch and mode jumper (J1320). Check for stuck, shorted or open signal paths. If problems are found trace to buffer, switch, pull-up resistors or circuit board.

Fig. 9- 1. KERNEL TEST-CPU ADDRESS

3cn LW OK To diagnose component failures in CPU, address lines or address decoding. Use this test when the $21 instrument does not power up correctly or gives unknown error codes. wo I--z~a 11. Equipment required W A. Tektronix SA 501 Signature Analyzer (or equivalent) 4 I - I Ez B. Two TM 500 Flexible Extenders, Tektronix Part Number 067-0645-02 lU5P ,-. .--. 0000 YJ - I C. 16-pin DIP clip, Tektronix Part Number 003-0709-00 1 U5P ::, UUUU D. Oscilloscope 0356 - :j. :.:.',x uuuu 0356 !.;.. r 1 1 - ..r:.; FFFF Ill. Electrical conditions necessary to perform test U759 ; U1210-; FFFF U759 , _ , 8484 A. MPU 01, MPU 02, 02 functional (02 is clock for signature analyzer). Check U1111 pins 3, 36, 37 and U1320 pin 2 for approximately a 1 MHz toggle. B. No interrupts set. Check U1111 pins 2, 4, 6 and 40 for TTL highs. C. A1 5 address line functioning (startlstop for signature analyzer). Check J1111 pin 34 for approxi- mately a 7 Hz waveform (140 ms).

IV. Setup PS5010 (on extenders) 1. GPlB address switch (S1221) as shown.

Press IOt[U001

2. Mode jumper (J1320) as shown. hF Signature mode 3. Runlforce data jumper (J1220) as shown. 1 Force data

k' * These signatures are valid but do not exercise the nodes completely. Check these nodes 4. Remove R1211 (data bus jumper). with the Addressable Latch Firmware test. Signature analyzer Connect to CPU board and set as follows: Threshold = TTL

Start = Connect to A1 5, J1111, pin 34 I CPU board Stop = IConnect to A1 5, Jl 11 1, pin 34

Clock = 1Connect to 02 test point, J1111, pin 2 (clock)

Gnd = Connect to ground test point (TP1011)

V. Measurements Verify +5 signature. Start with CPU (U1111) and check signatures. No data bus signatures are given as the RAM contents and keyboard encoder outputs are not predictable in a free run mode. Once CPU is verified check U 1120 (RAMIROM decoder), U 121 0 (address buffer), U1310 (address Fig. 9-2. decoder), and U1 31 1 (address decoder). KERNEL TEST-ROM VERIFICATION

I. Purpose Verifies that correct and functioning ROMs are installed. This test can also find misplaced ROMs. The data bus is checked for stuck-at-zero or stuck-at-one states.

II. Equipment required A. Tektronix SA 501 Signature Analyzer (or equivalent with qualify input) B. Two 16-pin DIP clips, Tektronix Part Number 003-0709-00 or equivalent C. TM 500 Flexible Extenders, Tektronix Part Number 067-0645-02.

Ill. Electrical conditions necessary to perform test A. 02, m,CPU, address lines and address decoding functional. Verify with kernel test for CPU, address lines and address decoding. B. C/O ROM Enable and E/F ROM Enable working (U1120, pins 9 and 7). Verify with CPU, address lines and address decoding kernel test. C. C ROM Enable, D ROM Enable, E ROM Enable, F ROM Enable working (U1310, pins 4, 5, 6, and 7). Verify with CPU, address lines, and address decoding kernel test.

IV. Setup A. PS 5010 (set conditions with power off) 1. Place PS 5010 on flexible extenders 2. Set GPlB address switch (S1221) as shown. Press

3. Set runlforce data jumper (J1220) as shown. rZ] Force data

4. Remove R1211 (data bus jumper). 5. Set mode jumper (J1320) as shown. F]Signature mode

B. Signature analyzer Connect and set as follows: Threshold = TTL

Start = I Connect to U1120, pin 7 or pin 9 (see chart)

Stop = I Connect to U1120, pin 7 or pin 9 (see chart)

Clock = I Connect to 02 test point, Jl1 1 1. pin 2 (clock)

Qua1 = 1 Connect to Ul3lO (see chart). Set QUAL to ON.

Gnd = Connect to ground test point (TP1011) KERNAL TEST - ROM VERIFICATION (Cont.)

V. Measurements A. Use U1202, data buffer, pins 11-18 to take signatures. (This test assumes that address and data lines are good out to the ROMs). SA 501 C ROM D ROM E ROM F ROM Connections (U1201) (U 1200) (U1101) (U 1 100) Start1 U112Opin9 U1120pin9 U1120pin7 U1120pin7 stop Qualify U1310 pin 4 U1310 pin 5 161310 pin 6 U1310 pin 7

Signature signals

UAAP (UAAP) CA59 (CA59) 6FC2 (6FC2) 6PF2 (483U) H7UA (H7UA) CH06 (CH06) 82P6 (82P6) 2C27 (OHHA)

Explanation of signatures: The startlstop and qualify connections are given first. Use +5 V signature to verify correct setup. The signatures given in parentheses are provided to locate misplaced ROMs. There are timing differences be- tween the CIE and DIF ROM positions, which account for the different signatures on +5 V. ROM positions C and E give the same signatures for a particular ROM. ROM positions D and F will also give the same signatures for a particular ROM, but the CIE and D/F signatures will not match. In summary match +5 V signatures to correct data signatures, i.e., match +5 V in parentheses to data in parentheses and +5 without parentheses to data without parentheses. D3 ;@u,202%/

D4 ?@ Data '[ D5 .aI bufferBI D6 ;& @i

CPU board

I J

Fig. 9-3. FIRMWARE SIGNATURE ANALYSIS-ADDRESSIDATA BUS

I. Purpose Verify address lines and buffer, and data bus and buffer. Data bus checks verify correct outputs of GPlB chip (U1001) and keyboard encoder (U1421). If data bus signatures are not correct, use GPlB chip or keyboard encoder tests to locate problem. Also included are data bus signatures with key- board encoder IC pulled to aid in troubleshooting. (Note that power-up self-test runs before signature analysis routine, so CPU, ROM, and RAM must be working.)

II. Equipment required A. Tektronix SA 501 Signature Analyzer (or equivalent) B. Two TM 500 Flexible Extenders, Tektronix Part Number 067-0645-02 (I) = Inputs Ill. Electrical conditions necessary to perform test Others = Inputs/Outputs A. CPU, ROM, and RAM functional (verified by power-up self-test) B. Startlstop test point functional. Check for pulses approximately 5.5 ms apart (low true).

IV. Setup A. PS 5010 (on extenders) 1. GPIB address switch to instrument ID 22. Data bus with address F~P~(I) U 142 1 installed bus I HP5P(O) Press ,- - .- -I- - - - buffer...I "PSP(I)

e ' 1OA8(O) I . . i.: - 10A8(1) @' OOOO(1) A 2. Mode jumper (J1320) as shown. (I) = Inputs (0)= Outputs [=I [=I Signature mode

~atabus with 3. Runlforce data jumper (J1220) to run position. After power-up self-test (displays 521 .), push U 1421 removed front panel ID button.

B. Signature analyzer Connect to CPU board and set as follows: Threshold = TTL

Start = I Connect to SlS test point (TP1401)

Stop = I Connect to SIS test point (TP1401)

Clock = 1 Connect to 02 test point, Jl11 1, pin 2 (clock) CPU board Gnd = Connect to ground test point (TP1011)

V. Measurements Verify setup by taking + 5 V signature (813p). Take signatures on address buffer (U1210) and then data buffer (U1202). This covers both buffered and unbuffered lines. U1211 signatures are given for keyboard encoder (U1 421 ) installed or removed.

Fig. 9-4. FIRMWARE SIGNATURE ANALYSIS-ADDRESSABLE LATCHES

I. Purpose To troubleshoot the three addressable latches. Use this test to check the following ICs and their functions. A. Dim and relay latch-U1315 B. Serial output and partial display latch-U1411 C. Blink control latch-U1314

II. Equipment required A. Tektronix SA 501 Signature Analyzer (or equivalent) B. Two TM 500 Flexible Extenders, Tektronix Part Number 067-0645-02 C. 16-pin DIP clip, Tektronix Part Number 003-0709-00 or equivalent

Ill. Electrical conditions necessary to perform tests A. CPU, RAM, ROM data, and address lines functional (verified by power-up self test). B. Startlstop test point (TP1401) functional. Check for pulses approximately 5.5 ms apart (low true). C. U1220, pin 6, clock signal functional. Check for approximately a 1 MHz toggle.

IV. Setup A. PS 5010 (on extenders) 1. Set GPlB address switch S1221 to ID 22. Press

2. Set mode jumper (J132O) as shown. Inputs Outputs Signature mode 161514 13l2ll 10 9 -,- 5- .- 3- 7- -,--s Input/output " 3 ,? .? tz ,;, F: 3. Set runlforce data jumper (J1220) as shown. pinouts m f0r'U1310, r'i'u=y=dd] Ul3l4, Ul3l5 A B C D E F G !! 0 .:. ..:.. .:.. .:.. .:.. .:...... and Ul411 -:- -,-,-.-.-. 12345678 B. Signature analyzer w- Connect to CPU board and set as follows: Inputs Outputs 1Input Threshold = TTL

Start = Connect to SIS test point (TP1401)

Stop = IConnect to SIS test point (TPl4Ol) Clock = I Connect to U1220, pin 6 (via DIP clip)

Gnd = Connect to ground test point (TP1011) CPU board

V. Measurements Verify setup by taking +5 V and start signatures. Take measurements directly on U13l4, UW5, and U1411. If the chip enable signals are bad (pin 14), check U1310 (address decoder).

REV AUG 1981 Fig. 9-5. FIRMWARE SIGNATURE ANALYSIS-GPIB CHIP TEST (U1 00 I )

I. Purpose Use this test to determine if GPlB chip (U1001) is causing data bus signature errors.

ICI3-I,-IL-I~II-l0- t 11. Equipment Required @@@I@@@@@ All data lines should read 0000 A. Tektronix SA 501 Signature Analyzer (or equivalent) R1211 i-5 V test point 0001 ] B. Two TM 500 Flexible Extenders, Tektronix Part Number 067-0645-02 1 C. 16-pin DIP clip, Tektronix Part Number 003-0709-00 ?@%@a@@@-2-1 A-S-b-7-a DDDDDDDD Ill. Electrical conditions necessary to perform test A. CPU, ROM, and RAM address and data lines functional (verified by power-up self test). B. Chip select for GPlB chip functional (U1120, pin 11). Check U1120 pin 11 for pulses approxi- mately 5.5 ms apart (low true).

IV. Setup PS 5010 (on extenders): A. Set mode jumper (J1320) as shown

Signature mode

8. Set runlforce data jumper (J1220) as shown

C. Signature analyzer Connect to CPU board and set as follows: Threshold = TTL

Start = -L Connect to U1120, pin 11 via DIP clip

Stop = IConnect to U1120, pin 1 1 via DIP clip 1I CPU board Clock = I Connect to 42, J1111, pin 2 (clock)

Gnd = Connect to ground test point (TP1011)

V. Measurements Verify setup by taking signature on +5 V test point. Read data bus by checking pins 1 through 8 on R1211 (data bus jumper).

Fig. 9-6. FIRMWARE SIGNATURE ANALYSIS-ADDRESSABLE LATCHES

I. Purpose To troubleshoot the three addressable latches. Use this test to check the following ICs and their functions. A. Dim and relay latch-U1315 B. Serial output and partial display latch-U1411 C. Blink control latch-U1314

II. Equipment required A. Tektronix SA 501 Signature Analyzer (or equivalent) B. Two TM 500 Flexible Extenders, Tektronix Part Number 067-0645-02 C. 16-pin DIP clip, Tektronix Part Number 003-0709-00 or equivalent

Ill. Electrical conditions necessary to perform tests A. CPU, RAM, ROM data, and address lines functional (verified by power-up self test). B. Starttstop test point (TP1401) functional. Check for pulses approximately 5.5 ms apart (low true). C. U1220, pin 6, clock signal functional. Check for approximately a 1 MHz toggle.

IV. Setup A. PS 501 0 (on extenders) 1. Set GPlB address switch S1221 to ID 22. -Press

2. Set mode jumper (J1320) as shown. Inputs Outputs Signature mode 161514 13 12 11 10 9 -,- 5- .- 3- I- -I'-$ 3. Set runtforce data jumper (J1220) as shown. pinouts for U1310. Run ~1314,~1315 and Ul4ll 12345678 B. Signature analyzer u- Connect to CPU board and set as follows: Threshold = TTL Start = Connect to SIS test point (TP1401)

Stop = IConnect to SIS test point (TP1401) Clock = I Connect to U1220, pin 6 (via DIP clip)

Gnd = Connect to ground test point (TP1011) CPU board

V. Measurements Verify setup by taking + 5 V and start signatures. Take measurements directly on U1314, U1315, and U1411. If the chip enable signals are bad (pin 14), check U1310 (address decoder).

REV AUG 1981 Fig. 9-5. FIRMWARE SIGNATURE ANALYSIS-GPIB CHIP TEST (U 100 I )

I. Purpose Use this test to determine if GPIB chip (U1001) is causing data bus signature errors. r&M-&- -.-. h.&0-61 11. Equipment Required * All data lines should read 0000 A. Tektronix SA 501 Signature Analyzer (or equivalent) R1211 B. Two TM 500 Flexible Extenders, Tektronix Part Number 067-0645-02 i-5 V test point 0001 C. 16-pin Dl P clip, Tektronix Part Number 003-0709-00 t?-.?-%?-?-?-!-? J DDDDDDDD Ill. Electrical conditions necessary to perform test A. CPU, ROM, and RAM address and data lines functional (verified by power-up self test). B. Chip select for GPlB chip functional (U1120, pin 11). Check U1120 pin 11 for pulses approxi- mately 5.5 ms apart (low true).

IV. Setup PS 501 0 (on extenders): A. Set mode jumper (J1320) as shown F& Signature mode

B. Set runlforce data jumper (J1220) as shown m @ Run

C. Signature analyzer Connect to CPU board and set as follows: Threshold = TTL Start = IConnect to U1120, pin 1 1 via DIP clip

Stop = Connect to U1120, pin 11 via DIP clip CPw board Clock = 1Connect to 62. 51 11 1, pin 2 (clock)

Gnd = Connect to ground test point (TP1011)

V. Measurements Verify setup by taking signature on +5 V test point. Read data bus by checking pins 1 through 8 on R1211 (data bus jumper).

Fig. 9-6. FIRMWARE SIGNATURE ANALYSIS- KEYBOARD ENCODER (U1421)

I. Purpose To provide a complete checkout of the keyboard encoder, front panel pushbuttons and signal lines to aid in troubleshooting key entry problems.

11. Equipment required A. Tektronix SA 501 Signature Analyzer (or equivalent) 6. Two TM 500 Flexible Extenders, Tektronix Part Number 067-0645-02 C. 16-pin DIP clip, Tektronix Part Number 003-0709-00

Ill. Electrical conditions necessary to perform tests A. CPU, ROM, RAM, data and address bus working properly (verified by power-up self test) 6.Sel keyboard (U1311, pin 13) working. Check U1311 pin 13 for pulses. Approximately 5.5 ms apart.

IV. Setup A. PS 5010 (on extenders) 1. Set mode jumper (J1320) as shown. IT] Signature mode

2. Set runlforce data jumper (J1220) as shown.

8. Signature analyzer Connect to CPU board and set as follows: Threshold = TTL

Start = IConnect to U1311, pin 13 via DIP clip

Stop = IConnect to U1311, pin 13 via DIP clip Clock = I Connect to ($2 via Jl1 1 1, pin 2 (clock) Gnd = Connect to ground test point (TP1011)

V. Measurements Using the following chart, verify stimulus and response for each front panel key. Start by verifying + 5 V signature, then push the problem button(s) and read data bus at U1211, pins 1-8 for correct code. Note that data bits 0, 1, and 2 are not affected by keyboard encoder.

If incorrect data is received check the states of the X and Y inputs to U1421 (keyboard encoder) according to those in the chart. X is a pulse (approximately 1-5 ms); Y is a low as long as the key is down. Whenever a key is down, U1421, pin 13 (data available) is high. When key is released this signal should go low.

Continued on following page. I FIRMWARE SIGNATURE ANALYSIS -

+ 5 V Signature = 0001 KEYBOARD ENCODER (U1421) (Cont.) DO, Dl X Y Key Name 02 (Pulse) (Low) 03 D4 D5 D6 07

INST ID

ENTER Make data measurements CLEAR on R1211

3

6 Pinouts for U 142 1 2 9 1-I-3-4-5-6-7-8 q .c DDDDDDDD Buffered data bits 2-' 8 01234567 2@- 5 A*oh.,4#o *QQoooI 'c ''~~~~~~ 2

0

1

4

7

INCREMENT 4

SUPPLY SELECT

CURRENT CPU board VOLTAGE INCREMENT + OUTPUT

Fig. 9-7.

REV DEC 1982 FIRMWARE SIGNATURE ANALYSIS-LOGIC SUPPLY SHIFT REGISTERS

I. Purpose To diagnose component failures in the logic supply shift registers.

II. Equipment required A. Tektronix SA 501 Signature Analyzer (or equivalent) B. CPU Board Extender (067-1028-00 kit) C. Logic Board Extender (067-1028-00 kit) D. Two TM 500 Flexible Extenders, Tektronix Part Number 067-0645-02

Ill. Electrical conditions necessary to perform test A. CPU, ROM and RAM functional (verified by power-up self test) B. Serial outputs from CPU board functional. Verify with addressable latch test. C. Startlstop test point (TP1401 functional). Check S/S test point (TP1401) for pulses approximate- ly 5.5 ms apart. I u Data in Serial data (from CPU board) IV. Setup A. PS 5010 (extend boards with power off)') 1. Place logic supply board on extender. 2. Place CPU board on extender. 3. Set mode jumper (J1320) as shown. [c]Signature mode Logic supply filter board

4. Set runlforce data jumper (J1220) as shown.

B. Signature analyzer Connect to CPU board and set as follows: Threshold = TTL Start = IConnect to CPU board sls test point (TP1401)

Stop = Connect to CPU board sls test point (TP1401)

Clock = IConnect to CPU board @2 test point, 51 111, pin 2 (clock)

Gnd = Connect to ground test point (TP1011)

V. Measurements Start by checking + 5 V signature (pin 14, U1841) to verify correct setup. Take measurements on shift registers starting with U1841. then U2041. If inputs (I)to either chip are correct and outputs (0) are incorrect that chip may be defective. CPU board

I 1 339139

Fig. 9-8. ADJUSTM CATIONS

Rllll R1211 R1311 R1321 R1334 R 1335 -Max I Adj + Max I Adj + 10 - 10 - Da Zero Adj + Da Zero Adj Step 12 Step 11 Step 11 Step 10 Step 3 Step 3

R1950 R1851 R 1850 TP 1550 R1545 TP 1330 R 1344 R 1 345 TP1431 TP 1430 4.5 V Adj Gain Adj Max I Adj Fd Test Point + 10 V Gain Adj Ref Com -Zero Adj +Zero Adj V + Dac V - Dac Step 1 Step 1 Step 2 Step 2 Step 7 Step 3 Step 5 Step 4 Step 3 Step 3

Fig. 9-9. Floating supply board (A14) adjustments. Fig. 9- 10. Adjustments accessed through bottom of instrument. A1 3 LOGIC SUPPLY BLOCK DIAGRAM HA 1NFRAME +8V AND I 1 CONTROL

CURRENT ERROR LOGIC SCALED ) CURRENT

R CURRENT SENSE SCALED I > MEASUREMENT I REFERENCE LOGIC SUPPLY INPUT 11 KY REAR DATA PANEL , I SHIFT REGISTERS BOARD

CP 1

LOOP BALANCE STATUS COMPARATORS t-

FOLDBACK I LIMIT CIRCUIT I

VOLTAGE ERROR AMPL IF1 ER

I + LOGIC VOLTAGE DAC 0-1.0v b FRONT 0 I PANEL A14 FLOATING SUPPLY BLOCK DIAGRAM

OUTPUT

+ BASE DRIVE PASS TRANSISTOR REAR EVV\r 1 IN POWER MODULE 1 PANEL "YjW + SENSE

+ VOLTAGE ERROR + VOLTAGE DAC -

1

DATA INPUT OPTO- r\ CPU BOARD ISOLATORS V SH IFT I I REG1 STERS 1:

I I LOOP BALANCE CPU BOARD STATUS COMPARATOR

-

- CURRENT DAC . - CURRENT ERROR 0 -+ 3- 1 - - VOLTAGE ERROR - - VOLTAGE DAC

I @ + I

SWITCHING A 1 2 CPU BOARD BLOCK D I AGRAM

DATA BUS

CPU GPIB ROM SERV ICE RAP1 DISPLAY KEYBOARD DIM AND SER IAL STATUS POWER INTERFACE $C000-$FFFF $0000-$1 FFF DRIVER MODULE ENCODER RELAY OUTPUT BUFFER CONNECTOR $8000-(BQFFF C IRCU ITRY KEY DOWN= $3C00-3FFF 51 11 1 GP IB LATCH AND $3C00 (BIT 7 1 BUS $2000-$27FF $3080-33BF PART IAL KEY DATA J ADDRESS $2800-2BFF D ISPLAY 00 SW ITCH 0 $3000-333F

LOGIC SUPPLY LOOP BALANCE INOICATORS

AWRESS FLOAT INC SUPPLY BUS LOOP BALANCE OPTOISOLATORS

ADDRESS DECODING OECODED CONTROL LOGIC NETWORK Ics FLOATING SUPPLY SHIFTOPTOISOLATORS REGISTER

I b +5v v CPU BOARD I

+5 VOLT REGULATOR - 1 b +5v LOGICFILTER SUPPLY BOAR0

6 FRONT PANEL PARTS LOCATION GRID

*COMPONENTS JUU ON BACK

Fig. 9- 1 1. CPU board (A 12).

COMPONENT NUMBER EXAMPLE

Component Number I ,A23,,A2,R1234 I sby- 1 L ':;::'" Number Subassembly Number Number (rf used) I I Chass~s-mountedcomponents have no Assembly Number Static Sensitive Devices pref~x-see end of Replaceable Electrical Parts L~st See Marntenance Section Table 9-1 COMPONENT REFERENCE CHART

PI0 A1 2 ASSY CPU Power Supply 0 CIRCUIT SCHEMATIC BOARD CIRCUIT SCHEMATIC BOARD NUMBER LOCATION LOCATION NUMBER LOCATION LOCATION

TPlOll D5 84 TP 1020 H6 D5 TP1410 C5 L3

VRlOll E9 84

PI0 A1 2 ASSY also shown on @ @ @ @ CND BUFFER

TE I EO I ED1 EO I NFRD BNRFD NRFD NRFD NRFD NDAC BNDAC NDAC NDAC NDAC DAV DAV DAV DAV IFC IFC IFC 22 BREN 19 REN REN REN 29 BSRQ 12 REN SEL CPlB SRQ SRQ SRQ 28 BATN SRq ATN i 13 ATN @ Ullll-34 ATN ATN CDNT BCONT 11 323A-3 P CDNT R/W + 2 CPlB CLK CLK WlB Ul000 INTERFACE 75161 0 NC 4 TRIG 1 GPIB BUFFER

TP1410 TPl011 B T I CND J1111-1 I.

NOTE: J1111 IS A TEST FIXTURE ONLY. I TP1020 *

I

COMPONENT NUMBER EXAMPLE I COMPONENT- NUMBER I

NUMBER CIRCUIT SUBASSEMBLY NUMBER NUMBER (IF USED)

CHASSIS-MOUNTED COMPONENTS HAVE NO ASSEMBLY NUMBER PREFIX-SEE END OF REPLACEABLE ELECTRICAL PARTS LIST

STATIC SENSITIVE DEVICES SEE MAINTENANCE SECTION

OJD0 PARTS LOCATION GRID

*COMPONENTS ON BACK

Fig. 9- 12. CPll board (A 12)

COMPONENT NUMBER EXAMPLE

Component Number I ,A23,,A2,R1234 sembly - 1 L Number Subassembly Number (1, used) Number I I Chasswnounted camponenls have no Assembly Number Static Sensitive Devices prefix-see end of Replaceable Electrical Parts L~st See Marntenance Secbon Table 9-2 COMPONENT REFERENCE CHART

PI0 A12 ASSY Microprocessor 0 CIRCUIT SCHEMATIC BOARD CIRCUIT SCHEMATIC BOARD NUMBER LOCATION LOCATION NUMBER LOCATION LOCATION

C1110 E5 D4 Rll28 C1112 B8 E4 R1210G C1122 C5 E5 R1211 C1123 C5 D5 R 1220 C1201 J 5 G2 R 1222 R 1223 J1111 R1310A J1111 R1310B J1111 R1310C Jllll R1410 J1111 J1111 Ullll Jllll U1112A J1111 U1112C J1111 U1112D Jllll U1120 U 1202 U1210 U1213A U1213C U 1220A U 1220B U 1320A U 1320E U l323A

VR1121

Pi0 A12 ASSY also shown on OO@O *5v

NOTE8 Jllll IS A TEST FlXTLRIE MY.

f \ \

A5 A6 Mil A7 ---+U1315-15 9 Dm - ,,U1411-15 @ Dl m lMUl0f-19 @ D3 RES 40 - 31111-9 EXT REST RESET 04 DS

"cc

NC 'SS NC v~~ BA TSC

A8

WE A1 1 A1 2 A1 3 A14 'RU A15 01

VUA Jllll-6 COMPONENT NUMBER EXAMPLE

Number (I, used) I I Chassis-mounted components have no Assembly Number pref~x-see end of Replaceable Electr~cal Parts L~st.

Static Sensitive Devices See Maintenance Section

MICROPROCESSOR

DJD PARTS LOCATION GRID

*COMPONENTS ON BACK

Fig. 9-13. CPU board (A1 2).

COMPONENT NUMBER EXAMPLE

Component Number I -,A23,,A2,R1234 I

Chasslsmunted components have no Assembly Number Static Sensitive Devices prellx-see end of Replaceable Electr~calParts List. '8See Maintenance Section Table 9-3 COMPONENT REFERENCE CHART

- -- I P/O A12 ASSI Memory @

- CIRCUIT SCHEMATIC BOARD CIRCUIT SCHEMATIC BOARD NUMBER LOCATION LOCATION NUMBER LOCATION LOCATION

U1100 14 D2 UllOl G4 E2 U1200 F4 F2 U1201 D4 G2 U1310 18 H3 U1311 D8 J 3 U1313C G7 J 3 U 1320C H7 H5 U1320F 16 H5 U 13230 D 7 K5 PI0 A12 ASSY also shown on 00@0 A10 y7 1 ENABLE STATUS BUFFER U1428-1 4

LATCH 0Ulnu-6 ,a,

COMPONENT NUMBER EXAMPLE

Component Number

I Assembly J 1 L s$;zp I Number Subassemblv kt,,,..A-, Number (if used) "u"'uc' I AWRESS MCOOER I U ~OUTPUT~PART~ALO~SPLAY~ Chassis-mountedcomponents have no Assembly Number STATUS) SEL KEYBOARD b U1421-14 .-Imo1 prefix-see end of Replaceable Electrical Parts List. (411 Static Sensitive Devices See Maintenance Section

MEMORY "

0 JD CPU BOARD (A 12) Table 9-4 COMPONENT REFERENCE CHART

PI0 A12 ASSY Input Output @ CIRCUIT SCHEMATIC BOARD CIRCUIT SCHEMATIC BOARD NUMBER LOCATION LOCATION NUMBER LOCATION LOCATION

C 1300 E7 J 2 C1411 H7 K3 C 1420 C2 K5 C1421 C5 K5 C 1422 C5 K5 C 1423 C5 L5 -RUN 'lrnl\ I\ FORCE DATA +5V - vcc

u112_8-10 R1210 4.7K U1212 (A-F r It11 81LS95 CPIB SV BUFFER

ENABLE STATUS BUFFER @ "1311-7 -

;Pl4BB-25A FS V+ BALANCED ''18 0511 '03 1 P1488-250 FS V- BALANCED l617 06 l3 P148&24A LS 1 BALANCE0 l416 07 l5 P1488-248 LS V BALANCED 12 P148&27A HICHPOYERCOTIPARtr(EKT PI-28A FS 1- BALANCED P14WU-26B FS I+ BALANCED : STATUS BUFFER 211 CAL hl 1 l8I7 3 lQ I 18

Vcc

CND

COMPONENT NUMBER EXAMPLE DIN- CLR I I I Component Number SERIAL OUTPUT AN0 PARTIAL DISPLAY LATCH Assembly J 1 L '%;!: Number Subassembly Number (if used) Number I I 1 Chassismounted components have no Assembly Number prefix-see end of Replaceable Electrical Parts List. Static Sensitive Devices See Maintenance Section P/O A12 CPU BOARD INPUT OUTPUT EP- 16EE nnn Table 9-5 COMPONENT REFERENCE CHART

PI0 A 12 ASSY Display @

CIRCUIT SCHEMATIC BOARD CIRCUIT SCHEMATIC BOARD NUMBER LOCATION LOCATION NUMBER LOCATION LOCATION

C1310 D9 J3 U1213D H5 F4 C1311 F8 H4 U1221 E8 G5 C1312 C9 J4 U1301 H2 J 1 C 1320 B9 H5 U1313A H7 J 3 C1321 E9 J5 U13136 13 J 3 C 1400 13 L 1 U1314 G9 H4 C1401 H7 K2 U1315 F2 J4 C1412 J7 K4 U 13206 F7 H5 C1413 J7 M4 U 1320D 17 H5 U1321A 19 K5 U13218 19 K 5 U1321C 18 K5 U1321D 18 K5 U 1322 D7 H5 U 13238 18 K 5 U 1323C 18 K5 U 1400 13 L2 U 14 10 J5 L2 U1412 K6 L4 PI0 A12 ASSY also shown on @ @G@ \ED2 5 \B03 6 BD4 7 \20 26 D5 iy \BAl 27 K2 vc~ \BA2 28 STROBE U130l 2 -K3 74LS25 I WE GND +5V om 90 B DIGIT Vcc DIM +FS z A DIMMING C1400 A Q1 9 -- 01 B D0 t C !-?- NC B02 I! DIN 06 04 6 DIM LOGIC Q2 C SOE

DIM AND RELAY LATCH

Q3 -FS HV MODE PI 400-33A ; 04 +FS HV MODE Pl400-338 < c 05 TRANSFER STROBE Pl400-32A < FS OUTPUT ON P1400-l8B < +5v RN+ 62 / 1 1 b U1001-4 Ul4l8 74C911 LOGIC DISPLAY DRIVER - 1l2 CC7 PI 400- 13A Dl l3 CC8 PI 400-1 30 D2 03 l4 CC9 Pl400-14A So 17 LS a PI 400-9A Sb l8 LS b PI 400-9B sc 19 LS c P1400-10A 20 LS d P1400-10B Sd ~e -21 LS e P1400-1 IA 23 LS f Sf P1400-I 1B 24 LS g P1400-12A COMPONENT NUMBER EXAMPLE Sg 25 LS dp P1400-12B Sdp Component Number

1 [ L Schemat~c AssemblyNumber - Subassembly Circuit

Ul4l2 Number (;fused) Number 74LS24 1 0 1 SCRETE LED DR lVER pref~x-see end of Replaceable Electrical part; L~st. Static Sensitive Devices 74LS390 1.22 Hz BLINK CLOCK See Maintenance Section I I CLOCK DI V IDER (+ 50/100 I at 1 LED ENABLE lg 2~ I0 KHz U13200 3 I dl/:sCLRlQA +5v 11412 CLR I b-v~~ Q7 'l NC ,, 1A4 4 NOT ENTERED P1400-20A C1311 -- 1lA3 -J1400-20A Q6 NC U1323B 74LS08 1Al 8 LS VOLTS Pl400-21A > 46 J1400-21A DI V lDER - (t81921 \BA3 I A at U74LS0B1 323C LS AMPS lA2 6 PI400-2IB J1 400-21B ,014 2 Q4 2810 > \BAS 3 #I 3 +FS VOLTS P1400-22A - \ 13. DIN Q3 2A3 51400-22A RES > - 3 +FS AMPS PI480-228 > 51400-22B SEL BLINK CONTROL 14 - U1321 B -FS VOLTS 2Al 3 U1314 PI400-23A > -J1 400-23A 74LS259 EL INK U1 321 A 7 -FS AMPS P1400-23B CONTROL ) --+ 51408-238

P/O A1 2 CPU BOARD -l A REV SEP 1981 DISPLAY v 3391 -62 DJD Table 9-6 COMPONENT REFERENCE CHART PARTS LOCATION GRID

PI0 A 10 ASSY Front Panel @ CIRCUIT SCHEMATIC BOARD CIRCUIT SCHEMATIC BOARD NUMBER LOCATION LOCATION NUMBER LOCATION LOCATION

Fig. 9-16. Front panel board (A10).

COMPONENT NUMBER EXAMPLE

Component Number

Assembly _ 1 Schematic Number Subassembly - $,AUb,:r Number (11 used) 1I 1 Chassis.mounted components have no Assembly Number Static Sensitive Devices prefix-see end of Replaceable Electr~calParts List See Maintenance Section I R1242 41 330 J1240-12-< P1240-12 CCS ,illl

i R1240 < PI240-14 CC? J1 240-1 - I ~1145 Q1122 < Pl240-6 CC6 .I!! J1240-6 - I ~1144 Q1121 P1240-5 CC5 J1 240-5 ---, < Q1120 I R1143 P1240-4 CC4 J1240-4 ----, <

I < Pl021-24 -FS VOLTS J1 021-24 ___) I N I

I & OSllll P1021-23 +FS AMPS J1021-23 -f IA D R1026 d/w J1021-12 -(P1021-12 LS d

-

__)P1021-21 LS AMPS

R1032 GW

R1311 G~ COMPONENT NUMBER EXAMPLE -

schematic em 1 L Number Subassembly orcult Number (I, used)

Chass~smounledcomponents have no Assembly Num Gu Rl039 prehx-see end of Replaceable Eleclr~calParts Llst OUTPUT ON 5.1K 51240-8 & ) 240-8 Static Sensitive Devices See Maintenance Section A00 LED P1240-9 REM LEO 51240-9 -<

-- FRONT PANEL Q OJD

3391 -63 REV OCT 1986 PARTS LOCATION GRID

Fig. 9- 17. Floating supply board (A 14).

COMPONENT NUMBER EXAMPLE

Component Number I ,A23,,A2,R1234 I lssemb~y -J 1 L schem'c Number Subassembly I Number (I, used) Number I Chasswmounted components have no Assembly Number Static Sensitive Devices ~~ellx-seeend ol Replaceable Oectrcal Parts L1s1 ' @ See Maintenance Sectlon Table 9-7 COMPONENT REFERENCE CHART Also see Fig. 9- 18

PI0 A1 3 ASSY Ground Reference Circuit 0 CIRCUIT SCHEMATIC BOARD CIRCUIT SCHEMATIC BOARD NUMBER LOCATION LOCATION NUMBER LOCATION LOCATION

p-- - C1120 C 1230 C1231 C 1 340 C1341 CR1112 CR 1330 CR2030 F1250 F 1 340 F1341 KlllO K1510 K20 10

L 1240

P 1 000 P 1 000 P 1 000 P 1 000 PI0 A 13 ASSY also shown on @@ PI0 A14 ASSY Ground Reference Circuit 0

PI0 A 14 ASSY also shown on @@@@ r Rl010 PWR MDL FS V+ BALANCED Pl820-15A L

+I LOOP BALANCED r R1021 2.X FS V- BALANCED P1020-17A J1 020-1 7A FI 250 I- 6 AMP ) 41 240 rh -V LOOP BALANCED Ul12Eb13 C 0 FS I- BALANCED Pl020-18A I 022 PVRi

-I LOOP BALANCED U1120B-1 + I

+sv S168BD R1034 1K 11 HIGH POWER MmPARTMNT P1020-258 Jl020-258 120 CLOSE IN HIGH POYER COtRARTMM

I PVR P1000-68 PVR - 1 .& no^ < Q1729 R1043 5.lK PVR PI500-228 -( IPl020-22A FS OUTPUT ON ,J1 500-22B % I I PWR m

P1020-19A OUTPUT RELAY RETURN J COMPONENT NUMBER EXAMPLE I Com~onentNumber 1 A23 A2 R1234 I PVR AssemblyNumber ~-'TT~chernat(cSubassembly MDL Circurt Number (if used)

Chassis-mountedcomponents have no Assembly Number I pref~x-see end of Replaceable Electrical Parts L~st. I PI0 A14 FLOATING SUPPLY BOARD P/O A13 LOGIC SWF'LY-FILTER BOARD Static Sensitive Devices See Maintenance Section TlON GRID

rKlllO

Fig. 9-1 8. Logic supply filter board (A13).

COMPONENT NUMBER EXAMPLE

-- -- - Component Number -A23 A2 ,Rl234 Assembly _TT - Ii;;:~ Number Subassembly Number (rf used) I I Chass~s.mounted components have no Assembly Number Static Sensitive Devices pref~x-see end ol Replaceable Electr~calParts L~st See Maintenance Section Table 9-8 COMPONENT REFERENCE CHART

PI0 A13 ASSY Logic supply @

CIRCUIT SCHEMATIC BOARD CIRCUIT SCHEMATIC BOARD NUMBER LOCATION LOCATION NUMBER LOCATION LOCATION

CllOO Cl D2 C 1300 Dl E5 C1301 Dl E6 C 1 540 F5 F 5 C1631 G4 F5 C 1732 H4 F5 C 1 740 H5 F5 C1831 J4 F 5 Cl832 54 F6 C 1840 J5 G6 C1841 J5 G4 C2040 K5 G4 C2O4 1 L5 G5 C500 Chassis G5 G6 CRlllO 82 G5 CRllll C2 G5 CRlll3 82 H5 CR 1200 C1 H5 CR1201 C2 H5 CR 1450 E6 H5 CR1451 E6 H5 CR 1452 E6 H5 CR 1530 F5 J 5 CR1531 F4 H6 CR 1 540 F6 J6 CR1641 G5 J6 CR 1642 G5 J 6 CR 1 740 H5 K5 CR1741 H5 K5 K5 F1110 82 K5 K5 J1120 C3 K 5 J1120 C3 K6 J 1 200 C2 K5 J 1 200 C2 16 J500 Chassis M5 J5 10 Chassis Chasss Chassis K1110 C3 F6 PI120 C3 H6 PI120 C3 G5 0 1 200 C2 G5 Q 1400 E 1 H5 Ql64O G5 H6 Q 1650 G6 H6 Ql73O H4 K5 Q1731 H4 J 5 Q2050 L6 15 15 RllOO C1 RllOl C1 H5 RlllO 82 H5 Rllll C2 16 R1112 C2 M5 PI0 A1 3 ASSY also shown on 6 R1645 LS V BALANCED P1500-181 L.S.-. . VOLTAGE DAC U2040 R1843 R1851 +8V M5889 590.0 100

E 5 6 ENABLE pg 14 085 7

SERIAL RETURN P15W-15B TEST PA0 NOTE'z 31280 1s A 51588-159 -( TEXT F 1XTURE ONLY.

R18505K -V REF L L.S. CURRENT 4 C DAC 2s @ +V REF 0813 B1 IMSB) DBl2 2s DBll OBI 0 C a2 DB9 a1 068 l0 B6 w vss

+26V-+ +2W SELECTED

b +15V COMPONENT NUMBER EXAMPLE -15V U1840 Component Number (+N -C +8V M5009 + ,A23,,A2,R1234 C1831 I T 0.w U1741 I -

Chass~smountedcomponents have no Assembly Nu1 pref~x-see end of Replaceable Eleclr~calParts 11s'

StaticSee Mafnfenance Sensitive Sect~onDevices

P/O A13 LOGIC SUPPLY-FILTER BOARD

PS 5010 LOGIC SUPPLY oJo 0 PARTS LOCATIO

1.. I ...... 5 TP1550 COMPONENTS @Cm52@ ON BACK

Fig. 9- 19. Logic supply filter board (A 13).

COMPONENT NUMBER EXAMPLE

Component Number -,A23,,A2,,R1234, I Assembly -1 1 - s$;:y Number Subassembly Number (d used) Number I I Static Sensitive Devices Chass~smounted components have no Assembly Number prehx-see end ol Replaceable Electr~cal Parts L~st See Mamtenance Section REV MAR 1984 Table 9-9 COMPONENT REFERENCE CHART Also see Fig. 9,-18

PI0 A 13 ASSY Rectifier-Filter @

CIRCUIT SCHEMATIC BOARD CIRCUIT SCHEMATIC BOARD CIRCUIT SCHEMATIC BOARD NUMBER LOCATION LOCATION NUMBER LOCATION LOCATION NUMBER LOCATION LOCATION

F1410 D2 F1411 D3 F 1420 D3 F1421 D3 J 1000 A3 J 1000 A3 JlOOO A3 J 1000 A3 Jll4O 85 Jll4O B5 J1140 85 Jll4O 85 J1140 85 J1 140 85 J1140 85 J 1530 F4 Jl53O F4 J1530 F4 J 1530 F4 J 1930 K4 J 1930 K4 J 1930 K4 J 1930 K4 K1510S F2 K20 10s L2 K20 10s L2

L500A Chassis L5OOB Chassis L5 10A Chassis L5 1OB Chassis P 1000 A3 P 1000 A3 P 1000 A3 P 1000 A3 PI140 B5 PI140 85 PI140 B5 PI140 85 PI140 85 PI140 85 PI0 A13 ASSY also shown on 6@ I PI0 A14 ASSY Rectifier-Filter

Q1100 Q1101

R1001 R1002 RllO4 R1105 VR 1000 VRlOOl P/O A14 ASSY also shown on @ @ @ @ I b

*See Parts List for REV OCT 1986 serial number ranges.

PARTS LOC TlON GRI

COMP I ON BACK OF BOARD I

Fig. 9-20. Floating supply board (A14).

COMPONENT NUMBER EXAMPLE

Component Number I ,A23,,A2,R1234 I Assembly -1 schematic Number Subassembly i:,$ir I Number (~iused) I Static Sensitive Devices Chasswmounted components have no Assembly Number prel~x-see end of Replaceable Electr~calParts L~st See Maintenance Section Table 9-10 COMPONENT REFERENCE CHART

PI0 A 14 ASSY

CIRCUIT SCHEMATIC BOARD CIRCUIT SCHEMATIC BOARD NUMBER LOCATION LOCATION NUMBER LOCATION LOCATION

C1101 Rl3ll Cllll R1321 Cll32 R 1327 cll4O R 1330 C 1 203 R1331 C1220 R 1332 C1221 R 1333 C 1230 R 1334 C1231 R 1335 C 1232 R 1340 C1233 R1341 C 1300 R 1 342 Cl33O R 1343 C 1340 R 1344 CRll3O R 1345 CR 1 220 R 1346 CR 1340 R 1347 R 1 349 Q1140 R 1445 Qll4l R 1530 Q1142 Q1143 TP 1330 Q 1 340 TP 1 340 TP 1430 R 1040 TP1431 R1041 TP 1630 R 1042 RllOO U 1030 RllOl U1041 R1111 U 1042 R1112 UllllA R1123 U1111B Rll4O U1121 Rll4l U1130 Rll42 U1140 R1143 U1221 Rll44 U 1 230 R 1202 U1231 R1210 U 1 240 R1211 U1241 R1212 U1242 R1213 U 1330A R 1220 U l33OB R1221 U l33OC R 1222 16 13300 R 1223 R 1 300 VRllll R1301 VR 1340 R 1302 VR1341 PI0 A14 ASSY also shown on 6 @ 66 R1112 Rllll 301 50

RFB C1231 +15V 470pF +O/A V+ OFFSET TP1431 -I C1132 f."

u1221 ""' NE50W lB10 4 CR1130 InSB) -I OAC 109 l ::: OUT 7 - +V OAC OUT R1340 R1542 :; ;::; 1EK I85 06 2 104 10 B7 I83 It- 00 Ull30 102 12 0g A07533 IB1 l3 +V OAC 010 (LSB)

+15v VOLTAGE REFERENCE VR1341

2 a 828-188 FS CLOCK r- R1041 360 I AOJ

AOJ R1334 R1333 R1344 020-28A TRANSFER STROBE 20 2K R1042 360 -1Sv

PI 101 -V REF Rl223 U1 231 ENABLE 6.X A07533 4 -V OAC 0'+5v +w ' CLOCK R1220 con - STROBE +V REF TPl838 -V OAC OUT = connON R1445 0 14 c; 0 CONTPl33B REF UllllB REFERENCE COHHON 64.m COMPONENT NUMBER EXAMPLE @ 2-+ -1 5V I Comoonent Number 1 -15V

3-3 3-3 Assembly Schematic b-19 J 1 L = Number Subassembly orcurt Number (rf used) Number 1 REFERENCE 0 ISABLE I I Chass~smuntedcomponents have no Assembly Numbel I- prefix-see end of Replaceable Electr~calParts L~st -I CR1541@ -"' $$: '" cR 540 Static Sensitive Devices '7 -m CR1430 +I OAC See Maintenance Section NOTE 8 ( ! 0036 -32 VOLT CR1431 0 t +5V IS CHASSIS CROUNO REFERENCED ALL OTHm VOLTAGES REFERENCE0 TO +l P/R A14 FLOATING SUPPLY BOARD DAC CIRCUITS

OJO COMP ION BACK OF BOARD

Fig. 9-21. Floating supply board (A14).

COMPONENT NUMBER EXAMPLE

I Comoonent Number 1

eb L Number Subassembly I Number (rf, used). :hawsmounted componmts harp no Assembly Number Static sensitive Devices prel~x-see end ol Replaceable Electr~calParts Llst @ see Maintenance section Table 9-1 1 COMPONENT REFERENCE CHART PI0 A 14 ASSY + Floating Supply 0 CIRCUIT SCHEMATIC BOARD CIRCUIT SCHEMATIC BOARD NUMBER LOCATION LOCATION NUMBER LOCATION LOCATION

C2 P 1630 C5 P 1630 C5 D2 Q 1400 E2 Q 140 1 H2 Q 1402 GI Q 1640 H3 (21641 H3 H4 R1102 J4 RllO3 L5 R1120 K5 R1121 Chassis R1122 R 1324 G2 R 1400 H2 Rl4ll H2 R1412 G3 R1413 G3 R 1420 G3 R 1422 J 3 R 1500 J 3 R1531 K6 R 1533 K 6 R1541 K4 R 1542 R 1543 J 2 L4 R 1544 L4 R 1545 L4 R1611 L4 R1612 L4 R 1622 L4 R 1632 Chassis R 1640 R1641 H3 R 1643 K3 S l5OOC S l5OOD L 1 S l6OOA A3 UllOO A3 U111OA J 2 M2 U1110B M2 UlllOC M2 UlllOD L4 U 1420 VR 1420 PI0 A 14 ASSY also shown on @@@@

PARTS LO ATION GRID

- - - I*ON COMP BACK OF BOARD

Fig. 9-22. Floating supply board (A14).

COMPONENT NUMBER EXAMPLE

Component Number I -,A23,,A2,R1234 I

Chass~s.mountedcomponents have no Assembly Number Static Sensitive Devices prel~x-see end ol Replaceable Electr~calParts 1st See Marntenance Section Table 9-12 COMPONENT REFERENCE CHART

PI0 A 14 ASSY - Floating Supply 0 ------CIRCUIT SCHEMATIC BOARD CIRCUIT SCHEMATIC BOARD NUMBER LOCATION LOCATION NUMBER LOCATION LOCATION

€2 G2 H2 G3 G3 J4 L5 K5 Chassis F2 F3 G3 F3 F3 H2 H2 G4 H5 H5 J3 J 3 54 J2 J2 L4 L4 L4 Chassis Chassis

H3 K3 A3 A3 J2 J2 L4 L4 L4 GI G2

PI0 A 14 ASSY also shown on @@@@@ RZM -V OAC OUT COHMON U1338A-1 = \ COHHON PYR OUT MM

.81 pF J1SW -VOLTACE RANGE SWITCHES CSSB D 4 1 19 -32 VOLT CRl431 C U1242-7 C RlS48 qls39 40.8 REFERENCE COMMON 7 1 COMMON PVR C1401 I P1628-248 ' SENSING MM .W1 5pF %sz -I SINK 1,I ~OliHON-1NG P1020-13A C Jim-13@ I - R143212.m

-VOLTAGE ERROR AHPLlFiER U1430 ~1620* CLOSED IN 8.750 HICH POWER *~1621 -ZERO COWARTHENT 0.7SU

a r

4 I

-CURRENT ERROR AHPLIFIER

I

7 1,,- :SUPPLY-FILER BOARD ( .I COMPONENT NUMBER EXAMPLE -Component Number I '1 020-2A ' TTTsc/wmatlcA23 A2 ~1234' '1020-2B -V COLLECTOR SUPPLY Assembly _ Number Subassembly C'rcU't Number (rf used) I 1I Chass~smountedcomponents have no Assembly Number prehx-see end ol Replaceable Electr~calParts Ltst

Static Sensitive Devices See Maintenance Section

b -V LOOf BALANCED I b U1021-2 P18ZB-68 \ -OV NOTE : -48V 4 R1121 = * FUSIBLE RESISTORS - LOOP BALANCE COHPARATORS i

PS 5010 - FLOATING SUPPLY oJo V

REV AUG 1981 3391-69 PARTS LOCATION GRID

Table 9- 1 3 COMPONENT REFERENCE CHART

I P/O A1 1 ASSY Interconnect Board @ /

CIRCUIT SCHEMATIC BOARD CIRCUIT SCHEMATIC BOARD NUMBER LOCATION LOCATION NUMBER LOCATION LOCATION

J 1020 N 1 F3 J 1 400 F 1 83 J1021 B1 A3 J 1 500 J 1 C3 J1240 812 D5

Fig. 9-23. Interconnect board (A1 1).

COMPONENT NUMBER EXAMPLE

,A23,,A2,R 1234 Schernat~c Assembly - i 1 L.+ ,, Number Subassembly Number (11 used) IC Static Sensitive Devices Chassrs.rnounted components have no AssernMy Number See Maintenance Sect~on pret~r-see end ol Replaceable Electr~calParts L~sl 8 51500 31020 LOGIC SUPPLY FLOAT lNC

-1 -1 +V COLLECTOR SUPPLY

0.;.++I -V COLLECTOR SUPPLY 109 $0

+ COntlON '

*SEE (11 100 COLLECTOR NOTE mow (11101 COLLECTOR

9 1 LSC IIIIII V- BASE DRIVE

+I SINK

0 FS OUTPUT ON -I SlNK 2 LS OUTPUT ON

+FS HV nouz ISOLATION SPACE LS I BALANCEO IN0 CONTACTS I I l4 --- , FS OUTPUT ON @ 33 0 LS V BALANCED FS V- BALANCED ley 16@ y -FS HV MODE +15v

+26V FS V- BALANCEO *9C"-". 5 LS VOLTS I I I 22 0 0' LS CLOCK " $ I LS AMPS y y TRANSFER STROBE TRANSFER STROBE 107

FS It BALANCED @y y01 FS It BALANCEO FS DATA FS DATA SERIAL RETURN TEST PA0 O a@ 07 701 FS V+ BALANCE0 lop FS V+ BALANCEO FS CLOCK FS CLOCK ley i 25 0 men POWR COMPARTKFR lo? ?@I porn CWA~ I" 1 07 +@I ,n I t~ ?@I -I 5v 10.i;. 80 FS I- BALANCED FS I- BALANCED

@? g @ 1 cpu A ,, :: @@I OUTPUT RELAY RETURN e @y POI wu,j, lop 901 CPU 109 901 +5v

THSE INTERCONNECT LlNES ARE NOT CROW40 REFERENCED AN0 MAY FLOAT TO 150V PEAK ABOVE MUSSIS GROUND

COMPONENT NUMBER EXAMPLE

,A23,,A2,R1234 Assembly J 1 L Number Subassembly clrcur' Number (d used) Number I I Chass~s.mounledcomponents have no Assembly Number prefrx-see end ol Replaceable Electr~calParts L~st Static Sensitive Devices @ See h!aintenanre section

I A1 1 INTERCONNECT BOARD

INTERCONNECT BOARD Section 10-PS 50 10

REPLACEABLE MECHANICAL PARTS

PARTS ORDERING INFORMATION INDENTATION SYSTEM This mechanical parts list is indented to indicate item Replacement parts are available from or through your local relationships. Following is an example of the indentation system Tektronix. Inc. Field Office or representative. used in the description column.

Changes to Tektronix instruments are sometimes made to 12345 Name & Description accommodate improved components as they become available, and to give you the benefit of the latest circuit improvements Assembly andlor Component developed in our engineering department. It is therefore Attaching parts for Assembly andlor Component important, when ordering parts, to include the following --- *--- information in your order: Part number, instrument type or Detail Part of Assembly andlor Component number, serial number, and modification number if applicable. Attaching parts for Detail Part --- *--- If a part you have ordered has been replaced with a new or Parts of Detail Part improved part, your local Tektronix, Inc. Field Office or Attaching parts /or Parts of Detail Part representative will contact you concerning any change in part ---*--- number.

Change information, if any, is located at the rear of this Attaching Parts always appear in the same indentation as manual. the item it mounts, while the detail parts are indented to the right. Indented items are part of, and included with, the next higher SPECIAL NOTES AND SYMBOLS ~ndentation.The separation symbol ------indicates the end of attaching parts. XOOO Part first added at this serial number

OOX Part removed after this serial number Attaching parts must be purchased separately, unless otherwise specified.

FIGURE AND INDEX NUMBERS ITEM NAME Items in this section are referenced by figure and index numbers to the illustrations. In the Parts List, an ltem Name is separated from the description by a colon (:). Because of space limitations, an ltem Name may sometimes appear as incomplete. For further ltem Name identification, the U.S. Federal Cataloging Handbook H6-1 can be utilized where possible.

INCH ELCTRN ELECTRON IN INCH SE SINGLE END # NUMBER SIZE ELEC ELECTRICAL INCAND INCANDESCENT SECT SECTION ACTR ACTUATOR ELCTLT ELECTROLYTIC INSUL INSULATOR SEMICOND SEMICONDUCTOR ADPTR ADAPTER ELEM ELEMENT I~TL INTERNAL SHLD SHIELD ALIGN ALIGNMENT EPL ELECTRICAL PARTS LIST LPHLDR LAMPHOLDER SHLDR SHOULDERED AL ALUMINUM EQPT EQUIPMENT MACH MACHINE SKT SOCKET ASSEM ASSEMBLED EXT EXTERNAL MECH MECHANICAL SL SLIDE ASSY ASSEMBLY FIL FlLLlSTER HEAD MTG MOUNTING SLFLKG SELF-LOCKING ATTEN ATTENUATOR FLEX FLEXIBLE NIP NIPPLE SLVG SLEEVING AWG AMERICAN WlRE GAGE FLH FLAT HEAD NON WlRE NOT WlRE WOUND SPR SPRING B D BOARD FLTR FILTER OBD ORDER BY DESCRIPTION SO SQUARE BRKT BRACKET FR FRAME or FRONT OD OUTSIDE DIAMETER SST STAINLESS STEEL BRS BRASS FSTNR FASTENER OVH OVAL HEAD STL STEEL BRZ BRONZE FT FOOT PH BRZ PHOSPHOR BRONZE SW SWITCH BSHG BUSHING FXD FIXED PL PLAIN or PLATE T TUBE CAB CABINET GSKT GASKET PLSTC PLASTIC TERM TERMINAL CAP CAPACITOR HDL HANDLE PN PART NUMBER THD THREAD CER CERAMIC HEX HEXAGON PNH PAN HEAD THK THICK CHAS CHASSIS HEX HD HEXAGONAL HEAD PWR POWER TNSN TENSION CKT CIRCUIT HEX SOC HEXAGONAL SOCKET RCPT RECEPTACLE TPG TAPPING COMP COMPOSITION HLCPS HELICAL COMPRESSION RES RESISTOR TRH TRUSS HEAD CONN CONNECTOR HLEXT HELICAL EXTENSION RGD RIGID V VOLTAGE cov COVER HV HIGH VOLTAGE RLF RELIEF VAR VARIABLE CPLG COUPLING IC INTEGRATED CIRCUIT RTNR RETAINER W/ WITH CRT CATHODE RAY TUBE ID INSIDE DIAMETER SCH SOCKET HEAD WSHR WASHER DEG DEGREE IDENT IDENTIFICATION SCOPE OSCILLOSCOPE XFMR TRANSFORMER DWR DRAWER IMPLR IMPELLER SCR SCREW XSTR f RANSISTOR

@ Replaceable Mechanical Parts - PS 5010

CROSS INDEX - MFR. CODE NUMBER TO MANUFACTURER Mr. Code Manufacturer Address City. State. Zip Code PANDUIT CORP 17301 RIDGELAND TINLEY PARK IL 07094-2917 BURNDY CORP RICHARDS ME NORWALK CT 06852 THERMALLOY CO INC 2021 W VALLEY VIEW LN DALLAS TX 75381 PO BOX 810839 CHOMERICS INC 77 DRAGON COURT WOBURW MA 01801-1039 DU PONT E I DE NEMOURS AND CO IN6 515 FISHING CREEK RD NEW ClMBERLAND PA 17078-3807 DU PONT CONNECTOR SYSTEMS DIV MILITARY PRODUCTS GROUP FISCHER SPECIAL MFG CO 111 INDUSTRIAL RD COLD SPRING KY 41076-9749 ITEN FIBRE CO THE 4001 BENEFIT AVE ASHTABUIA OH 44004-5453 P 0 BOX 9 LITTELFUSE TRACTOR INC 800 E NORTHWEST MJY DES PLAINES IL 60016-3049 SUB TRACTOR INC ILLINOIS TOOL WORKS INC ST CHARLES ROAD ELGIM IL 60120 SHAKEPROOF DIV TEKTRONIX INC 14150 SW KARL BRAUM DR BEAVERTON OR 97077 PO BOX 500 MS 53-111 MICRODOT MFG INC 3221 W BIG BEAVER RD TROY MI 48098 GREER-CENTRAL DIV ELCO INDUSTRIES INC 1101 SPMUELSON RD ROCKFORD IL 61101 BOYD CORP 13885 RAMON AVE CHINQ CA 91710 SEASTROM MFG CO IN6 7031 SONORA AVE GLENDALE CA 91201-2431 TEXTRON INC 600 18TH AVE RQCUQBD IL 61101 CAMCAR DIV RUBBER TECK INC 19115 HAMILTON AVE PO BOX 389 LEWIS SCREW CO 4300 S RACINE AVE CHICAGO IL 60609-3320

REV JAN 1988 Replaceable Mechanical Parts - PS 5010

Fig. & Index Tektronix Serial/Assehly No. Mfr. No. Part No. Effective I)scont Qty 12345 Nane & Description Code Mfr. Part No. SHIELD,ELEC:SIDE,PLUG-IN UNIT MRKER, 1DENT:MKD GPIB INSTRUCTION LATCH,PANEL: SIDE FASTENER, LATCH :ACETAL ,S IL GRAY MRKER, IDENT: MARKED PS510P PROGRPMMABLE PCW ER SUPPLY LENS, LED DSPL: RED W/MARKINGS KNOB,LATCH:IVORY GY,0.625 X 0.25 X 1.09 JACK,TIP: (SEE J610 REPL) (ATTACHI NG PARTS) NUT,PLAIN,HEX:0.25-32 X 0.375,BRS CD PL 73743 3095-402 TERMINAL,LUG:0.26 ID,LOCKING,BRZ TIN PL 86928 5441-37 WASHER,FLAT:0.256 ID X 0.438 OD X 0.05,BRS 83385 ORDER BY DESCR INSULATOR,WSHR:0.266 ID X 0.5 OD X 0.05 80009 342-0137-00 (END ATTACHING PARTS ) JACK, TIP: (SEE 5520 REPL) (ATTACHI NG PARTS ) NUT, PLAIN,HEX:0.25-32 X 0.375,BRS CD PL 73743 3095-402 TERMINAL,LUG:0.26 ID,LOCKING,BRZ TIN PL 86928 5441-37 WASHER, FLAT:O.256 ID X 0.438 OD X 0.05,BRS 83385 ORDER BY DESCR INSULATOR,WSHR:O. 266 ID X 0.5 OD X 0.05 80009 342-0137-00 (END ATTACH ING PARTS ) JACK, TIP: (SEE 5500 REPL) (ATTACH ING PARTS) NUT,PLAIN,HEX:0.25-32 X 0.375,BRS CD PL 73743 3095-402 TERMINAL,LUG:0.26 ID,LOCKING,BRZ TIN PL 86928 5441-37 WASHER,FLAT:0.256 ID X 0.438 OD X 0.05,BRS 83385 ORDER BY DESCR (END ATTACHING PARTS) JACK, TIP: (SEE J510f 5600 REPL) (ATTACH ING PARTS) NUT,PLAIN,HEX:0.25-32 X 0.375,BRS CD PL 73743 3095-402 TERMINAL,LUG:0.26 ID,LOCKING,BRZ TIN PL 86928 5441-37 WASHER,FLAT:0.256 ID X 0.438 OD X 0.05,BRS 83385 ORDER BY DESCR INSULATOR,WSHR:0.266 ID X 0.5 OD X 0.05 80009 342-0137-00 (END ATTACHING PARTS) NUT, PLAIN,KNURL:0.25-28 X 0.375 OD,BRS NP 80009 220-0633-00 STUD, SHLDRUTEP: BINDING POST 80009 355-0170-00 PANEL, FRONT : 80009 333-2671-00 (ATTACH ING PARTS ) SCR,ASSEM WSHR: 6-32 X 0.5, TAPTITE, PNH,STL 83486 ORDER BY DESCR WASHER,FLAT:0.141 ID X 0.266 OD X 0.5,AL 80009 210-1365-00 (END ATTACHING PARTS) M4RKER, IDENT :MKD GPIB INSTRUCTION 80009 334-4224-00 PLASTIC CH4NNEL:O. 156 X 0.156, POLYETHYLENE 80009 255-0581-00 PANEL, REAR: 80009 333-2670-01 (ATTACHI NG PARTS) SCREW,TPG,TF: 6-32 X 0.375 L, FILH,STL 93907 ORDER BY DESCR SUPPORT, PLUG- IN: 93907 ORDER BY DESCR (END ATTACHI NG PARTS) LOCKOUT, PLUG-IN :PLASTIC 80009 214-3089-00 CONTACT, ELEC :GROUNDING, CU BE 80009 214-1061-00 m SECT, PLUG-IN: TOP 80009 426-1757-00 (ATTACH ING PARTS ) SCREW,MACHINE:6-32 X 0.25,FLH.lOO DEG,STL TKO435 ORDER BY DESCR SCREW,MACHINE:4-40 X 0.25, FLH, 100 DEG,STL TKO435 ORDER BY DESCR (END ATTACHING PARTS) FR SECT ,PLUG- IN: BOTTOM 80009 426-1756-01 (ATTACHI NG PARTS) SCREW,MACHINE:4-40 X 0.25, FLH, 100 DEG,STL TKO435 ORDER BY DESCR (END ATTACHI NG PARTS) COIL ASSY ,AF: (SEE L500, L5lO REPL) (ATTACH ING PARTS ) 211-0538-00 BOlOlOO SCREW,MACHINE:6-32 X 0.312, FLH, 100 DEG,STL 93907 ORDER BY DESCR 211-0559-00 8020970 SCREW,MACHINE: 6-32 X 0.375, FLH, 100 DEG TKO435 1593-300 210-0457-00 NUT,PL,ASSEM WA:6-32 X 0.312,STL CD PL 78189 511-061800-00 210-1102-00 BOlOlOO WASHER,FLAT:0.375 ID X 0.5 OD X 0.062,SST 80009 210-1102-00 210-0945-00 8020970 WASHER,FLAT:0.156 ID X 0.312 SQ X 0.125,AL 80009 210-0945-00 (END ATTACHI NG PARTS )

REV JAN 1988 Replaceable Mechanical Parts - PS 5010

Fig. & Index Tektronix Serial/Assehly No. Mh-. No. Part No. Effective I)scorrt Qty 12345 h& Description Code Mfr. Part No. SPRING,HLEXT:0.125 OD X 0.545 L,XLOOP BAR, LATCH RLSE: LATCH, RETAINI NG :SAFETY BMCKEI, ANGLE:CIRCUIT BOARD, A1 (ATTACH ING PARTS ) SCR,BSSEM WSHR:4-40 X 0.29, PNH,BRS NI PL (END ATTACHING PARTS) CKT BOARD ASSY :CPU(SEE A12 REPL) .BUS, CONDUCTOR :SHUNT ASSEMBLY, BLACK .TERM SET,PIN: (SEE Al2Jlll1, 51220, .J1320 REPL) .TERM,TEST POINT: (SEE A12TP1011, TP1020, .TP1401, TPl4lO REPL) .SKT, PL-IN ELEK:MICROCIRCUIT,28 CONTACT .SKT, PL-IN ELEK:MICROCIRCUIT,16 DIP .SKT, PL-IN ELEK:MICROCIRCUIT,20 DIP .SKT,PL-IN ELEK:MICROCIRCUIT,24 DIP,LOW PF .SKT ,PL- IN ELEK: CMPNT ,4O DIP, LOW PROFILE .TRANSISTOR: (SEE A12Q1021 REPL) .(ATTACHI NG PARTS) .SCREW,MACHINE:4-40 X 0.438, PNH,STL TKO435 ORDER BY DESCR .NUT,PL,ASSEM WA:4-40 X 0.25,STL CD PL 78189 21l-O4l8OO-OO .WASHER, LOCK: 0.12 ID,DISHED, 0.025 THK,STL 86928 ORDER BY DESCR .HEAT SINK,XSTR: TO-220, AL 13103 60708 .(END ATTACHING PARTS) .WASHER,FLAT:0.125 OD X 0.2 OD X 0.035,FBR 86928 56021932 (BLACK) CKT BOARD ASSY :LOGIC SUPPLY (SEE A13 REPL) .TERM SET, PIN: (SEE Al3Jll20, Jll40, Jl530, .J1930 REPL) .TRANSISTOR: (SEE A13Q1500,Q1501 ,Q1700.Q1800 .Q1900, Q2000 REPL) . (ATTACHI NG PARTS) .SCREW,MACHINE:4-40 X 0.375, PNH,STL TKO435 ORDER BY DESCR .SCREW,MACHINE:4-40 X 0.5,PNHfSTL TKO435 ORDER BY DESCR . INSULATOR, XSTR: TO-220, POLY ENELENE 80009 342-0536-00 .INSULATOR, PLATE: TRANSISTOR 18565 69-1 1-8805-1674 . (END ATTACHING PARTS) .TRANSISTOR: (SEE A13Q1400 REPL) . (ATTACHING PARTS) .SCREW,MACHINE:4-4 X 0.375, PNH, STL TKO435 ORDER BY DESCR .WASHER, SHLDR : 13103 7721-7PPS . INSULATOR, PLATE: TRANS ISTOR ,ALUMINA 80009 342-0328-00 . (END ATTACHING PARTS) .HEAT SINK,ELEC:CIRCUIT BOARDPAL . (ATTACHI NG PARTS ) .SCR,ASSEM WSHR:4-40 X 0.29, PNH,BRS NI PL .(END ATTACHI NG PARTS) .TERM, TEST POINT: (SEE A13TP1550, TPl75l REPL .STRAP,TIEDOWN,E:14.5 X 0.14,PLASTIC .PAD,CUSHIONING:1.8 X 0.5 X 0.094 SIL SPONGE .CLIP,ELECTRICAL: FUSE,BRASS .PAD,CUSHIONING:2.03 X 0.69 X 0.312 SI RBR .STRAP,RETAINING:O.O75 DIA X 4.0 L,MLD RBR CKT BOARD ASSY :FLOATING SUPPLY (SEE A14 REPL .TERM, TEST POINT : (SEE A14TP1330, TPl340, .TP1430 ,TPl43l ,TP1630 REPL) .SKT, PL-IN ELEK:MICROCIRCUIT, 16 DIP SKT, PL-IN ELEK:MICROCKT, 16 CONTACT .TRANSISTOR: (SEE A14Q1100,QllOl ,Q1300, .Q1400 REPL) .(ATTACH ING PARTS) .SCREW,MACHINE:4-40 X 0.375, PNH,STL TKO435 ORDER BY DESCR .SCREW,MACHINE:4-40 X 0.5, PNH, STL TKO435 ORDER BY DESCR . INSULATOR,XSTR: TO-220, POLYENELENE 80009 342-0536-00 . INSULATOR, PLATE: TRANS ISTOR 18565 69-1 1-8805-1674 . (END ATTACHI NG PARTS) .HEAT SINK, ELEC:CIRCUIT BOARD,AL . (ATTACHI NG PARTS)

REV JAN 1988 Replaceable Mechanical Parts - PS 5010

Fig. & Index Tektmnix Serial/Assmbly No. Mfr. No. Part No. Effective [)scant Qty 12345 Nane & Desrriptirm Code Mr. Part No. .SCR,ASSEM WSHR:4-40 X 0.29, PNH, BRS NI PL .(END ATTACHING PARTS) .TERM SET, PIN: (SEE Ald11500, Jl63O REPL) .SWITCH, PUSH: (SEE A14S1500 REPL) .SPACER, PB SW: 0.275 L, BROWN POLYCARBONATE .PUSH BUTTON :WHITE, 0.198 SQ X 0.28 H .SWITCH, PUSH: (SEE A14S1600 REPL) .SPACER, PB SW: 0.275 L, BROWN WLYCARBONATE BRACKET ,ANGLE: CIRCUIT BOARD, AL (ATTACH ING PARTS ) SCR,ASSEM WSHR:4-40 X 0.29, PNH, BRS NI PL (END ATTACHI NG PARTS ) BRACKET, ANGLE: INTERFACE CKT BD, AL (ATTACH ING PARTS ) SCR,ASSEM WSHR:4-40 X 0.29,PNH,BRS NI PL (END ATTACHING PARTS) CKT BOARD ASSY: INTERCONNECT(SEE All REPL) .TERM SET, PIN: (SEE AllJ1021,J1240 REPL) .CONN,RCPT, ELEC; (SEE AllJ1020. Jl5OO REPL) .CONN ,RCPT, ELEC: (SEE AllJ1400 REPL) SUBPANEL, FRONT : (ATTACH ING PARTS ) SCR,ASSEM WSHR:4-40 X 0.29,PNH,BRS NI PL 78189 51-040445-01 WASHER,FLAT:0.14 ID X 0.25 OD X 0.031 74921 ORDER BY DESCR ( END ATTACHI NG PARTS) CKT BOARD ASSY :FRONT PANEL(SEE A10 REPL) .SWITCH, PB ASSY: (SEE A10S1030 REPL) .SWITCH, PB ASSY: (SEE A10S1120,S1130, Sll31, .S1131,S1133,S1220,S1221,S1222,S1223,S1230. .Sl~3l.l23Z,Sl233. Sl32O,Sl322,Sl33O, .~1331-REPL) .SWITCH, PB ASSY: (SEE A10S1321 REPL) .SWITCH, PB ASSY: (SEE A10S1332 REPL) .CONN,RCPT, ELEC: (SEE A10P1021, P1240 REPL)

WIRE ASSEMBLIES

CA ASSY,SP,ELEC:10,22 AWG,3.0 L,RIBBON (FROM A13J1140 TO A14J16.30) HLDR, TERM CONN :10 WIRE, BLACK CA ASSY,SP,ELEC:9,22 AWG.14.0 L,RIBBON (FROM J520,J600,J610 TO A14J1500) HLDR, TERM CONN :9 WIRE, BLACK CA ASSY,SP,ELEC:4,22 AWG.12.0 L,RIBBON (FROM J5OO,J5lO TO A13J1120) HLDR, TERM CONN:4 WIRE, BLACK

STANDARD ACCESSORI ES

MANUAL, TECH: INSTR, PS5010 M4NUAL. TECH: REFERENCE, PS5010 80009 070-3402-00

REV JAN 1988

MANUAL CHANGE INFORMATION

At Tektronix, we continually strive to keep up with latest electronic developments by adding circuit and component improvements to our instruments as soon as they are developed and tested.

Sometimes, due to printing and shipping requirements, we can't get these changes immediately into printed manuals. Hence, your manual may contain new change information on following pages.

A single change may affect several sections. Since the change information sheets are carried in the manual until all changes are permanently entered, some duplication may occur. If no such change pages appear following this page, your manual is correct as printed. Wctmn'Dc MANUAL CHANGE INFORMATION ~~0~~ Date: 9-25-87 Change Reference: M 6 4 2 6 5

DESCRIPTION Product Group 76

These changes are effective at serial number B032564: Replaceable Electrical Parts List.

Circuit _tt Part Number Description Remove: A14U1010 156-0885-00 OPTOELECTRONIC ISOLATOR,

156-0885-00 OPTOELECTRONIC ISOLATOR,

156-0885-00 OPTOELECTRONIC ISOLATOR,

156-0885-00 OPTOELECTRONIC ISOLATOR,

156-0885-00 OPTOELECTRONIC ISOLATOR,

156-0885-00 OPTOELECTRONIC ISOLATOR, 156-0885-00 OPTOELECTRONIC ISOLATOR,

Add : OPTOELECTRONIC ISOLATOR OPTOELECTRONIC ISOLATOR OPTOELECTRONIC ISOLATOR OPTOELECTRONIC ISOLATOR, OPTOELECTRONIC ISOLATOR, OPTOELECTRONIC ISOLATOR, OPTOELECTRONIC ISOLATOR,

Page 1 of