Enzyme Classes

Total Page:16

File Type:pdf, Size:1020Kb

Enzyme Classes Enzyme nomenclature: https://www.qmul.ac.uk/sbcs/iubmb/enzyme/ http://enzyme.expasy.org/ Name: Systematic: (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate,hydrogen-donor:oxygen oxidoreductase Accepted: prostaglandin-endoperoxidsynthasa Trivial: cyclooxygenase Enzyme classification code: EC 1.14.99.1 Enzyme classes: EC 1.x.x.x Oxidoreductases EC 2.x.x.x Transferases EC 3.x.x.x Hydrolases EC 4.x.x.x Lyases EC 5.x.x.x Isomerases EC 6.x.x.x Ligases EC 7.x.x.x Translocases Oxidoreductases: EC 1.x.x.x Systematic name: donor:acceptor oxidoreductase Accepted: xxx dehydrogenase (oxidation using a coenzyme), xxx oxidase (oxidation by O2, O2 not incorporated into the product), xxx monooxygenase (oxidation by O2, one O of O2 incorporated into the product), xxx dioxygenase (oxidation by O2, both O of O2 incorporated into the product/s), xxx reductase (can be anything), catalase (decomposes H2O2 to O2), peroxidases (oxidation of something by H2O2) Oxidoreductases: EC 1.1.1.1 Systematic: alcohol:NAD+ oxidoreductase Accepted: alcohol dehydrogenase Oxidoreductases: EC 1.1.3.4 = glucose oxidase EC 1.1.3.9 = galactose oxidase EC 1.6.1.1 = NAD(P)+ transhydrogenase EC 1.6.3.1 = NAD(P)H oxidase EC 1.9.3.1 = cytochrom-c oxidase EC 1.10.3.2 = laccase EC 1.11.1.6 = katalase EC 1.12.1.2 = hydrogen dehydrogenase EC 1.14.99.1 = cyclooxygenase EC 1.15.1.1 = superoxide dismutase EC 1.18.6.1 = nitrogenase Transferases: EC 2.x.x.x Systematic name: donor:acceptor grouptransferase Accepted: xxx kinase (phosphorylate by P from ATP), xxx transferase (usually take a group form activated substrates, such as UDP-glucose), xxx synthase (can be anything), xxx phosphorylase (cleavage by Pi), xxx transaminase (amino acid + oxo-acid <-> amino acid + oxo-acid) Transferases: EC 2.7.1.86 Systematic name: ATP:NADH 2'-phosphotransferase Accepted: NADH kinase Tranferases: EC 2.3.3.1 = citrate synthase EC 2.4.1.1 = phosphorylase EC 2.4.1.11 = glykogen synthase EC 2.4.2.4 = thymidine phosphorylase EC 2.6.1.1 = aspartate transaminase EC 2.7.1.1 = hexokinase EC 2.7.11.19 = phosphorylase kinase Hydrolases: EC 3.x.x.x Systematic name: substrate grouphydrolase Accepted: xxxase, exo-xxxase (cleave terminal residues), endo-xxxase (cleave in the middle) Proteases have special nomenclature! Hydrolases: EC 3.2.1.23 Systematic name: β-D-galactoside galactohydrolase Accepted: β-galactosidase Hydrolases: EC 3.1.1.7 = acetylcholineesterase EC 3.1.3.1 = alkaline phosphatase EC 3.1.3.2 = acid phosphatase EC 3.1.3.17 = [phosphorylase]-phosphatase EC 3.1.4.4 = phospholipase C EC 3.1.21.1 = DNase I EC 3.2.1.1 = α-amylase EC 3.2.1.2 = β-amylase EC 3.2.1.4 = cellulase EC 3.2.1.17 = lysozyme EC 3.4.21.1 = chymotrypsin EC 3.4.21.4 = trypsin EC 3.4.21.5 = thrombin EC 3.4.22.2 = papain EC 3.5.1.5 = urease EC 3.5.5.1 = nitrilase EC 3.6.1.1 = inorganic diphosphatase Lyases: EC 4.x.x.x Systematic name: substrate group-lyase Accepted: xxx decarboxylase, xxx dehydratase (water elimination), xxx hydratase (water addition), xxx aldolase (aldol condensation), xxx cyclase (e.g. cAMP production), xxx synthase (can be anything) Lyases: EC 4.1.1.1 Systematic name: pyruvate carboxy-lyase Accepted: pyruvate decarboxylase Lyases: EC 4.1.1.1 = pyruvate decarboxylase EC 4.1.2.13 = fructosebisphosphate aldolase EC 4.2.1.1 = carbonic anhydrase EC 4.2.1.22 = cystathionine-β synthase EC 4.3.2.1 = argininosuccinate lyase EC 4.6.1.1 = adenylate cyclase EC 4.99.1.1 = ferrochelatase Isomerases: EC 5.x.x.x Systematic name: depends on sub-class Sub-classes: racemases, epimerases, aldose-ketose-isomerases, keto-enol-isomerases, disulfide-isomerases, topoisomerases and others Isomerases: EC 5.1.1.1 Systematic and accepted name: alanine racemase Isomerases: EC 5.1.1.1 = alanine racemase EC 5.3.1.1 = triosaphosphate isomerase EC 5.99.1.2 = topoisomerase I EC 5.99.1.3 = topoisomerase II Ligases: EC 6.x.x.x Systematic name: substrate1:substrate2 ligase (product forming) (product is ADP, AMP, GMP...) Accepted: xxx-xxx ligase, xxx synthetase Ligases: EC 6.1.1.1 Systematic name: L-tyrosine:tRNATyr ligase (AMP forming) Accepted: tyrosin-tRNA ligase, tyrosyl-tRNA synthetase Ligases: EC 6.1.1.1 = tyrosin-tRNA ligase EC 6.2.1.3 = long-chain fatty acid-CoA ligase EC 6.3.1.1 = asparagine synthetase EC 6.4.1.2 = acetyl-CoA carboxylasa EC 6.5.1.1 = DNA-ligase (ATP) EC 6.5.1.2 = DNA-ligase (NAD+) Translocases (new in 2018): EC 7.x.x.x Systematic name: original from pre-2018 nomenclature Translocases (new in 2018): EC 7.1.2.1 Systematic name: ATP phosphohydrolase (H+-exporting) Accepted name: H+-exporting ATPase What can go wrong: More complicated reactions: Citrate synthase: acetyl-CoA + oxalacetate + H2O → citrate + HSCoA lyase? (addition), hydrolase? (hydrolysis of C-S bond), transferase? (acetate transfer) From 1962 to 2002: EC 4.1.3.7 Since 2002: EC 2.3.3.1 acetyl-CoA:oxaloacetate C-acetyltransferase [thioester-hydrolysing, (pro-S)-carboxymethyl forming] Broader substrate specificity: β-galactosidase (β-D-galactoside galactohydrolase, EC 3.2.1.23) lactase (lactose galactohydrolase, EC 3.2.1.108) More reactions possible: Xanthine dehydrogenase/oxidase + xanthin + NAD + H2O → uric acid + NADH + hypoxanthin + NAD + H2O → xanthin + NADH xanthin + O2 + H2O → uric acid + H2O2 change from dehydrogene to oxidase can be done by disulfide bridge reduction, partial proteolysis, heavy metals, thawing and freezing etc. What can go wrong: Polymeric substrates: α-Amylase (4-α-D-glucan glucanohydrolase) [isocitrate dehydrogenase (NADP+)] kinase (ATP:[isocitrate dehydrogenase (NADP+)] phosphotransferase) Direction of the reaction: Hexokinase (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1) Glc + ATP → Glc-6-P + ADP Pyruvate kinase (ATP:pyruvate 2-O-phosphotransferase, EC 2.7.1.40) phosphoenolpyruvate + ADP → pyruvate + ATP Enzyme or multi-enzyme complex? pyruvate dehydrogenasove complex: pyruvate dehydrogenase (E1, EC 1.2.4.1) dihydrolipoyl transacetylase (E2, EC 2.3.1.12) dihydrolipoyl dehydrogenase (E3, EC 1.8.1.4) Specials: Cyclophilin: 1984 – cyclophilin discovered as a receptor of cyclosporin Handschumacher R.E., Harding M.W., Rice J., Drugge R.J., Speicher D.W. (1984) Science 226, 544-547. 1984 – group of PPIases dicovered Fischer G., Bang H., Mech C. (1984) Biomed. Biochim. Acta. 43, 1101-1111. 1989 – cyclophilin is one of them Fischer G., Wittmann-Liebold B., Lang K., Kiefhaber T., Schmid F.X. (1989) Nature 337, 476-478. 1992 – both activities are more or less independent Zydowsky L.D., Etzkorn F.A., Chang H.Y., Ferguson S.B., Stolz L.A., Ho S.I., Walsh C.T. (1992) Prot. Sci. 1, 1092–1099. .
Recommended publications
  • METACYC ID Description A0AR23 GO:0004842 (Ubiquitin-Protein Ligase
    Electronic Supplementary Material (ESI) for Integrative Biology This journal is © The Royal Society of Chemistry 2012 Heat Stress Responsive Zostera marina Genes, Southern Population (α=0.
    [Show full text]
  • Supplement 1 Overview of Dystonia Genes
    Supplement 1 Overview of genes that may cause dystonia in children and adolescents Gene (OMIM) Disease name/phenotype Mode of inheritance 1: (Formerly called) Primary dystonias (DYTs): TOR1A (605204) DYT1: Early-onset generalized AD primary torsion dystonia (PTD) TUBB4A (602662) DYT4: Whispering dystonia AD GCH1 (600225) DYT5: GTP-cyclohydrolase 1 AD deficiency THAP1 (609520) DYT6: Adolescent onset torsion AD dystonia, mixed type PNKD/MR1 (609023) DYT8: Paroxysmal non- AD kinesigenic dyskinesia SLC2A1 (138140) DYT9/18: Paroxysmal choreoathetosis with episodic AD ataxia and spasticity/GLUT1 deficiency syndrome-1 PRRT2 (614386) DYT10: Paroxysmal kinesigenic AD dyskinesia SGCE (604149) DYT11: Myoclonus-dystonia AD ATP1A3 (182350) DYT12: Rapid-onset dystonia AD parkinsonism PRKRA (603424) DYT16: Young-onset dystonia AR parkinsonism ANO3 (610110) DYT24: Primary focal dystonia AD GNAL (139312) DYT25: Primary torsion dystonia AD 2: Inborn errors of metabolism: GCDH (608801) Glutaric aciduria type 1 AR PCCA (232000) Propionic aciduria AR PCCB (232050) Propionic aciduria AR MUT (609058) Methylmalonic aciduria AR MMAA (607481) Cobalamin A deficiency AR MMAB (607568) Cobalamin B deficiency AR MMACHC (609831) Cobalamin C deficiency AR C2orf25 (611935) Cobalamin D deficiency AR MTRR (602568) Cobalamin E deficiency AR LMBRD1 (612625) Cobalamin F deficiency AR MTR (156570) Cobalamin G deficiency AR CBS (613381) Homocysteinuria AR PCBD (126090) Hyperphelaninemia variant D AR TH (191290) Tyrosine hydroxylase deficiency AR SPR (182125) Sepiaterine reductase
    [Show full text]
  • Itraq-Based Quantitative Proteomics Analysis Reveals the Mechanism Underlying the Weakening of Carbon Metabolism in Chlorotic Tea Leaves
    Article iTRAQ-Based Quantitative Proteomics Analysis Reveals the Mechanism Underlying the Weakening of Carbon Metabolism in Chlorotic Tea Leaves Fang Dong 1,2, Yuanzhi Shi 1,2, Meiya Liu 1,2, Kai Fan 1,2, Qunfeng Zhang 1,2,* and Jianyun Ruan 1,2 1 Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; [email protected] (F.D.); [email protected] (Y.S.); [email protected] (M.L.); [email protected] (K.F.); [email protected] (J.R.) 2 Key Laboratory for Plant Biology and Resource Application of Tea, the Ministry of Agriculture, Hangzhou 310008, China * Correspondence: [email protected]; Tel.: +86-571-8527-0665 Received: 7 November 2018; Accepted: 5 December 2018; Published: 7 December 2018 Abstract: To uncover mechanism of highly weakened carbon metabolism in chlorotic tea (Camellia sinensis) plants, iTRAQ (isobaric tags for relative and absolute quantification)-based proteomic analyses were employed to study the differences in protein expression profiles in chlorophyll-deficient and normal green leaves in the tea plant cultivar “Huangjinya”. A total of 2110 proteins were identified in “Huangjinya”, and 173 proteins showed differential accumulations between the chlorotic and normal green leaves. Of these, 19 proteins were correlated with RNA expression levels, based on integrated analyses of the transcriptome and proteome. Moreover, the results of our analysis of differentially expressed proteins suggested that primary carbon metabolism (i.e., carbohydrate synthesis and transport) was inhibited in chlorotic tea leaves. The differentially expressed genes and proteins combined with photosynthetic phenotypic data indicated that 4-coumarate-CoA ligase (4CL) showed a major effect on repressing flavonoid metabolism, and abnormal developmental chloroplast inhibited the accumulation of chlorophyll and flavonoids because few carbon skeletons were provided as a result of a weakened primary carbon metabolism.
    [Show full text]
  • Engineering the Substrate Specificity of Galactose Oxidase
    Engineering the Substrate Specificity of Galactose Oxidase Lucy Ann Chappell BSc. (Hons) Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds School of Molecular and Cellular Biology September 2013 The candidate confirms that the work submitted is her own and that appropriate credit has been given where reference has been made to the work of others. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement © 2013 The University of Leeds and Lucy Ann Chappell The right of Lucy Ann Chappell to be identified as Author of this work has been asserted by her in accordance with the Copyright, Designs and Patents Act 1988. ii Acknowledgements My greatest thanks go to Prof. Michael McPherson for the support, patience, expertise and time he has given me throughout my PhD. Many thanks to Dr Bruce Turnbull for always finding time to help me with the Chemistry side of the project, particularly the NMR work. Also thanks to Dr Arwen Pearson for her support, especially reading and correcting my final thesis. Completion of the laboratory work would not have been possible without the help of numerous lab members and friends who have taught me so much, helped develop my scientific skills and provided much needed emotional support – thank you for your patience and friendship: Dr Thembi Gaule, Dr Sarah Deacon, Dr Christian Tiede, Dr Saskia Bakker, Ms Briony Yorke and Mrs Janice Robottom. Thank you to three students I supervised during my PhD for their friendship and contributions to the project: Mr Ciaran Doherty, Ms Lito Paraskevopoulou and Ms Upasana Mandal.
    [Show full text]
  • Ribonucleotides Incorporated by the Yeast Mitochondrial DNA Polymerase Are Not Repaired
    Ribonucleotides incorporated by the yeast mitochondrial DNA polymerase are not repaired Paulina H. Wanrooija,1, Martin K. M. Engqvistb,c,2, Josefin M. E. Forslunda,2, Clara Navarreteb, Anna Karin Nilssona, Juhan Sedmand, Sjoerd Wanrooija, Anders R. Clausenb, and Andrei Chabesa,e,1 aDepartment of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden; bInstitute of Biomedicine, University of Gothenburg, SE-405 30 Gothenburg, Sweden; cDepartment of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; dDepartment of Biochemistry, Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia; and eLaboratory for Molecular Infection Medicine Sweden, Umeå University, SE-901 87 Umeå, Sweden Edited by Philip C. Hanawalt, Stanford University, Stanford, CA, and approved October 17, 2017 (received for review July 25, 2017) Incorporation of ribonucleotides into DNA during genome replica- Mec1/Rad53 genome integrity checkpoint regulates yeast RNR tion is a significant source of genomic instability. The frequency activity through several different mechanisms (14). of ribonucleotides in DNA is determined by deoxyribonucleoside The incorporation of ribonucleotides (rNMPs) into the genome triphosphate/ribonucleoside triphosphate (dNTP/rNTP) ratios, by the during DNA replication has become recognized as a significant ability of DNA polymerases to discriminate against ribonucleotides, source of genomic instability. Given that the physiological con- and by the capacity of repair mechanisms to remove incorporated centrations of ribonucleoside triphosphates (rNTPs), the building ribonucleotides. To simultaneously compare how the nuclear and blocks of RNA, are one to two orders-of-magnitude higher than mitochondrial genomes incorporate and remove ribonucleotides, those of dNTPs, rNMPs are frequently incorporated into DNA we challenged these processes by changing the balance of cellular during replication (15, 16).
    [Show full text]
  • 1 Silencing Branched-Chain Ketoacid Dehydrogenase Or
    bioRxiv preprint doi: https://doi.org/10.1101/2020.02.21.960153; this version posted February 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Silencing branched-chain ketoacid dehydrogenase or treatment with branched-chain ketoacids ex vivo inhibits muscle insulin signaling Running title: BCKAs impair insulin signaling Dipsikha Biswas1, PhD, Khoi T. Dao1, BSc, Angella Mercer1, BSc, Andrew Cowie1 , BSc, Luke Duffley1, BSc, Yassine El Hiani2, PhD, Petra C. Kienesberger1, PhD, Thomas Pulinilkunnil1†, PhD 1Department of Biochemistry and Molecular Biology, Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada, 2Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada. †Correspondence to Thomas Pulinilkunnil, PhD Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University Dalhousie Medicine New Brunswick, 100 Tucker Park Road, Saint John E2L4L5, New Brunswick, Canada. Telephone: (506) 636-6973; Fax: (506) 636-6001; email: [email protected]. 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.02.21.960153; this version posted February 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International
    [Show full text]
  • Transglutaminase-Catalyzed Inactivation Of
    Proc. Natl. Acad. Sci. USA Vol. 94, pp. 12604–12609, November 1997 Medical Sciences Transglutaminase-catalyzed inactivation of glyceraldehyde 3-phosphate dehydrogenase and a-ketoglutarate dehydrogenase complex by polyglutamine domains of pathological length ARTHUR J. L. COOPER*†‡§, K.-F. REX SHEU†‡,JAMES R. BURKE¶i,OSAMU ONODERA¶i, WARREN J. STRITTMATTER¶i,**, ALLEN D. ROSES¶i,**, AND JOHN P. BLASS†‡,†† Departments of *Biochemistry, †Neurology and Neuroscience, and ††Medicine, Cornell University Medical College, New York, NY 10021; ‡Burke Medical Research Institute, Cornell University Medical College, White Plains, NY 10605; and Departments of ¶Medicine, **Neurobiology, and iDeane Laboratory, Duke University Medical Center, Durham, NC 27710 Edited by Louis Sokoloff, National Institutes of Health, Bethesda, MD, and approved August 28, 1997 (received for review April 24, 1997) ABSTRACT Several adult-onset neurodegenerative dis- Q12-containing peptide (16). In the work of Kahlem et al. (16) the eases are caused by genes with expanded CAG triplet repeats largest Qn domain studied was Q18. We found that both a within their coding regions and extended polyglutamine (Qn) nonpathological-length Qn domain (n 5 10) and a longer, patho- domains within the expressed proteins. Generally, in clinically logical-length Qn domain (n 5 62) are excellent substrates of affected individuals n > 40. Glyceraldehyde 3-phosphate dehy- tTGase (17, 18). drogenase binds tightly to four Qn disease proteins, but the Burke et al. (1) showed that huntingtin, huntingtin-derived significance of this interaction is unknown. We now report that fragments, and the dentatorubralpallidoluysian atrophy protein purified glyceraldehyde 3-phosphate dehydrogenase is inacti- bind selectively to glyceraldehyde 3-phosphate dehydrogenase vated by tissue transglutaminase in the presence of glutathione (GAPDH) in human brain homogenates and to immobilized S-transferase constructs containing a Qn domain of pathological rabbit muscle GAPDH.
    [Show full text]
  • Table S1. List of Oligonucleotide Primers Used
    Table S1. List of oligonucleotide primers used. Cla4 LF-5' GTAGGATCCGCTCTGTCAAGCCTCCGACC M629Arev CCTCCCTCCATGTACTCcgcGATGACCCAgAGCTCGTTG M629Afwd CAACGAGCTcTGGGTCATCgcgGAGTACATGGAGGGAGG LF-3' GTAGGCCATCTAGGCCGCAATCTCGTCAAGTAAAGTCG RF-5' GTAGGCCTGAGTGGCCCGAGATTGCAACGTGTAACC RF-3' GTAGGATCCCGTACGCTGCGATCGCTTGC Ukc1 LF-5' GCAATATTATGTCTACTTTGAGCG M398Arev CCGCCGGGCAAgAAtTCcgcGAGAAGGTACAGATACGc M398Afwd gCGTATCTGTACCTTCTCgcgGAaTTcTTGCCCGGCGG LF-3' GAGGCCATCTAGGCCATTTACGATGGCAGACAAAGG RF-5' GTGGCCTGAGTGGCCATTGGTTTGGGCGAATGGC RF-3' GCAATATTCGTACGTCAACAGCGCG Nrc2 LF-5' GCAATATTTCGAAAAGGGTCGTTCC M454Grev GCCACCCATGCAGTAcTCgccGCAGAGGTAGAGGTAATC M454Gfwd GATTACCTCTACCTCTGCggcGAgTACTGCATGGGTGGC LF-3' GAGGCCATCTAGGCCGACGAGTGAAGCTTTCGAGCG RF-5' GAGGCCTGAGTGGCCTAAGCATCTTGGCTTCTGC RF-3' GCAATATTCGGTCAACGCTTTTCAGATACC Ipl1 LF-5' GTCAATATTCTACTTTGTGAAGACGCTGC M629Arev GCTCCCCACGACCAGCgAATTCGATagcGAGGAAGACTCGGCCCTCATC M629Afwd GATGAGGGCCGAGTCTTCCTCgctATCGAATTcGCTGGTCGTGGGGAGC LF-3' TGAGGCCATCTAGGCCGGTGCCTTAGATTCCGTATAGC RF-5' CATGGCCTGAGTGGCCGATTCTTCTTCTGTCATCGAC RF-3' GACAATATTGCTGACCTTGTCTACTTGG Ire1 LF-5' GCAATATTAAAGCACAACTCAACGC D1014Arev CCGTAGCCAAGCACCTCGgCCGAtATcGTGAGCGAAG D1014Afwd CTTCGCTCACgATaTCGGcCGAGGTGCTTGGCTACGG LF-3' GAGGCCATCTAGGCCAACTGGGCAAAGGAGATGGA RF-5' GAGGCCTGAGTGGCCGTGCGCCTGTGTATCTCTTTG RF-3' GCAATATTGGCCATCTGAGGGCTGAC Kin28 LF-5' GACAATATTCATCTTTCACCCTTCCAAAG L94Arev TGATGAGTGCTTCTAGATTGGTGTCggcGAAcTCgAGCACCAGGTTG L94Afwd CAACCTGGTGCTcGAgTTCgccGACACCAATCTAGAAGCACTCATCA LF-3' TGAGGCCATCTAGGCCCACAGAGATCCGCTTTAATGC RF-5' CATGGCCTGAGTGGCCAGGGCTAGTACGACCTCG
    [Show full text]
  • 1 Silencing Branched-Chain Ketoacid Dehydrogenase Or
    bioRxiv preprint doi: https://doi.org/10.1101/2020.02.21.960153; this version posted February 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Silencing branched-chain ketoacid dehydrogenase or treatment with branched-chain ketoacids ex vivo inhibits muscle insulin signaling Running title: BCKAs impair insulin signaling Dipsikha Biswas1, PhD, Khoi T. Dao1, BSc, Angella Mercer1, BSc, Andrew Cowie1 , BSc, Luke Duffley1, BSc, Yassine El Hiani2, PhD, Petra C. Kienesberger1, PhD, Thomas Pulinilkunnil1†, PhD 1Department of Biochemistry and Molecular Biology, Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada, 2Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada. †Correspondence to Thomas Pulinilkunnil, PhD Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University Dalhousie Medicine New Brunswick, 100 Tucker Park Road, Saint John E2L4L5, New Brunswick, Canada. Telephone: (506) 636-6973; Fax: (506) 636-6001; email: [email protected]. 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.02.21.960153; this version posted February 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International
    [Show full text]
  • Aerobic Glycolysis Fuels Platelet Activation: Small-Molecule Modulators of Platelet Metabolism As Anti-Thrombotic Agents
    ARTICLE Platelet Biology & its Disorders Aerobic glycolysis fuels platelet activation: Ferrata Storti Foundation small-molecule modulators of platelet metabolism as anti-thrombotic agents Paresh P. Kulkarni,1† Arundhati Tiwari,1† Nitesh Singh,1 Deepa Gautam,1 Vijay K. Sonkar,1 Vikas Agarwal2 and Debabrata Dash1 1Department of Biochemistry, Institute of Medical Sciences and 2Department of Cardiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Haematologica 2019 Pradesh, India Volume 104(4):806-818 † PPK and AT contributed equally to this work. ABSTRACT latelets are critical to arterial thrombosis, which underlies myocardial infarction and stroke. Activated platelets, regardless of the nature of Ptheir stimulus, initiate energy-intensive processesthat sustain throm- bus, while adapting to potential adversities of hypoxia and nutrient depri- vation within the densely packed thrombotic milieu. We report here that stimulated platelets switch their energy metabolism to robicae glycolysis by modulating enzymes at key checkpoints in glucose metabolism. We found that aerobic glycolysis, in turn, accelerates flux through the pentose phos- phate pathway and supports platelet activation. Hence, reversing metabolic adaptations of platelets could be an effective alternative to conventional anti-platelet approaches, which are crippled by remarkable redundancy in platelet agonists and ensuing signaling pathways. In support of this hypoth- esis, small-molecule modulators of pyruvate dehydrogenase, pyruvate kinase M2 and glucose-6-phosphate dehydrogenase, all of which impede aerobic glycolysis and/or the pentose phosphate pathway, restrained the Correspondence: agonist-induced platelet responsesex vivo. These drugs, which include the DEBABRATA DASH anti-neoplastic candidate, dichloroacetate, and the Food and Drug [email protected] Administration-approved dehydroepiandrosterone, profoundly impaired thrombosis in mice, thereby exhibiting potential as anti-thrombotic agents.
    [Show full text]
  • Generated by SRI International Pathway Tools Version 25.0, Authors S
    Authors: Pallavi Subhraveti Ron Caspi Quang Ong Peter D Karp An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Ingrid Keseler Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Gcf_000725805Cyc: Streptomyces xanthophaeus Cellular Overview Connections between pathways are omitted for legibility.
    [Show full text]
  • ( 12 ) United States Patent
    US010195209B2 (12 ) United States Patent ( 10 ) Patent No. : US 10 , 195 ,209 B2 Gish et al. (45 ) Date of Patent: * Feb . 5 , 2019 (54 ) ANTI- HULRRC15 ANTIBODY DRUG 4 ,634 ,665 A 1 / 1987 Axel 4 ,716 , 111 A 12 / 1987 Osband CONJUGATES AND METHODS FOR THEIR 4 ,737 , 456 A 4 / 1988 Weng USE 4 , 816 ,397 A 3 / 1989 Boss 4 , 816 ,457 A 3 / 1989 Baldwin (71 ) Applicants :AbbVie Inc. , North Chicago , IL (US ) ; 4 , 968 ,615 A 11 / 1990 Koszinowski AbbVie Biotherapeutics Inc. , 5 , 168 , 062 A 12 / 1992 Stinski 5 , 179 ,017 A 1 / 1993 Axel Redwood City , CA (US ) 5 , 225 , 539 A 7 / 1993 Winter 5 , 413 , 923 A 5 / 1995 Kucherlapati ( 72 ) Inventors : Kurt C . Gish , Piedmont, CA (US ) ; 5 ,530 , 101 A 6 /1996 Queen Jonathan A . Hickson , Lake Villa , IL 5 , 545 , 806 A 8 / 1996 Lonberg (US ) ; Susan Elizabeth Morgan - Lappe , 5 , 565 ,332 A 10 / 1996 Hoogenboom Riverwoods, IL (US ) ; James W . 5 , 569 , 825 A 10 / 1996 Lonberg 5 ,585 ,089 A 12 / 1996 Queen Purcell, San Francisco , CA (US ) 5 ,625 , 126 A 4 / 1997 Lonberg 5 ,633 , 425 A 5 / 1997 Lonberg ( 73 ) Assignees: AbbVie Inc. , North Chicago , IL (US ) ; 5 ,658 , 570 A 8 / 1997 Newman AbbVie Biotherapeutics Inc . , 5 ,661 ,016 A 8 / 1997 Lonberg Redwood City , CA (US ) 5 ,681 , 722 A 10 / 1997 Newman 5 ,693 , 761 A 12 / 1997 Queen 5 ,693 , 762 A 12 / 1997 Queen ( * ) Notice : Subject to any disclaimer, the term of this 5 ,693 , 780 A 12 / 1997 Newman patent is extended or adjusted under 35 5 , 807 ,715 A 9 / 1998 Morrison U .
    [Show full text]