WO 2012/170711 Al 13 December 2012 (13.12.2012) P O P C T

Total Page:16

File Type:pdf, Size:1020Kb

WO 2012/170711 Al 13 December 2012 (13.12.2012) P O P C T (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2012/170711 Al 13 December 2012 (13.12.2012) P O P C T (51) International Patent Classification: (72) Inventors; and G01N33/5 74 (2006.01) (75) Inventors/Applicants (for US only): PAWLOWSKI, Traci [US/US]; 2014 N Milkweed Loop, Phoenix, AZ (21) International Application Number: 85037 (US). YEATTS, Kimberly [US/US]; 109 E. Pierce PCT/US2012/041387 Street, Tempe, AZ 85281 (US). AKHAVAN, Ray (22) International Filing Date: [US/US]; 5804 Malvern Hill Ct, Haymarket, VA 201 69 7 June 2012 (07.06.2012) (US). (25) Filing Language: English (74) Agent: AKHAVAN, Ramin; Caris Science, Inc., 6655 N. MacArthur Blvd., Irving, TX 75039 (US). (26) Publication Language: English (81) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of national protection available): AE, AG, AL, AM, 61/494,196 7 June 201 1 (07.06.201 1) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, 61/494,355 7 June 201 1 (07.06.201 1) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, 61/507,989 14 July 201 1 (14.07.201 1) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, (71) Applicant (for all designated States except US): CARIS HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, LIFE SCIENCES LUXEMBOURG HOLDINGS, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, S.A.R.L [LU/LU]; Rue De Maraichers, L2124 Luxem MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, bourg, Grand-Duche De Luxembourg (LU). OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, [Continued on nextpage] (54) Title: CIRCULATING BIOMARKERS FOR CANCER (57) Abstract: Biomarkers can be assessed for diagnostic, therapy-related or prognostic methods to identify phenotypes, such as a condition or disease, or 6100A the stage or progression of a disease, select candidate treatment regimens for diseases, conditions, disease stages, and stages of a condition, and to determ 6101 ine treatment efficacy. Circulating biomarkers from a bodily fluid can be used in profiling of physiological states or determining phenotypes. These include OBTAIN BIOLOGICAL SAMPLE nucleic acids, protein, and circulating structures such as vesicles, and nucleic acid-protein complexes. 6103 ISOLATE NUCLEIC ACID (NA) 6105 ANALYZE NA (MICRORNA, mRNA, MUTATIONS, etc.) 6107 IDENTIFY BIOMARKER AND/OR BIO-SIGNATURE FOR PHENOTYPE o FIG. 1A o o w o 2012/170711 Ai llll II II 11III II I 11II II III II IIII II I II SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, ΓΓ, LT, LU, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, (84) Designated States (unless otherwise indicated, for every GW, ML, MR, NE, SN, TD, TG). kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, Published: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, — with international search report (Art. 21(3)) TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, CIRCULATING BIOMARKERS FOR CANCER CROSS REFERENCE [0001] This application claims the benefit of U.S. Provisional Patent Application Nos. 61/494,196, filed June 7, 201 1; 61/494,355, filed June 7, 201 1; and 61/507,989, filed July 14, 201 1; all of which applications are incorporated herein by reference in their entirety. [0002] This application is a continuation-in-part of International Patent Application PCT/US2012/025741, filed February 17, 2012, which application claims the benefit of U.S. Provisional Patent Application Nos. 61/446,3 13, filed February 24, 201 1; 61/501,680, filed June 27, 201 1; 61/471,417, filed April 4, 201 1; 61/523,763, filed August 15, 201 1; and 61/445,273, filed February 22, 201 1; all of which applications are incorporated herein by reference in their entirety. [0003] This application is also a continuation-in-part of International Patent Application PCT/US201 1/048327, filed August 18, 201 1, which application claims the benefit of U.S. Provisional Patent Application Nos. 61/374,95 1, filed August 18, 2010; 61/379,670, filed September 2, 2010; 61/381,305, filed September 9, 2010; 61/383,305, filed September 15, 2010; 61/391,504, filed October 8, 2010; 61/393,823, filed October 15, 2010; 61/41 1,890, filed November 9, 2010; 61/414,870, filed November 17, 2010; 61/416,560, filed November 23, 2010; 61/421,85 1, filed December 10, 2010; 61/423,557, filed December 15, 2010; 61/428, 196, filed December 29, 2010; all of which applications are incorporated herein by reference in their entirety. [0004] This application is also a continuation-in-part of International Patent Application PCT/ US201 1/026750, filed March 1, 201 1, which application claims is a continuation-in-part application of U.S. Patent Application Serial No. 12/591,226, filed November 12, 2009, which claims the benefit of U.S. Provisional Application Nos. 61/1 14,045, filed November 12, 2008; 61/1 14,058, filed November 12, 2008; 61/1 14,065, filed November 13, 2008; 61/15 1, 183, filed February 9, 2009; 61/278,049, filed October 2, 2009; 61/250,454, filed October 9, 2009; and 61/253,027 filed October 19, 2009; and which application also claims the benefit of U.S. Provisional Application Nos. 61/274, 124, filed March 1, 2010; 61/357,5 17, filed June 22, 2010; 61/364,785, filed July 15, 2010; all of which applications are incorporated herein by reference in their entirety. [0005] This application is also a continuation-in-part of International Patent Application PCT/US201 1/03 1479, filed April 6, 201 1, which application claims the benefit of U.S. Provisional Patent Application Nos. 61/321,392, filed April 6, 2010; 61/321,407, filed April 6, 2010; 61/332,174, filed May 6, 2010; 61/348,214, filed May 25, 2010, 61/348,685, filed May 26, 2010; 61/354,125, filed June 11, 2010; 61/355,387, filed June 16, 2010; 61/356,974, filed June 21, 2010; 61/357,5 17, filed June 22, 2010; 61/362,674, filed July 8, 2010; 61/413,377, filed November 12, 2010; 61/322,690, filed April 9, 2010; 61/334,547, filed May 13, 2010; 61/364,785, filed July 15, 2010; 61/370,088, filed August 2, 2010; 61/379,670, filed September 2, 2010; 61/381,305, filed September 9, 2010; 61/383,305, filed September 15, 2010; 61/391,504, filed October 8, 2010; 61/393,823, filed October 15, 2010; 61/41 1,890, filed November 9, 2010; and 61/416,560, filed November 23, 2010; all of which applications are incorporated herein by reference in their entirety. BACKGROUND [0006] Biomarkers for conditions and diseases such as cancer include biological molecules such as proteins, peptides, lipids, RNAs, DNA and variations and modifications thereof. [0007] The identification of specific biomarkers, such as DNA, RNA and proteins, can provide biosignatures that are used for the diagnosis, prognosis, or theranosis of conditions or diseases. Biomarkers can be detected in bodily fluids, including circulating DNA, RNA, proteins, and vesicles. Circulating biomarkers include proteins such as PSA and CA125, and nucleic acids such as SEPT9 DNA and PCA3 messenger RNA (mRNA). Circulating biomarkers can be associated with circulating vesicles. Vesicles are membrane encapsulated structures that are shed from cells and have been found in a number of bodily fluids, including blood, plasma, serum, breast milk, ascites, bronchoalveolar lavage fluid and urine. Vesicles can take part in the communication between cells as transport vehicles for proteins, RNAs, DNAs, viruses, and prions. MicroRNAs are short RNAs that regulate the transcription and degradation of messenger RNAs. MicroRNAs have been found in bodily fluids and have been observed as a component within vesicles shed from tumor cells. The analysis of circulating biomarkers associated with diseases, including vesicles and/or microRNA, can aid in detection of disease or severity thereof, determining predisposition to a disease, as well as making treatment decisions. [0008] Vesicles present in a biological sample provide a source of biomarkers, e.g., the markers are present within a vesicle (vesicle payload), or are present on the surface of a vesicle. Characteristics of vesicles (e.g., size, surface antigens, determination of cell-of-origin, payload) can also provide a diagnostic, prognostic or theranostic readout. There remains a need to identify biomarkers that can be used to detect and treat disease. microRNA, proteins and other biomarkers associated with vesicles as well as the characteristics of a vesicle can provide a diagnosis, prognosis, or theranosis. [0009] The present invention provides methods and systems for characterizing a phenotype by detecting biomarkers that are indicative of disease or disease progress. The biomarkers can be circulating biomarkers including without limitation vesicle markers, protein, nucleic acids, mRNA, or microRNA. The biomarkers can be nucleic acid-protein complexes. SUMMARY [0010] Disclosed herein are methods and compositions for characterizing a phenotype by analyzing circulating biomarkers, such as a vesicle, microRNA or protein present in a biological sample. Characterizing a phenotype for a subject or individual may include, but is not limited to, the diagnosis of a disease or condition, the prognosis of a disease or condition, the determination of a disease stage or a condition stage, a drug efficacy, a physiological condition, organ distress or organ rejection, disease or condition progression, therapy-related association to a disease or condition, or a specific physiological or biological state.
Recommended publications
  • Itraq-Based Quantitative Proteomics Analysis Reveals the Mechanism Underlying the Weakening of Carbon Metabolism in Chlorotic Tea Leaves
    Article iTRAQ-Based Quantitative Proteomics Analysis Reveals the Mechanism Underlying the Weakening of Carbon Metabolism in Chlorotic Tea Leaves Fang Dong 1,2, Yuanzhi Shi 1,2, Meiya Liu 1,2, Kai Fan 1,2, Qunfeng Zhang 1,2,* and Jianyun Ruan 1,2 1 Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; [email protected] (F.D.); [email protected] (Y.S.); [email protected] (M.L.); [email protected] (K.F.); [email protected] (J.R.) 2 Key Laboratory for Plant Biology and Resource Application of Tea, the Ministry of Agriculture, Hangzhou 310008, China * Correspondence: [email protected]; Tel.: +86-571-8527-0665 Received: 7 November 2018; Accepted: 5 December 2018; Published: 7 December 2018 Abstract: To uncover mechanism of highly weakened carbon metabolism in chlorotic tea (Camellia sinensis) plants, iTRAQ (isobaric tags for relative and absolute quantification)-based proteomic analyses were employed to study the differences in protein expression profiles in chlorophyll-deficient and normal green leaves in the tea plant cultivar “Huangjinya”. A total of 2110 proteins were identified in “Huangjinya”, and 173 proteins showed differential accumulations between the chlorotic and normal green leaves. Of these, 19 proteins were correlated with RNA expression levels, based on integrated analyses of the transcriptome and proteome. Moreover, the results of our analysis of differentially expressed proteins suggested that primary carbon metabolism (i.e., carbohydrate synthesis and transport) was inhibited in chlorotic tea leaves. The differentially expressed genes and proteins combined with photosynthetic phenotypic data indicated that 4-coumarate-CoA ligase (4CL) showed a major effect on repressing flavonoid metabolism, and abnormal developmental chloroplast inhibited the accumulation of chlorophyll and flavonoids because few carbon skeletons were provided as a result of a weakened primary carbon metabolism.
    [Show full text]
  • Engineering the Substrate Specificity of Galactose Oxidase
    Engineering the Substrate Specificity of Galactose Oxidase Lucy Ann Chappell BSc. (Hons) Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds School of Molecular and Cellular Biology September 2013 The candidate confirms that the work submitted is her own and that appropriate credit has been given where reference has been made to the work of others. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement © 2013 The University of Leeds and Lucy Ann Chappell The right of Lucy Ann Chappell to be identified as Author of this work has been asserted by her in accordance with the Copyright, Designs and Patents Act 1988. ii Acknowledgements My greatest thanks go to Prof. Michael McPherson for the support, patience, expertise and time he has given me throughout my PhD. Many thanks to Dr Bruce Turnbull for always finding time to help me with the Chemistry side of the project, particularly the NMR work. Also thanks to Dr Arwen Pearson for her support, especially reading and correcting my final thesis. Completion of the laboratory work would not have been possible without the help of numerous lab members and friends who have taught me so much, helped develop my scientific skills and provided much needed emotional support – thank you for your patience and friendship: Dr Thembi Gaule, Dr Sarah Deacon, Dr Christian Tiede, Dr Saskia Bakker, Ms Briony Yorke and Mrs Janice Robottom. Thank you to three students I supervised during my PhD for their friendship and contributions to the project: Mr Ciaran Doherty, Ms Lito Paraskevopoulou and Ms Upasana Mandal.
    [Show full text]
  • Stems for Nonproprietary Drug Names
    USAN STEM LIST STEM DEFINITION EXAMPLES -abine (see -arabine, -citabine) -ac anti-inflammatory agents (acetic acid derivatives) bromfenac dexpemedolac -acetam (see -racetam) -adol or analgesics (mixed opiate receptor agonists/ tazadolene -adol- antagonists) spiradolene levonantradol -adox antibacterials (quinoline dioxide derivatives) carbadox -afenone antiarrhythmics (propafenone derivatives) alprafenone diprafenonex -afil PDE5 inhibitors tadalafil -aj- antiarrhythmics (ajmaline derivatives) lorajmine -aldrate antacid aluminum salts magaldrate -algron alpha1 - and alpha2 - adrenoreceptor agonists dabuzalgron -alol combined alpha and beta blockers labetalol medroxalol -amidis antimyloidotics tafamidis -amivir (see -vir) -ampa ionotropic non-NMDA glutamate receptors (AMPA and/or KA receptors) subgroup: -ampanel antagonists becampanel -ampator modulators forampator -anib angiogenesis inhibitors pegaptanib cediranib 1 subgroup: -siranib siRNA bevasiranib -andr- androgens nandrolone -anserin serotonin 5-HT2 receptor antagonists altanserin tropanserin adatanserin -antel anthelmintics (undefined group) carbantel subgroup: -quantel 2-deoxoparaherquamide A derivatives derquantel -antrone antineoplastics; anthraquinone derivatives pixantrone -apsel P-selectin antagonists torapsel -arabine antineoplastics (arabinofuranosyl derivatives) fazarabine fludarabine aril-, -aril, -aril- antiviral (arildone derivatives) pleconaril arildone fosarilate -arit antirheumatics (lobenzarit type) lobenzarit clobuzarit -arol anticoagulants (dicumarol type) dicumarol
    [Show full text]
  • Anti-EIF2C1 / AGO1 Antibody (ARG63916)
    Product datasheet [email protected] ARG63916 Package: 100 μg anti-EIF2C1 / AGO1 antibody Store at: -20°C Summary Product Description Goat Polyclonal antibody recognizes EIF2C1 / AGO1 Tested Reactivity Hu Predict Reactivity Ms, Rat, Dog Tested Application IHC-P, WB Specificity This product is not expected to cross-react with EIF2C2, EIF2C3 and EIF2C4. Host Goat Clonality Polyclonal Isotype IgG Target Name EIF2C1 / AGO1 Antigen Species Human Immunogen C-KNASYNLDPYIQEF Conjugation Un-conjugated Alternate Names GERP95; Q99; eIF2C 1; EIF2C; EIF2C1; Argonaute RISC catalytic component 1; Argonaute1; Protein argonaute-1; hAgo1; Putative RNA-binding protein Q99; eIF-2C 1; Eukaryotic translation initiation factor 2C 1 Application Instructions Application table Application Dilution IHC-P 2.5 µg/ml WB 0.3 - 1 µg/ml Application Note WB: Recommend incubate at RT for 1h. IHC-P: Antigen Retrieval: Steam tissue section in Citrate buffer (pH 6.0). * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Calculated Mw 97 kDa Properties Form Liquid Purification Purified from goat serum by ammonium sulphate precipitation followed by antigen affinity chromatography using the immunizing peptide. Buffer Tris saline (pH 7.3), 0.02% Sodium azide and 0.5% BSA Preservative 0.02% Sodium azide Stabilizer 0.5% BSA www.arigobio.com 1/3 Concentration 0.5 mg/ml Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C or below. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles.
    [Show full text]
  • Generated by SRI International Pathway Tools Version 25.0, Authors S
    Authors: Pallavi Subhraveti Ron Caspi Quang Ong Peter D Karp An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Ingrid Keseler Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Gcf_000725805Cyc: Streptomyces xanthophaeus Cellular Overview Connections between pathways are omitted for legibility.
    [Show full text]
  • Gene Expression During Normal and FSHD Myogenesis Tsumagari Et Al
    Gene expression during normal and FSHD myogenesis Tsumagari et al. Tsumagari et al. BMC Medical Genomics 2011, 4:67 http://www.biomedcentral.com/1755-8794/4/67 (27 September 2011) Tsumagari et al. BMC Medical Genomics 2011, 4:67 http://www.biomedcentral.com/1755-8794/4/67 RESEARCHARTICLE Open Access Gene expression during normal and FSHD myogenesis Koji Tsumagari1, Shao-Chi Chang1, Michelle Lacey2,3, Carl Baribault2,3, Sridar V Chittur4, Janet Sowden5, Rabi Tawil5, Gregory E Crawford6 and Melanie Ehrlich1,3* Abstract Background: Facioscapulohumeral muscular dystrophy (FSHD) is a dominant disease linked to contraction of an array of tandem 3.3-kb repeats (D4Z4) at 4q35. Within each repeat unit is a gene, DUX4, that can encode a protein containing two homeodomains. A DUX4 transcript derived from the last repeat unit in a contracted array is associated with pathogenesis but it is unclear how. Methods: Using exon-based microarrays, the expression profiles of myogenic precursor cells were determined. Both undifferentiated myoblasts and myoblasts differentiated to myotubes derived from FSHD patients and controls were studied after immunocytochemical verification of the quality of the cultures. To further our understanding of FSHD and normal myogenesis, the expression profiles obtained were compared to those of 19 non-muscle cell types analyzed by identical methods. Results: Many of the ~17,000 examined genes were differentially expressed (> 2-fold, p < 0.01) in control myoblasts or myotubes vs. non-muscle cells (2185 and 3006, respectively) or in FSHD vs. control myoblasts or myotubes (295 and 797, respectively). Surprisingly, despite the morphologically normal differentiation of FSHD myoblasts to myotubes, most of the disease-related dysregulation was seen as dampening of normal myogenesis- specific expression changes, including in genes for muscle structure, mitochondrial function, stress responses, and signal transduction.
    [Show full text]
  • Small Rnas in Early Mammalian Development: from Gametes to Gastrulation Nayoung Suh and Robert Blelloch*
    REVIEW 1653 Development 138, 1653-1661 (2011) doi:10.1242/dev.056234 © 2011. Published by The Company of Biologists Ltd Small RNAs in early mammalian development: from gametes to gastrulation Nayoung Suh and Robert Blelloch* Summary Classes and biogenesis of mammalian small RNAs Small non-coding RNAs, including microRNAs (miRNAs), Three major classes of functional small non-coding RNAs have endogenous small interfering RNAs (endo-siRNAs) and Piwi- been found in mammals: microRNAs (miRNAs), endogenous interacting RNAs (piRNAs), play essential roles in mammalian small interfering RNAs (endo-siRNAs) and Piwi-interacting RNAs development. The function and timing of expression of these (piRNAs) (Babiarz and Blelloch, 2009; Kim et al., 2009; Thomson three classes of small RNAs differ greatly. piRNAs are expressed and Lin, 2009). These classes differ in their biogenesis, i.e. their and play a crucial role during male gametogenesis, whereas maturation from transcribed forms to the active form of the RNA endo-siRNAs are essential for oocyte meiosis. By contrast, (Fig. 1). miRNAs are ubiquitously expressed in somatic tissues and miRNAs can be divided into two subclasses: canonical and non- function throughout post-implantation development. canonical miRNAs. Canonical miRNAs are initially transcribed as Surprisingly, however, miRNAs are non-essential during pre- long RNAs that contain hairpins (Fig. 1A). The 60-75 nt hairpins implantation embryonic development and their function is are recognized by the RNA-binding protein Dgcr8 (DiGeorge suppressed during oocyte meiosis. Here, we review the roles of syndrome critical region 8), which directs the RNase III enzyme small non-coding RNAs during the early stages of mammalian Drosha to cleave the base of the hairpin (Denli et al., 2004; development, from gamete maturation through to Gregory et al., 2004; Han et al., 2004; Han et al., 2006; Landthaler gastrulation.
    [Show full text]
  • ( 12 ) United States Patent
    US010195209B2 (12 ) United States Patent ( 10 ) Patent No. : US 10 , 195 ,209 B2 Gish et al. (45 ) Date of Patent: * Feb . 5 , 2019 (54 ) ANTI- HULRRC15 ANTIBODY DRUG 4 ,634 ,665 A 1 / 1987 Axel 4 ,716 , 111 A 12 / 1987 Osband CONJUGATES AND METHODS FOR THEIR 4 ,737 , 456 A 4 / 1988 Weng USE 4 , 816 ,397 A 3 / 1989 Boss 4 , 816 ,457 A 3 / 1989 Baldwin (71 ) Applicants :AbbVie Inc. , North Chicago , IL (US ) ; 4 , 968 ,615 A 11 / 1990 Koszinowski AbbVie Biotherapeutics Inc. , 5 , 168 , 062 A 12 / 1992 Stinski 5 , 179 ,017 A 1 / 1993 Axel Redwood City , CA (US ) 5 , 225 , 539 A 7 / 1993 Winter 5 , 413 , 923 A 5 / 1995 Kucherlapati ( 72 ) Inventors : Kurt C . Gish , Piedmont, CA (US ) ; 5 ,530 , 101 A 6 /1996 Queen Jonathan A . Hickson , Lake Villa , IL 5 , 545 , 806 A 8 / 1996 Lonberg (US ) ; Susan Elizabeth Morgan - Lappe , 5 , 565 ,332 A 10 / 1996 Hoogenboom Riverwoods, IL (US ) ; James W . 5 , 569 , 825 A 10 / 1996 Lonberg 5 ,585 ,089 A 12 / 1996 Queen Purcell, San Francisco , CA (US ) 5 ,625 , 126 A 4 / 1997 Lonberg 5 ,633 , 425 A 5 / 1997 Lonberg ( 73 ) Assignees: AbbVie Inc. , North Chicago , IL (US ) ; 5 ,658 , 570 A 8 / 1997 Newman AbbVie Biotherapeutics Inc . , 5 ,661 ,016 A 8 / 1997 Lonberg Redwood City , CA (US ) 5 ,681 , 722 A 10 / 1997 Newman 5 ,693 , 761 A 12 / 1997 Queen 5 ,693 , 762 A 12 / 1997 Queen ( * ) Notice : Subject to any disclaimer, the term of this 5 ,693 , 780 A 12 / 1997 Newman patent is extended or adjusted under 35 5 , 807 ,715 A 9 / 1998 Morrison U .
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2009/0005722 A1 Jennings-Spring (43) Pub
    US 20090005722A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2009/0005722 A1 Jennings-Spring (43) Pub. Date: Jan. 1, 2009 (54) SKIN-CONTACTING-ADHESIVE FREE Publication Classification DRESSING (51) Int. Cl. Inventor: Barbara Jennings-Spring, Jupiter, A61N L/30 (2006.01) (76) A6F I3/00 (2006.01) FL (US) A6IL I5/00 (2006.01) Correspondence Address: AOIG 7/06 (2006.01) Irving M. Fishman AOIG 7/04 (2006.01) c/o Cohen, Tauber, Spievack and Wagner (52) U.S. Cl. .................. 604/20: 602/43: 602/48; 4771.5; Suite 2400, 420 Lexington Avenue 47/13 New York, NY 10170 (US) (57) ABSTRACT (21) Appl. No.: 12/231,104 A dressing having a flexible sleeve shaped to accommodate a Substantially cylindrical body portion, the sleeve having a (22) Filed: Aug. 29, 2008 lining which is substantially non-adherent to the body part being bandaged and having a peripheral securement means Related U.S. Application Data which attaches two peripheral portions to each other without (63) Continuation-in-part of application No. 1 1/434,689, those portions being circumferentially adhered to the sleeve filed on May 16, 2006. portion. Patent Application Publication Jan. 1, 2009 Sheet 1 of 9 US 2009/0005722 A1 Patent Application Publication Jan. 1, 2009 Sheet 2 of 9 US 2009/0005722 A1 10 8 F.G. 5 Patent Application Publication Jan. 1, 2009 Sheet 3 of 9 US 2009/0005722 A1 13 FIG.6 2 - Y TIII Till "T fift 11 10 FIG.7 8 13 6 - 12 - Timir" "in "in "MINIII.
    [Show full text]
  • Gene Ontology Functional Annotations and Pleiotropy
    Network based analysis of genetic disease associations Sarah Gilman Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy under the Executive Committee of the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2014 © 2013 Sarah Gilman All Rights Reserved ABSTRACT Network based analysis of genetic disease associations Sarah Gilman Despite extensive efforts and many promising early findings, genome-wide association studies have explained only a small fraction of the genetic factors contributing to common human diseases. There are many theories about where this “missing heritability” might lie, but increasingly the prevailing view is that common variants, the target of GWAS, are not solely responsible for susceptibility to common diseases and a substantial portion of human disease risk will be found among rare variants. Relatively new, such variants have not been subject to purifying selection, and therefore may be particularly pertinent for neuropsychiatric disorders and other diseases with greatly reduced fecundity. Recently, several researchers have made great progress towards uncovering the genetics behind autism and schizophrenia. By sequencing families, they have found hundreds of de novo variants occurring only in affected individuals, both large structural copy number variants and single nucleotide variants. Despite studying large cohorts there has been little recurrence among the genes implicated suggesting that many hundreds of genes may underlie these complex phenotypes. The question
    [Show full text]
  • WO 2012/174282 A2 20 December 2012 (20.12.2012) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2012/174282 A2 20 December 2012 (20.12.2012) P O P C T (51) International Patent Classification: David [US/US]; 13539 N . 95th Way, Scottsdale, AZ C12Q 1/68 (2006.01) 85260 (US). (21) International Application Number: (74) Agent: AKHAVAN, Ramin; Caris Science, Inc., 6655 N . PCT/US20 12/0425 19 Macarthur Blvd., Irving, TX 75039 (US). (22) International Filing Date: (81) Designated States (unless otherwise indicated, for every 14 June 2012 (14.06.2012) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, English (25) Filing Language: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, Publication Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, (30) Priority Data: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 61/497,895 16 June 201 1 (16.06.201 1) US MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 61/499,138 20 June 201 1 (20.06.201 1) US OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, 61/501,680 27 June 201 1 (27.06.201 1) u s SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, 61/506,019 8 July 201 1(08.07.201 1) u s TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Changes in Mirna Expression in a Model of Microcephaly Shan Parikh University of Connecticut - Storrs, [email protected]
    University of Connecticut OpenCommons@UConn Honors Scholar Theses Honors Scholar Program Spring 5-9-2010 Changes in miRNA Expression in a Model of Microcephaly Shan Parikh University of Connecticut - Storrs, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/srhonors_theses Part of the Cellular and Molecular Physiology Commons, and the Other Physiology Commons Recommended Citation Parikh, Shan, "Changes in miRNA Expression in a Model of Microcephaly" (2010). Honors Scholar Theses. 140. https://opencommons.uconn.edu/srhonors_theses/140 Changes in miRNA expression in a model of Microcephaly Shan Parikh Physiology and Neurobiology Abstract miRNAs function to regulate gene expression through post-transcriptional mechanisms to potentially regulate multiple aspects of physiology and development. Whole transcriptome analysis has been conducted on the citron kinase mutant rat, a mutant that shows decreases in brain growth and development. The resulting differences in RNA between mutant and wild-type controls can be used to identify genetic pathways that may be regulated differentially in normal compared to abnormal neurogenesis. The goal of this thesis was to verify, with quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), changes in miRNA expression in Cit-k mutants and wild types. In addition to confirming miRNA expression changes, bio- informatics software TargetScan 5.1 was used to identify potential mRNA targets of the differentially expressed miRNAs. The miRNAs that were confirmed to change include: rno-miR- 466c, mmu-miR-493, mmu-miR-297a, hsa-miR-765, and hsa-miR-1270. The TargetScan analysis revealed 347 potential targets which have known roles in development. A subset of these potential targets include genes involved in the Wnt signaling pathway which is known to be an important regulator of stem cell development.
    [Show full text]