Phosphatic 'Inarticulate'

Total Page:16

File Type:pdf, Size:1020Kb

Phosphatic 'Inarticulate' A review of Cambrian lingulate brachiopods of England and Wales Paul Winrow Imperial College Department of Earth Sciences and Engineering PhD degree thesis 1 ABSTRACT The taxonomy of Cambrian lingulate (phosphatic shelled) brachiopods from England and Wales are reviewed in detail for the first time in nearly a century. 37 linguliformean brachiopod species, assigned to 23 genera, are described; 19 taxa are recorded in open taxonomy. Giving provisional names, three new genera, Svenjaella, Alexellus and Kayleigha are erected and nine new species are described (Chapter 4). Detailed cladistic analysis supports previous reports that Acrotretidae is a paraphyletic grouping of brachiopods which gave rise to other families within the Acrotretoidea (Chapter 6). Curticiidae is identified as lying outside the Acrotretoidea. The remaining families are supported as valid taxonomic units, albeit with some potential minor revisions. A new Scaphelasmatidae-Ceratretidae clade is consistently recovered. Support for the previously proposed subfamilies Neotretinae and Linnarssoniinae is partially recovered. The preservation of polygonal imprints of epithelial cells in lingulate brachiopods is reviewed and supplemented by new data (Chapter 7). The imprints are confirmed as representing moulds of epithelial cells as they are best preserved in areas where the shell has been thickened, and are similar in size to cells recorded in Lingula, the closest living relative to the extinct acrotretoids. Analysis of the morphology and sizes of cell-moulds demonstrates that there is no consistent relationship between cell width and valve size, and that they are not a useful taxonomic character within this group. The distribution of lingulate brachiopods across the Iapetus region is analysed using a number of statistical measures (Chapter 8). Although lingulate brachiopods have traditionally been considered to be of little utility in assessing palaeobiogeography, this analysis shows a clear palaeobiogeographic signal where lingulate faunas are sufficiently diverse, reflecting the history of the Iapetus ocean and the relative separation of Laurentia and Baltica through the Cambrian and Ordovician and provides confirmatory evidence that Palaeozoic lingulates had long-lived planktotrophic larvae. DISCLAIMER: This manuscript is produced only for examination as a doctoral thesis. It is not a publication in the sense of the International Code of Zoological Nomenclature. 2 DECLARATION OF ORIGINALITY I declare that all the work and findings contained in this thesis are the product of my own original research and writing, other than where appropriately referenced. ....................................................................... COPYRIGHT The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, distribute or transmit the thesis on the condition that they attribute it, that they do not use it for commercial purposes and that they do not alter, transform or build upon it. For any reuse or redistribution, researchers must make clear to others the licence terms of this work 3 Contents 1 INTRODUCTION ....................................................................................................................... 10 Scope 10 Methodology 11 Acknowledgments 11 2 HISTORY OF CAMBRIAN LINGULATE BRACHIOPOD RESEARCH .......................... 12 th th 19 - 20 Century Research in Britain 12 Research in other areas 13 th st Late 20 to Early 21 Century Research 14 3 CAMBRIAN GEOLOGY OF ENGLAND AND WALES ...................................................... 16 Historical background to studies of Cambrian strata in Britain 16 The Cambrian timescale 16 British Cambrian timescale 17 Correlation of British Sequences 17 Palaeocontinental and tectonic Setting 20 Palaeogeography 22 Cambrian Successions and depositional environments in southern Britain 22 4 SYSTEMATIC PALAEONTOLOGY ...................................................................................... 23 5 PHYLOGENETICS OF LINGULATE BRACHIOPODS .................................................... 139 A brief history of Brachiopod classification 139 Impact of molecular studies on Brachiopod classification 145 Phylogeny and classification of Lingulate Brachiopods 147 6 CLADISTIC ANALYSIS OF ACROTRETOID BRACHIOPODS ..................................... 151 Introduction 151 Aims of this study 152 Methodology 152 Results 153 Discussion 157 Conclusions 161 7 EPITHELIAL CELL-MOULDS IN LINGULATE BRACHIOPODS ................................ 163 Introduction 163 Material and methods 165 New records of epithelial cell moulds from acrotretoid brachiopods 165 Discussion 169 4 Conclusions 174 Addendum: epithelial cell moulds in linguloid brachiopods ........................................................... 176 Introduction 176 Material 176 New records of epithelial cell moulds from linguloid brachiopods 176 Discussion 178 Conclusions 179 8 LINGULATE BRACHIOPODS AND THE LOWER PALAEOZOIC HISTORY OF THE IAPETUS OCEAN .............................................................................................................................. 181 Abstract 181 Introduction 181 Faunal evidence for the history of the Iapetus Ocean 183 Aims of this sudy 186 Methodology 186 Results 189 Discussion 196 Conclusions 198 REFERENCES .................................................................................................................................... 199 PLATES ............................................................................................................................................... 244 PLATE 1 245 PLATE 2 247 PLATE 3 249 PLATE 4 251 PLATE 5 253 PLATE 6 255 PLATE 7 257 PLATE 8 259 PLATE 9 261 PLATE 10 263 PLATE 11 265 PLATE 12 267 PLATE 13 269 PLATE 14 271 PLATE 15 273 PLATE 16 275 5 PLATE 17 277 APPENDICES ..................................................................................................................................... 279 Appendix 1: Summary of Cambrian successions in England and Wales 280 Appendix 2: List of specimens 293 Appendix 3: Characters used in cladistic analysis of acrotretoids 297 Appendix 4: Database of characters used in acrotretoid cladistic analysis 299 Appendix 5: Age ranges for taxa used in stratigraphic congruence analysis 303 Appendix 6: Consensus trees (all acrotretoid taxa) 306 Appendix 7: Consensus trees (excluding eoconulids) 311 Appendix 8: Stratigraphic congruence data for all trees (excluding eoconulids) 317 Appendix 9: List of specimens investigated with respect to preservation of epithelial cell-moulds in acrotretoid brachiopods 320 Appendix 10: Copyright permissions 321 6 List of figures Figure 1 British Cambrian stratigraphic correlation chart ....................................................................... 20 Figure 2 Palaeogeographic reconstruction at 540Ma .............................................................................. 21 Figure 3 Palaeogeographic reconstruction at 510Ma .............................................................................. 21 Figure 4 Stratigraphic range chart of lingulate brachiopods from the Cambrian of England and Wales 25 Figure 5 Images of O. parvus from Walcott (1908) ................................................................................ 39 Figure 6 Graph showing length:width plot of dorsal larval shells of Svenjaella parvus and Svenjaella minuta ...................................................................................................................................................... 43 Figure 7 Depiction of interior of ventral valve of Linnarssonia? comleyensis (taken from Cobbold, 1921). ...................................................................................................................................................... 81 Figure 8 Summary of brachiopod classification schemes (data from Williams et al 1996; 2000 and Carlson 2001) showing current classification on the left and others in chronological order ................ 140 Figure 9 Supra-ordinal classification of the Brachiopoda .................................................................... 144 Figure 10 Summary of family relationships in consensus tree IW10.................................................... 159 Figure 11 Plot showing min., max. and mean cell widths (ap = apical process, vf = valve floor) ........ 171 Figure 12 Graph showing relationship between mean cell width and valve width for British Cambrian lingulate brachiopods (based on data in Table 71). ............................................................................... 173 Figure 13 Epithelial cell moulds recorded in Cambrian Acrotretid brachiopods .................................. 175 Figure 14 Plot showing minimum, maximum and mean cell widths in linguloid brachiopods from the Cambrian of England and Wales ........................................................................................................... 178 Figure 15 Epithelial cell moulds recorded in Cambrian Linguloid brachiopods .................................. 180 Figure 16 Summary of Ordovician stratigraphic terminology used herein ........................................... 182 Figure 17 Similarity Indices for the Laurentia/Baltica palaeocontinent pair through the Cambrian and Ordovician ............................................................................................................................................. 190 Figure
Recommended publications
  • Available Generic Names for Trilobites
    AVAILABLE GENERIC NAMES FOR TRILOBITES P.A. JELL AND J.M. ADRAIN Jell, P.A. & Adrain, J.M. 30 8 2002: Available generic names for trilobites. Memoirs of the Queensland Museum 48(2): 331-553. Brisbane. ISSN0079-8835. Aconsolidated list of available generic names introduced since the beginning of the binomial nomenclature system for trilobites is presented for the first time. Each entry is accompanied by the author and date of availability, by the name of the type species, by a lithostratigraphic or biostratigraphic and geographic reference for the type species, by a family assignment and by an age indication of the type species at the Period level (e.g. MCAM, LDEV). A second listing of these names is taxonomically arranged in families with the families listed alphabetically, higher level classification being outside the scope of this work. We also provide a list of names that have apparently been applied to trilobites but which remain nomina nuda within the ICZN definition. Peter A. Jell, Queensland Museum, PO Box 3300, South Brisbane, Queensland 4101, Australia; Jonathan M. Adrain, Department of Geoscience, 121 Trowbridge Hall, Univ- ersity of Iowa, Iowa City, Iowa 52242, USA; 1 August 2002. p Trilobites, generic names, checklist. Trilobite fossils attracted the attention of could find. This list was copied on an early spirit humans in different parts of the world from the stencil machine to some 20 or more trilobite very beginning, probably even prehistoric times. workers around the world, principally those who In the 1700s various European natural historians would author the 1959 Treatise edition. Weller began systematic study of living and fossil also drew on this compilation for his Presidential organisms including trilobites.
    [Show full text]
  • Treatise on Invertebrate Paleontology
    PART H, Revised BRACHIOPODA VOLUMES 2 & 3: Linguliformea, Craniiformea, and Rhynchonelliformea (part) ALWYN WILLIAMS, S. J. CARLSON, C. H. C. BRUNTON, L. E. HOLMER, L. E. POPOV, MICHAL MERGL, J. R. LAURIE, M. G. BASSETT, L. R. M. COCKS, RONG JIA-YU, S. S. LAZAREV, R. E. GRANT, P. R. RACHEBOEUF, JIN YU-GAN, B. R. WARDLAW, D. A. T. HARPER, A. D. WRIGHT, and MADIS RUBEL CONTENTS INFORMATION ON TREATISE VOLUMES ...................................................................................... x EDITORIAL PREFACE .............................................................................................................. xi STRATIGRAPHIC DIVISIONS .................................................................................................. xxiv COORDINATING AUTHOR'S PREFACE (Alwyn Williams) ........................................................ xxv BRACHIOPOD CLASSIFICATION (Alwyn Williams, Sandra J. Carlson, and C. Howard C. Brunton) .................................. 1 Historical Review .............................................................................................................. 1 Basis for Classification ....................................................................................................... 5 Methods.......................................................................................................................... 5 Genealogies ....................................................................................................................... 6 Recent Brachiopods .......................................................................................................
    [Show full text]
  • Durham Research Online
    Durham Research Online Deposited in DRO: 23 May 2017 Version of attached le: Accepted Version Peer-review status of attached le: Peer-reviewed Citation for published item: Betts, Marissa J. and Paterson, John R. and Jago, James B. and Jacquet, Sarah M. and Skovsted, Christian B. and Topper, Timothy P. and Brock, Glenn A. (2017) 'Global correlation of the early Cambrian of South Australia : shelly fauna of the Dailyatia odyssei Zone.', Gondwana research., 46 . pp. 240-279. Further information on publisher's website: https://doi.org/10.1016/j.gr.2017.02.007 Publisher's copyright statement: c 2017 This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Additional information: Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full DRO policy for further details. Durham University Library, Stockton Road, Durham DH1 3LY, United Kingdom Tel : +44 (0)191 334 3042 | Fax : +44 (0)191 334 2971 https://dro.dur.ac.uk Accepted Manuscript Global correlation of the early Cambrian of South Australia: Shelly fauna of the Dailyatia odyssei Zone Marissa J.
    [Show full text]
  • Facies, Phosphate, and Fossil Preservation Potential Across a Lower Cambrian Carbonate Shelf, Arrowie Basin, South Australia
    Palaeogeography, Palaeoclimatology, Palaeoecology 533 (2019) 109200 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Facies, phosphate, and fossil preservation potential across a Lower Cambrian T carbonate shelf, Arrowie Basin, South Australia ⁎ Sarah M. Jacqueta,b, , Marissa J. Bettsc,d, John Warren Huntleya, Glenn A. Brockb,d a Department of Geological Sciences, University of Missouri, Columbia, MO 65211, USA b Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia c Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia d Early Life Institute and Department of Geology, State Key Laboratory for Continental Dynamics, Northwest University, Xi'an 710069, China ARTICLE INFO ABSTRACT Keywords: The efects of sedimentological, depositional and taphonomic processes on preservation potential of Cambrian Microfacies small shelly fossils (SSF) have important implications for their utility in biostratigraphy and high-resolution Calcareous correlation. To investigate the efects of these processes on fossil occurrence, detailed microfacies analysis, Organophosphatic biostratigraphic data, and multivariate analyses are integrated from an exemplar stratigraphic section Taphonomy intersecting a suite of lower Cambrian carbonate palaeoenvironments in the northern Flinders Ranges, South Biominerals Australia. The succession deepens upsection, across a low-gradient shallow-marine shelf. Six depositional Facies Hardgrounds Sequences are identifed ranging from protected (FS1) and open (FS2) shelf/lagoonal systems, high-energy inner ramp shoal complex (FS3), mid-shelf (FS4), mid- to outer-shelf (FS5) and outer-shelf (FS6) environments. Non-metric multi-dimensional scaling ordination and two-way cluster analysis reveal an underlying bathymetric gradient as the main control on the distribution of SSFs.
    [Show full text]
  • Smithsonian Miscellaneous Collections
    SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 53, NUMBER 6 CAMBRIAN GEOLOGY AND PALEONTOLOGY No. 6.-0LENELLUS AND OTHER GENERA OF THE MESONACID/E With Twenty-Two Plates CHARLES D. WALCOTT (Publication 1934) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION AUGUST 12, 1910 Zl^i £orb (gaitimovt (pnee BALTIMORE, MD., U. S. A. CAMBRIAN GEOLOGY AND PALEONTOLOGY No. 6.—OLENELLUS AND OTHER GENERA OF THE MESONACID^ By CHARLES D. WALCOTT (With Twenty-Two Plates) CONTENTS PAGE Introduction 233 Future work 234 Acknowledgments 234 Order Opisthoparia Beecher 235 Family Mesonacidas Walcott 236 Observations—Development 236 Cephalon 236 Eye 239 Facial sutures 242 Anterior glabellar lobe 242 Hypostoma 243 Thorax 244 Nevadia stage 244 Mesonacis stage 244 Elliptocephala stage 244 Holmia stage 244 Piedeumias stage 245 Olenellus stage 245 Peachella 245 Olenelloides ; 245 Pygidium 245 Delimitation of genera 246 Nevadia 246 Mesonacis 246 Elliptocephala 247 Callavia 247 Holmia 247 Wanneria 248 P.'edeumias 248 Olenellus 248 Peachella 248 Olenelloides 248 Development of Mesonacidas 249 Mesonacidas and Paradoxinas 250 Stratigraphic position of the genera and species 250 Abrupt appearance of the Mesonacidse 252 Geographic distribution 252 Transition from the Mesonacidse to the Paradoxinse 253 Smithsonian Miscellaneous Collections, Vol. 53, No. 6 232 SMITHSONIAN MISCELLANEOUS COLLECTIONS VOL. 53 Description of genera and species 256 Nevadia, new genus 256 weeksi, new species 257 Mcsonacis Walcott 261 niickwitzi (Schmidt) 262 torelli (Moberg) 264 vermontana
    [Show full text]
  • 1 Tommotiids from the Early Cambrian (Series 2, Stage 3) of Morocco and the Evolution Of
    1 1 Tommotiids from the early Cambrian (Series 2, stage 3) of Morocco and the evolution of 2 the tannuolinid scleritome and setigerous shell structures in stem group brachiopods 3 4 by CHRISTIAN B. SKOVSTED1, SÉBASTIEN CLAUSEN2, J. JAVIER ÁLVARO3 and 5 DEBORAH PONLEVÉ2 6 7 1 Department of Palaeozoology, Swedish Museum of Natural History, P.O. Box 50007, SE- 8 104 05 Stockholm, Sweden, [email protected]. 9 2 UMR 8217 Géosystèmes, UFR Sciences de la Terre, Université Lille 1, 10 [email protected], [email protected]. 11 3 Centro de Astrobiología (CSIC/INTA), Ctra. de Torrejón a Ajalvir km 4, 28850 Torrejón de 12 Ardoz, Spain, [email protected] 13 14 Abstract: An assemblage of tannuolinid sclerites is described from the Amouslek Formation 15 (Souss Basin) of the Anti-Atlas Mountains in Morocco. The assemblage contains two species, 16 Tannuolina maroccana n. sp. which is represented by a small number of mitral and sellate 17 sclerites and Micrina sp., represented by a single mitral sclerite. Tannuolina maroccana 18 differs from other species of the genus in the presence of both bilaterally symmetrical and 19 strongly asymmetrical sellate sclerites. This observation suggests that the scleritome of 20 Tannuolina was more complex than previously thought and that this tommotiid may have held 21 a more basal position in the brachiopod stem group than previously assumed. The shell 22 structure of both T. maroccana and Micrina sp. is well preserved and exhibits two 23 fundamentally different sets of tubular structures, only one of which was likely to contain 24 shell penetrating setae.
    [Show full text]
  • A Chancelloriid-Like Metazoan from the Early Cambrian Chengjiang
    OPEN A chancelloriid-like metazoan from the SUBJECT AREAS: early Cambrian Chengjiang Lagersta¨tte, PALAEONTOLOGY ENVIRONMENTAL SCIENCES China Xianguang Hou1, Mark Williams2, David J. Siveter2, Derek J. Siveter3,4, Sarah Gabbott2, David Holwell2 Received & Thomas H. P. Harvey2 23 July 2014 Accepted 1Yunnan Key Laboratory for Palaeobiology, Yunnan University, Kunming 650091, China, 2Department of Geology, University of 17 November 2014 Leicester, Leicester LE1 7RH, UK, 3Earth Collections, Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, UK, 4Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3PR, UK. Published 9 December 2014 Nidelric pugio gen. et sp. nov. from the Cambrian Series 2 Heilinpu Formation, Chengjiang Lagersta¨tte, Yunnan Province, China, is an ovoid, sac-like metazoan that bears single-element spines on its surface. N. Correspondence and pugio shows no trace of a gut, coelom, anterior differentiation, appendages, or internal organs that would suggest a bilateral body plan. Instead, the sac-like morphology invites comparison with the radially requests for materials symmetrical chancelloriids. However, the single-element spines of N. pugio are atypical of the complex should be addressed to multi-element spine rosettes borne by most chancelloriids and N. pugio may signal the ancestral X.G.H. (xghou@ynu. chancelloriid state, in which the spines had not yet fused. Alternatively, N. pugio may represent a group of edu.cn) radial metazoans that are discrete from chancelloriids. Whatever its precise phylogenetic position, N. pugio expands the known disparity of Cambrian scleritome-bearing animals, and provides a new model for reconstructing scleritomes from isolated microfossils.
    [Show full text]
  • Mem170-Bm.Pdf by Guest on 30 September 2021 452 Index
    Index [Italic page numbers indicate major references] acacamite, 437 anticlines, 21, 385 Bathyholcus sp., 135, 136, 137, 150 Acanthagnostus, 108 anticlinorium, 33, 377, 385, 396 Bathyuriscus, 113 accretion, 371 Antispira, 201 manchuriensis, 110 Acmarhachis sp., 133 apatite, 74, 298 Battus sp., 105, 107 Acrotretidae, 252 Aphelaspidinae, 140, 142 Bavaria, 72 actinolite, 13, 298, 299, 335, 336, 339, aphelaspidinids, 130 Beacon Supergroup, 33 346 Aphelaspis sp., 128, 130, 131, 132, Beardmore Glacier, 429 Actinopteris bengalensis, 288 140, 141, 142, 144, 145, 155, 168 beaverite, 440 Africa, southern, 52, 63, 72, 77, 402 Apoptopegma, 206, 207 bedrock, 4, 58, 296, 412, 416, 422, aggregates, 12, 342 craddocki sp., 185, 186, 206, 207, 429, 434, 440 Agnostidae, 104, 105, 109, 116, 122, 208, 210, 244 Bellingsella, 255 131, 132, 133 Appalachian Basin, 71 Bergeronites sp., 112 Angostinae, 130 Appalachian Province, 276 Bicyathus, 281 Agnostoidea, 105 Appalachian metamorphic belt, 343 Billingsella sp., 255, 256, 264 Agnostus, 131 aragonite, 438 Billingsia saratogensis, 201 cyclopyge, 133 Arberiella, 288 Bingham Peak, 86, 129, 185, 190, 194, e genus, 105 Archaeocyathidae, 5, 14, 86, 89, 104, 195, 204, 205, 244 nudus marginata, 105 128, 249, 257, 281 biogeography, 275 parvifrons, 106 Archaeocyathinae, 258 biomicrite, 13, 18 pisiformis, 131, 141 Archaeocyathus, 279, 280, 281, 283 biosparite, 18, 86 pisiformis obesus, 131 Archaeogastropoda, 199 biostratigraphy, 130, 275 punctuosus, 107 Archaeopharetra sp., 281 biotite, 14, 74, 300, 347 repandus, 108 Archaeophialia,
    [Show full text]
  • Re-Evaluation of the Stratigraphically Important Olenellid Trilobite Holmia Cf. Mobergi from the Cambrian Series 2, Stage 3
    NORWEGIAN JOURNAL OF GEOLOGY Vol 99 Nr. 1 https://dx.doi.org/10.17850/njg99-1-04 Re-evaluation of the stratigraphically important olenellid trilobite Holmia cf. mobergi from the Cambrian Series 2, Stage 3 and its implications for the lower Cambrian stratigraphy in the Mjøsa area, Norway Magne Høyberget1, Jan Ove R. Ebbestad2 & Bjørn Funke3 1Rennesveien 14, N–4513 Mandal, Norway. 2Museum of Evolution, Uppsala University, Norbyvägen 16, SE–752 36 Uppsala, Sweden. 3Gjelleråsveien 10, N–1481 Hagan, Norway. E-mail corresponding author (Magne Høyberget): [email protected] The olenellid trilobite Holmia cf. mobergi, known from a single cephalon in the upper lower Cambrian strata from a river section in Flagstadelva, Hamar, has played a significant stratigraphic role in interpreting the lower Cambrian informal Series 2, Stage 3 in the Mjøsa area, Norway, since its discovery in the early 1950s. It was considered one of the oldest trilobite taxa in the lower Cambrian of Scandinavia, but the stratigraphic level and biozonation of the cephalon were problematic and a matter of discussion for decades. Moreover, organic-walled microfossil biostratigraphy questioned the supposed age of the trilobite. New specimens of this taxon collected from the type locality show that the species occurs at a different stratigraphic level than first reported, prompting a new description of the species and a re-evaluation of the taxon’s biostratigraphic significance. Holmia cf. mobergi is compared with new and well-preserved topotype material of Holmia inusitata, a very rare taxon hitherto known from one single outcrop in an autochthonous setting in Norway. Holmia cf.
    [Show full text]
  • Arthropod Pattern Theory and Cambrian Trilobites
    Bijdragen tot de Dierkunde, 64 (4) 193-213 (1995) SPB Academie Publishing bv, The Hague Arthropod pattern theory and Cambrian trilobites Frederick A. Sundberg Research Associate, Invertebrate Paleontology Section, Los Angeles County Museum of Natural History, 900 Exposition Boulevard, Los Angeles, California 90007, USA Keywords: Arthropod pattern theory, Cambrian, trilobites, segment distributions 4 Abstract ou 6). La limite thorax/pygidium se trouve généralementau niveau du node 2 (duplomères 11—13) et du node 3 (duplomères les les 18—20) pour Corynexochides et respectivement pour Pty- An analysis of duplomere (= segment) distribution within the chopariides.Cette limite se trouve dans le champ 4 (duplomères cephalon,thorax, and pygidium of Cambrian trilobites was un- 21—n) dans le cas des Olenellides et des Redlichiides. L’extrémité dertaken to determine if the Arthropod Pattern Theory (APT) du corps se trouve généralementau niveau du node 3 chez les proposed by Schram & Emerson (1991) applies to Cambrian Corynexochides, et au niveau du champ 4 chez les Olenellides, trilobites. The boundary of the cephalon/thorax occurs within les Redlichiides et les Ptychopariides. D’autre part, les épines 1 4 the predicted duplomerenode (duplomeres or 6). The bound- macropleurales, qui pourraient indiquer l’emplacement des ary between the thorax and pygidium generally occurs within gonopores ou de l’anus, sont généralementsituées au niveau des node 2 (duplomeres 11—13) and node 3 (duplomeres 18—20) for duplomères pronostiqués. La limite prothorax/opisthothorax corynexochids and ptychopariids, respectively. This boundary des Olenellides est située dans le node 3 ou près de celui-ci. Ces occurs within field 4 (duplomeres21—n) for olenellids and red- résultats indiquent que nombre et distribution des duplomères lichiids.
    [Show full text]
  • Decoding the Fossil Record of Early Lophophorates
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1284 Decoding the fossil record of early lophophorates Systematics and phylogeny of problematic Cambrian Lophotrochozoa AODHÁN D. BUTLER ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-554-9327-1 UPPSALA urn:nbn:se:uu:diva-261907 2015 Dissertation presented at Uppsala University to be publicly examined in Hambergsalen, Geocentrum, Villavägen 16, Uppsala, Friday, 23 October 2015 at 13:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Professor Maggie Cusack (School of Geographical and Earth Sciences, University of Glasgow). Abstract Butler, A. D. 2015. Decoding the fossil record of early lophophorates. Systematics and phylogeny of problematic Cambrian Lophotrochozoa. (De tidigaste fossila lofoforaterna. Problematiska kambriska lofotrochozoers systematik och fylogeni). Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1284. 65 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9327-1. The evolutionary origins of animal phyla are intimately linked with the Cambrian explosion, a period of radical ecological and evolutionary innovation that begins approximately 540 Mya and continues for some 20 million years, during which most major animal groups appear. Lophotrochozoa, a major group of protostome animals that includes molluscs, annelids and brachiopods, represent a significant component of the oldest known fossil records of biomineralised animals, as disclosed by the enigmatic ‘small shelly fossil’ faunas of the early Cambrian. Determining the affinities of these scleritome taxa is highly informative for examining Cambrian evolutionary patterns, since many are supposed stem- group Lophotrochozoa. The main focus of this thesis pertained to the stem-group of the Brachiopoda, a highly diverse and important clade of suspension feeding animals in the Palaeozoic era, which are still extant but with only with a fraction of past diversity.
    [Show full text]
  • Inarticulate Brachiopods from the Lower Ordovician in Northern Poland
    Annales Societatis Geologorum Poloniae (1986); vol. 56: 409—418 PL ISSN 0208-9068 INARTICULATE BRACHIOPODS FROM THE LOWER ORDOVICIAN IN NORTHERN POLAND Wiesław Bednarczyk Institute of Geological Sciences, Polish Academy of Sciences, Żwirki i Wigury 93, 02-089 Warszawa Bednarczyk, W ., 1986. Inarticulate brachiopods from the Lower Ordovician in northern Poland. Ann. Soc. Geol. Polon., 56: 409—418. A bstract: Some inarticulate brachiopods, including 6 new species and 1 new genus, are described from lowermost Ordovician limestone from vicinity of Łeba, northern Poland. The as­ semblage is dominated by acrotretids some of which are closely related to some Scandinavian species. The described taxa may be of value in correlating upper Tremadocian and lower Arenigian deposits. Key words: Ordovician, brachiopods, Inarticulata, morphology, taxonomy, new genus, new species. Manuscript received December 1985, accepted January 1986. INTRODUCTION Minute inarticulate brachiopods dominated by ac.otietids were found during the preparation of conodonts from Lower Ordovician of northern Poland. The present paper contains descriptions of Pomeraniotreta biernati n. gen. et n. sp. and of six other species belonging to Rowellella, Conotreta, Eurytreta, Myotreta, and Paterula. The remaining part of the collection is being studied. Recently, the author received a written information from Dr Lars Holmer from the University of Uppsala on his collection of inarticulate brachiopods from the Ceratopyge Limestone of Scandinavia. This collection includes brachial valves apparently identical with those described here as Pomeraniotreta biernati n. gen. et n. sp., and also articulated shells, i.e. those in which the brachial and pedicle valves are still joined. The pedicle valves appear to be identical with those described by Bednarczyk (1979) as Torynelasma lebaensis n.
    [Show full text]